Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Review Article

Protective or Inhibitory Effect of Pharmacological Therapy on Cardiac Ischemic Preconditioning: A Literature Review

Author(s): Leonardo Jorge Cordeiro de Paula, Augusto Hiroshi Uchida, Paulo Cury Rezende, Paulo Soares and Thiago Luis Scudeler*

Volume 20, Issue 5, 2022

Published on: 08 September, 2022

Page: [409 - 428] Pages: 20

DOI: 10.2174/1570161120666220819163025

Price: $65

Abstract

Ischemic preconditioning (IP) is an innate phenomenon, triggered by brief, non-lethal cycles of ischemia/reperfusion applied to a tissue or organ that confers tolerance to a subsequent more prolonged ischemic event. Once started, it can reduce the severity of myocardial ischemia associated with some clinical situations, such as percutaneous coronary intervention (PCI) and intermittent aortic clamping during coronary artery bypass graft surgery (CABG). Although the mechanisms underlying IP have not been completely elucidated, several studies have shown that this phenomenon involves the participation of cell triggers, intracellular signaling pathways, and end-effectors. Understanding this mechanism enables the development of preconditioning mimetic agents. It is known that a range of medications that activate the signaling cascades at different cellular levels can interfere with both the stimulation and the blockade of IP. Investigations of signaling pathways underlying ischemic conditioning have identified a number of therapeutic targets for pharmacological manipulation. This review aims to present and discuss the effects of several medications on myocardial IP.

Keywords: Ischemic preconditioning, cardiac pharmacology, ischemia-reperfusion injury, heart disease, signaling pathways, cardioprotection

Graphical Abstract

[1]
Tomai F, Crea F, Chiariello L, Gioffrè PA. Ischemic preconditioning in humans: Models, mediators, and clinical relevance. Circulation 1999; 100(5): 559-63.
[http://dx.doi.org/10.1161/01.CIR.100.5.559] [PMID: 10430772]
[2]
Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation 1986; 74(5): 1124-36.
[http://dx.doi.org/10.1161/01.CIR.74.5.1124] [PMID: 3769170]
[3]
Kuzuya T, Hoshida S, Yamashita N, et al. Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circ Res 1993; 72(6): 1293-9.
[http://dx.doi.org/10.1161/01.RES.72.6.1293] [PMID: 8495557]
[4]
Yellon D, Baxter GFA. A? second window of protection? or delayed preconditioning phenomenon: Future horizons for myocardial protection? J Mol Cell Cardiol 1995; 27(4): 1023-34.
[http://dx.doi.org/10.1016/0022-2828(95)90071-3] [PMID: 7563099]
[5]
Fryer R, Auchampach JA, Gross GJ. Therapeutic receptor targets of ischemic preconditioning. Cardiovasc Res 2002; 55(3): 520-5.
[http://dx.doi.org/10.1016/S0008-6363(02)00316-4] [PMID: 12160948]
[6]
Gross E, Gross G. Ligand triggers of classical preconditioning and postconditioning. Cardiovasc Res 2006; 70(2): 212-21.
[http://dx.doi.org/10.1016/j.cardiores.2005.12.019] [PMID: 16448635]
[7]
Hausenloy DJ, Yellon DM. Ischaemic conditioning and reperfusion injury. Nat Rev Cardiol 2016; 13(4): 193-209.
[http://dx.doi.org/10.1038/nrcardio.2016.5] [PMID: 26843289]
[8]
Simkhovich B, Przyklenk K, Kloner RA. Role of protein kinase C as a cellular mediator of ischemic preconditioning: A critical review. Cardiovasc Res 1998; 40(1): 9-22.
[http://dx.doi.org/10.1016/S0008-6363(98)00142-4] [PMID: 9876313]
[9]
Baines CP, Wang L, Cohen MV, Downey JM. Protein tyrosine kinase is downstream of protein kinase C for ischemic preconditioning’s anti-infarct effect in the rabbit heart. J Mol Cell Cardiol 1998; 30(2): 383-92.
[http://dx.doi.org/10.1006/jmcc.1997.0601] [PMID: 9515015]
[10]
Vahlhaus C, Schulz R, Post H, Rose J, Heusch G. Prevention of ischemic preconditioning only by combined inhibition of protein kinase C and protein tyrosine kinase in pigs. J Mol Cell Cardiol 1998; 30(2): 197-209.
[http://dx.doi.org/10.1006/jmcc.1997.0609] [PMID: 9514996]
[11]
Imagawa J, Baxter GF, Yellon DM. Genistein, a tyrosine kinase inhibitor, blocks the “second window of protection” 48 h after ischemic preconditioning in the rabbit. J Mol Cell Cardiol 1997; 29(7): 1885-93.
[http://dx.doi.org/10.1006/jmcc.1997.0428] [PMID: 9236142]
[12]
Ban K, Cooper AJ, Samuel S, et al. Phosphatidylinositol 3-kinase γ is a critical mediator of myocardial ischemic and adenosine-mediated preconditioning. Circ Res 2008; 103(6): 643-53.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.175018] [PMID: 18688045]
[13]
Rossello X, Riquelme JA, Davidson SM, Yellon DM. Role of PI3K in myocardial ischaemic preconditioning: Mapping pro-survival cascades at the trigger phase and at reperfusion. J Cell Mol Med 2018; 22(2): 926-35.
[PMID: 29159980]
[14]
Deng W, Leu HB, Chen Y, et al. Protein kinase B (PKB/AKT1) formed signaling complexes with mitochondrial proteins and prevented glycolytic energy dysfunction in cultured cardiomyocytes during ischemia-reperfusion injury. Endocrinology 2014; 155(5): 1618-28.
[http://dx.doi.org/10.1210/en.2013-1817] [PMID: 24601882]
[15]
Abe J, Baines CP, Berk BC. Role of mitogen-activated protein kinases in ischemia and reperfusion injury: The good and the bad. Circ Res 2000; 86(6): 607-9.
[http://dx.doi.org/10.1161/01.RES.86.6.607] [PMID: 10746992]
[16]
Martin ED, Bassi R, Marber MS. p38 MAPK in cardioprotection - are we there yet? Br J Pharmacol 2015; 172(8): 2101-13.
[http://dx.doi.org/10.1111/bph.12901] [PMID: 25204838]
[17]
Yang XP, Irani K, Mattagajasingh S, et al. Signal transducer and activator of transcription 3α and specificity protein 1 interact to upregulate intercellular adhesion molecule-1 in ischemic-reperfused myocardium and vascular endothelium. Arterioscler Thromb Vasc Biol 2005; 25(7): 1395-400.
[http://dx.doi.org/10.1161/01.ATV.0000168428.96177.24] [PMID: 15860735]
[18]
Suleman N, Somers S, Smith R, Opie LH, Lecour SC. Dual activation of STAT-3 and Akt is required during the trigger phase of ischaemic preconditioning. Cardiovasc Res 2008; 79(1): 127-33.
[http://dx.doi.org/10.1093/cvr/cvn067] [PMID: 18339648]
[19]
Xu B, Zhang J, Strom J, Lee S, Chen QM. Myocardial ischemic reperfusion induces de novo Nrf2 protein translation. Biochim Biophys Acta Mol Basis Dis 2014; 1842(9): 1638-47.
[http://dx.doi.org/10.1016/j.bbadis.2014.06.002] [PMID: 24915518]
[20]
Xiao X, Lu Z, Lin V, et al. MicroRNA miR-24-3p Reduces Apoptosis and Regulates Keap1-Nrf2 Pathway in Mouse Cardiomyocytes Responding to Ischemia/Reperfusion Injury. Oxid Med Cell Longev 2018; 2018: 1-9.
[http://dx.doi.org/10.1155/2018/7042105] [PMID: 30622671]
[21]
Xuan YT, Tang XL, Banerjee S, et al. Nuclear factor-kappaB plays an essential role in the late phase of ischemic preconditioning in conscious rabbits. Circ Res 1999; 84(9): 1095-109.
[http://dx.doi.org/10.1161/01.RES.84.9.1095] [PMID: 10325247]
[22]
Valen G, Yan Z, Hansson GK. Nuclear factor kappa-B and the heart. J Am Coll Cardiol 2001; 38(2): 307-14.
[http://dx.doi.org/10.1016/S0735-1097(01)01377-8] [PMID: 11499717]
[23]
Sasaki H, Galang N, Maulik N. Redox regulation of NF-kappaB and AP-1 in ischemic reperfused heart. Antioxid Redox Signal 1999; 1(3): 317-24.
[http://dx.doi.org/10.1089/ars.1999.1.3-317] [PMID: 11229443]
[24]
Yang J, Marden JJ, Fan C, et al. Genetic redox preconditioning differentially modulates AP-1 and NFκB responses following cardiac ischemia/reperfusion injury and protects against necrosis and apoptosis. Mol Ther 2003; 7(3): 341-53.
[http://dx.doi.org/10.1016/S1525-0016(02)00061-8] [PMID: 12668130]
[25]
Cai Z, Luo W, Zhan H, Semenza GL. Hypoxia-inducible factor 1 is required for remote ischemic preconditioning of the heart. Proc Natl Acad Sci USA 2013; 110(43): 17462-7.
[http://dx.doi.org/10.1073/pnas.1317158110] [PMID: 24101519]
[26]
Eckle T, Köhler D, Lehmann R, El Kasmi KC, Eltzschig HK. Hypoxia-inducible factor-1 is central to cardioprotection: A new paradigm for ischemic preconditioning. Circulation 2008; 118(2): 166-75.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.758516] [PMID: 18591435]
[27]
De Lazzari F, Prag HA, Gruszczyk AV, Whitworth AJ, Bisaglia M. DJ-1: A promising therapeutic candidate for ischemia-reperfusion injury. Redox Biol 2021; 41: 101884.
[http://dx.doi.org/10.1016/j.redox.2021.101884] [PMID: 33561740]
[28]
Jiang X, Shi E, Nakajima Y, Sato S. COX-2 mediates morphine-induced delayed cardioprotection via an iNOS-dependent mechanism. Life Sci 2006; 78(22): 2543-9.
[http://dx.doi.org/10.1016/j.lfs.2005.10.032] [PMID: 16325209]
[29]
Yellon D, Pasini E, Cargnoni A, Marber MS, Latchman DS, Ferrari R. The protective role of heat stress in the ischaemic and reperfused rabbit myocardium. J Mol Cell Cardiol 1992; 24(8): 895-907.
[http://dx.doi.org/10.1016/0022-2828(92)91102-B] [PMID: 1433316]
[30]
Zhou JJ, Pei JM, Wang GY, et al. Inducible HSP70 mediates delayed cardioprotection via U-50488H pretreatment in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 2001; 281(1): H40-7.
[http://dx.doi.org/10.1152/ajpheart.2001.281.1.H40] [PMID: 11406466]
[31]
Guo Y, Stein AB, Wu WJ, et al. Late preconditioning induced by NO donors, adenosine A 1 receptor agonists, and δ 1 -opioid receptor agonists is mediated by iNOS. Am J Physiol Heart Circ Physiol 2005; 289(5): H2251-7.
[http://dx.doi.org/10.1152/ajpheart.00341.2005] [PMID: 16006548]
[32]
Shinmura K, Bolli R, Liu SQ, et al. Aldose reductase is an obligatory mediator of the late phase of ischemic preconditioning. Circ Res 2002; 91(3): 240-6.
[http://dx.doi.org/10.1161/01.RES.0000029970.97247.57] [PMID: 12169650]
[33]
Chen Z, Siu B, Ho YS, et al. Overexpression of MnSOD protects against myocardial ischemia/reperfusion injury in transgenic mice. J Mol Cell Cardiol 1998; 30(11): 2281-9.
[http://dx.doi.org/10.1006/jmcc.1998.0789] [PMID: 9925365]
[34]
Hoshida S, Yamashita N, Otsu K, Hori M. The importance of manganese superoxide dismutase in delayed preconditioning Involvement of reactive oxygen species and cytokines. Cardiovasc Res 2002; 55(3): 495-505.
[http://dx.doi.org/10.1016/S0008-6363(02)00337-1] [PMID: 12160946]
[35]
Hausenloy DJ, Yellon DM. The second window of preconditioning (SWOP) where are we now? Cardiovasc Drugs Ther 2010; 24(3): 235-54.
[http://dx.doi.org/10.1007/s10557-010-6237-9] [PMID: 20496105]
[36]
Bolli R, Shinmura K, Tang X-L, et al. Discovery of a new function of cyclooxygenase (COX)-2: COX-2 is a cardioprotective protein that alleviates ischemia/reperfusion injury and mediates the late phase of preconditioning. Cardiovasc Res 2002; 55(3): 506-19.
[http://dx.doi.org/10.1016/S0008-6363(02)00414-5] [PMID: 12160947]
[37]
Xuan YT, Guo Y, Han H, Zhu Y, Bolli R. An essential role of the JAK-STAT pathway in ischemic preconditioning. Proc Natl Acad Sci USA 2001; 98(16): 9050-5.
[http://dx.doi.org/10.1073/pnas.161283798] [PMID: 11481471]
[38]
Hausenloy DJ, Yellon DM. Reperfusion injury salvage kinase signalling: Taking a RISK for cardioprotection. Heart Fail Rev 2007; 12(3-4): 217-34.
[http://dx.doi.org/10.1007/s10741-007-9026-1] [PMID: 17541822]
[39]
Rossello X, Yellon DM. The RISK pathway and beyond. Basic Res Cardiol 2018; 113(1): 2.
[http://dx.doi.org/10.1007/s00395-017-0662-x] [PMID: 29143177]
[40]
Liu GS, Thornton J, Van Winkle DM, Stanley AW, Olsson RA, Downey JM. Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation 1991; 84(1): 350-6.
[http://dx.doi.org/10.1161/01.CIR.84.1.350] [PMID: 2060105]
[41]
Thornton JD, Thornton CS, Downey JM. Effect of adenosine receptor blockade: Preventing protective preconditioning depends on time of initiation. Am J Physiol 1993; 265(2 Pt 2): H504-8.
[PMID: 8368353]
[42]
Hale SL, Bellows SD, Hammerman H, Kloner RA. An adenosine A1 receptor agonist, R(-)-N-(2-phenylisopropyl)-adenosine (PIA), but not adenosine itself, acts as a therapeutic preconditioning-mimetic agent in rabbits. Cardiovasc Res 1993; 27(12): 2140-5.
[http://dx.doi.org/10.1093/cvr/27.12.2140] [PMID: 8313421]
[43]
Auchampach JA, Gross GJ. Adenosine A1 receptors, KATP channels, and ischemic preconditioning in dogs. Am J Physiol 1993; 264(5 Pt 2): H1327-36.
[PMID: 8498546]
[44]
Leesar MA, Stoddard M, Ahmed M, Broadbent J, Bolli R. Preconditioning of human myocardium with adenosine during coronary angioplasty. Circulation 1997; 95(11): 2500-7.
[http://dx.doi.org/10.1161/01.CIR.95.11.2500] [PMID: 9184580]
[45]
Heidland UE, Heintzen MP, Michel CJ, Strauer BE. Effect of adjunctive intracoronary adenosine on myocardial ischemia, hemodynamic function and left ventricular performance during percutaneous transluminal coronary angioplasty: Clinical access to ischemic preconditioning? Coron Artery Dis 2000; 11(5): 421-8.
[http://dx.doi.org/10.1097/00019501-200007000-00007] [PMID: 10895409]
[46]
Menasché P, Jamieson WRE, Flameng W, Michael KD. Acadesine: A new drug that may improve myocardial protection in coronary artery bypass grafting. J Thorac Cardiovasc Surg 1995; 110(4): 1096-106.
[http://dx.doi.org/10.1016/S0022-5223(05)80179-5] [PMID: 7475138]
[47]
Mentzer RM Jr, Birjiniuk V, Khuri S, et al. Adenosine myocardial protection: Preliminary results of a phase II clinical trial. Ann Surg 1999; 229(5): 643-9.
[http://dx.doi.org/10.1097/00000658-199905000-00006] [PMID: 10235522]
[48]
Wasir H, Bhan A, Choudhary SK, Sharma R, Chauhan S, Venugopal P. Pretreatment of human myocardium with adenosine. Eur J Cardiothorac Surg 2001; 19(1): 41-6.
[http://dx.doi.org/10.1016/S1010-7940(00)00605-9] [PMID: 11163559]
[49]
Fokkema ML, Vlaar PJ, Vogelzang M, et al. Effect of high-dose intracoronary adenosine administration during primary percutaneous coronary intervention in acute myocardial infarction: A randomized controlled trial. Circ Cardiovasc Interv 2009; 2(4): 323-9.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.109.858977.109.858977] [PMID: 20031735]
[50]
Mahaffey KW, Puma JA, Barbagelata NA, et al. Adenosine as an adjunct to thrombolytic therapy for acute myocardial infarction. J Am Coll Cardiol 1999; 34(6): 1711-20.
[http://dx.doi.org/10.1016/S0735-1097(99)00418-0] [PMID: 10577561]
[51]
Ross AM, Gibbons RJ, Stone GW, Kloner RA, Alexander RW. A randomized, double-blinded, placebo-controlled multicenter trial of adenosine as an adjunct to reperfusion in the treatment of acute myocardial infarction (AMISTAD-II). J Am Coll Cardiol 2005; 45(11): 1775-80.
[http://dx.doi.org/10.1016/j.jacc.2005.02.061] [PMID: 15936605]
[52]
Yetgin T, Uitterdijk A, te Lintel Hekkert M, et al. Limitation of infarct size and no-reflow by intracoronary adenosine depends critically on dose and duration. JACC Cardiovasc Interv 2015; 8(15): 1990-9.
[http://dx.doi.org/10.1016/j.jcin.2015.08.033] [PMID: 26738671]
[53]
Lasley RD. Adenosine receptor-mediated cardioprotection—current limitations and future directions. Front Pharmacol 2018; 9: 310.
[http://dx.doi.org/10.3389/fphar.2018.00310] [PMID: 29670529]
[54]
Chen JF, Eltzschig HK, Fredholm BB. Adenosine receptors as drug targets — what are the challenges? Nat Rev Drug Discov 2013; 12(4): 265-86.
[http://dx.doi.org/10.1038/nrd3955] [PMID: 23535933]
[55]
Sheth S, Brito R, Mukherjea D, Rybak L, Ramkumar V. Adenosine receptors: Expression, function and regulation. Int J Mol Sci 2014; 15(2): 2024-52.
[http://dx.doi.org/10.3390/ijms15022024] [PMID: 24477263]
[56]
Karmouty-Quintana H, Xia Y, Blackburn MR. Adenosine signaling during acute and chronic disease states. J Mol Med (Berl) 2013; 91(2): 173-81.
[http://dx.doi.org/10.1007/s00109-013-0997-1] [PMID: 23340998]
[57]
Vegh A, Szekeres L, Parratt JR. Local intracoronary infusions of bradykinin profoundly reduce the severity of ischaemia-induced arrhythmias in anaesthetized dogs. Br J Pharmacol 1991; 104(2): 294-5.
[http://dx.doi.org/10.1111/j.1476-5381.1991.tb12424.x] [PMID: 1797297]
[58]
Vegh A, Papp JG, Szekeres L, Parratt JR. Prevention by an inhibitor of the l-arginine-nitric oxide pathway of the antiarrhythmic effects of bradykinin in anaesthetized dogs. Br J Pharmacol 1993; 110(1): 18-9.
[http://dx.doi.org/10.1111/j.1476-5381.1993.tb13764.x] [PMID: 7693277]
[59]
Wall TM, Sheehy R, Hartman JC. Role of bradykinin in myocardial preconditioning. J Pharmacol Exp Ther 1994; 270(2): 681-9.
[PMID: 8071859]
[60]
Oldenburg O, Qin Q, Krieg T, et al. Bradykinin induces mitochondrial ROS generation via NO, cGMP, PKG, and mitoK ATP channel opening and leads to cardioprotection. Am J Physiol Heart Circ Physiol 2004; 286(1): H468-76.
[http://dx.doi.org/10.1152/ajpheart.00360.2003] [PMID: 12958031]
[61]
Leesar MA, Stoddard MF, Manchikalapudi S, Bolli R. Bradykinin-induced preconditioning in patients undergoing coronary angioplasty. J Am Coll Cardiol 1999; 34(3): 639-50.
[http://dx.doi.org/10.1016/S0735-1097(99)00297-1] [PMID: 10483942]
[62]
Wang X, Wei M, Kuukasjärvi P, et al. The anti-inflammatory effect of bradykinin preconditioning in coronary artery bypass grafting (bradykinin and preconditioning). Scand Cardiovasc J 2009; 43(1): 72-9.
[http://dx.doi.org/10.1080/14017430802180449] [PMID: 18609065]
[63]
Morris SD, Yellon DM. Angiotensin-converting enzyme inhibitors potentiate preconditioning through bradykinin B2 receptor activation in human heart. J Am Coll Cardiol 1997; 29(7): 1599-606.
[http://dx.doi.org/10.1016/S0735-1097(97)00087-9] [PMID: 9180125]
[64]
Pfeffer MA, Braunwald E, Moyé LA, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. N Engl J Med 1992; 327(10): 669-77.
[http://dx.doi.org/10.1056/NEJM199209033271001] [PMID: 1386652]
[65]
s The Acute Infarction Ramipril Efficacy (AIRE) Study Investigators. Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. Lancet 1993; 342(8875): 821-8.
[PMID: 8104270]
[66]
Swedberg K, Held P, Kjekshus J, Rasmussen K, Rydén L, Wedel H. for the CONSENSUS II Study Group. Effects of the early administration of enalapril on mortality in patients with acute myocardial infarction. N Engl J Med 1992; 327(10): 678-84.
[http://dx.doi.org/10.1056/NEJM199209033271002] [PMID: 1495520]
[67]
Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico. GISSI-3: Effects of lisinopril and transdermal glyceryl trinitrate singly and together on 6-week mortality and ventricular function after acute myocardial infarction. Lancet 1994; 343: 1115-22.
[PMID: 7910229]
[68]
Ambrosioni E, Borghi C, Magnani B. The effect of the angiotensin-converting-enzyme inhibitor zofenopril on mortality and morbidity after anterior myocardial infarction. N Engl J Med 1995; 332(2): 80-5.
[http://dx.doi.org/10.1056/NEJM199501123320203] [PMID: 7990904]
[69]
Ungi I, Pálinkás A, Nemes A, et al. Myocardial protection with enalaprilat in patients unresponsive to ischemic preconditioning during percutaneous coronary intervention. Can J Physiol Pharmacol 2008; 86(12): 827-34.
[http://dx.doi.org/10.1139/Y08-096] [PMID: 19088803]
[70]
Bonnemeier H, Schäfer U, Ortak J, et al. Low doses of intracoronary enalaprilat suppress reperfusion-associated ventricular arrhythmias after primary percutaneous coronary interventions for acute myocardial infarction. Pacing Clin Electrophysiol 2007; 30(s1) (Suppl. 1): S160-5.
[http://dx.doi.org/10.1111/j.1540-8159.2007.00629.x] [PMID: 17302696]
[71]
Schaefer U, Kurz T, Bonnemeier H, et al. Intracoronary enalaprilat during angioplasty for acute myocardial infarction: Alleviation of postischaemic neurohumoral and inflammatory stress? J Intern Med 2007; 261(2): 188-200.
[http://dx.doi.org/10.1111/j.1365-2796.2006.01757.x] [PMID: 17241184]
[72]
Schultz JE, Rose E, Yao Z, Gross GJ. Evidence for involvement of opioid receptors in ischemic preconditioning in rat hearts. Am J Physiol 1995; 268(5 Pt 2): H2157-61.
[PMID: 7771566]
[73]
Okubo S, Tanabe Y, Takeda K, et al. Ischemic preconditioning and morphine attenuate myocardial apoptosis and infarction after ischemia-reperfusion in rabbits: Role of δ-opioid receptor. Am J Physiol Heart Circ Physiol 2004; 287(4): H1786-91.
[http://dx.doi.org/10.1152/ajpheart.01143.2003] [PMID: 15231506]
[74]
Schulz R, Gres P, Heusch G. Role of endogenous opioids in ischemic preconditioning but not in short-term hibernation in pigs. Am J Physiol Heart Circ Physiol 2001; 280(5): H2175-81.
[http://dx.doi.org/10.1152/ajpheart.2001.280.5.H2175] [PMID: 11299219]
[75]
McPherson BC, Yao Z. Morphine mimics preconditioning via free radical signals and mitochondrial K(ATP) channels in myocytes. Circulation 2001; 103(2): 290-5.
[http://dx.doi.org/10.1161/01.CIR.103.2.290] [PMID: 11208691]
[76]
Murphy GS, Szokol JW, Marymont JH, Avram MJ, Vender JS. Opioids and cardioprotection: The impact of morphine and fentanyl on recovery of ventricular function after cardiopulmonary bypass. J Cardiothorac Vasc Anesth 2006; 20(4): 493-502.
[http://dx.doi.org/10.1053/j.jvca.2005.07.036] [PMID: 16884978]
[77]
Wong GTC, Huang Z, Ji S, Irwin MG. Remifentanil reduces the release of biochemical markers of myocardial damage after coronary artery bypass surgery: A randomized trial. J Cardiothorac Vasc Anesth 2010; 24(5): 790-6.
[http://dx.doi.org/10.1053/j.jvca.2009.09.012] [PMID: 20056436]
[78]
Tomai F, Crea F, Gaspardone A, et al. Effects of naloxone on myocardial ischemic preconditioning in humans. J Am Coll Cardiol 1999; 33(7): 1863-9.
[http://dx.doi.org/10.1016/S0735-1097(99)00095-9] [PMID: 10362186]
[79]
Eitel I, Wang J, Stiermaier T, et al. Impact of morphine treatment on infarct size and reperfusion injury in acute reperfused ST-elevation myocardial infarction. J Clin Med 2020; 9(3): 735.
[http://dx.doi.org/10.3390/jcm9030735] [PMID: 32182847]
[80]
Moritz KM, Lim GB, Wintour EM. Developmental regulation of erythropoietin and erythropoiesis. Am J Physiol 1997; 273(6): R1829-44.
[PMID: 9435635]
[81]
Parsa CJ, Kim J, Riel RU, et al. Cardioprotective effects of erythropoietin in the reperfused ischemic heart: A potential role for cardiac fibroblasts. J Biol Chem 2004; 279(20): 20655-62.
[http://dx.doi.org/10.1074/jbc.M314099200] [PMID: 15020586]
[82]
Parvin AA. A RP, U S, Devendran A, Baker JE, Dhanasekaran A. Erythropoietin protects cardiomyocytes from cell death during hypoxia/reperfusion injury through activation of survival signaling pathways. PLoS One 2014; 9(9): e107453.
[http://dx.doi.org/10.1371/journal.pone.0107453] [PMID: 25237819]
[83]
Ludman AJ, Yellon DM, Hasleton J, et al. Effect of erythropoietin as an adjunct to primary percutaneous coronary intervention: A randomised controlled clinical trial. Heart 2011; 97(19): 1560-5.
[http://dx.doi.org/10.1136/hrt.2011.223867] [PMID: 21900585]
[84]
Najjar SS, Rao SV, Melloni C, et al. Intravenous erythropoietin in patients with ST-segment elevation myocardial infarction: REVEAL: A randomized controlled trial. JAMA 2011; 305(18): 1863-72.
[http://dx.doi.org/10.1001/jama.2011.592] [PMID: 21558517]
[85]
Ott I, Schulz S, Mehilli J, et al. Erythropoietin in with acute ST-elevation myocardial infarction patients primary trial, percutaneous coronary intervention: Double-blind double-blind trial. Circ Cardiovasc Interv 2010; 3: 408-13.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.109.904425] [PMID: 20736448]
[86]
Voors AA, Belonje AMS, Zijlstra F, et al. A single dose of erythropoietin in ST-elevation myocardial infarction. Eur Heart J 2010; 31(21): 2593-600.
[http://dx.doi.org/10.1093/eurheartj/ehq304] [PMID: 20802250]
[87]
Prunier F, Bière L, Gilard M, et al. Single high-dose erythropoietin administration immediately after reperfusion in patients with ST-segment elevation myocardial infarction: Results of the Erythropoietin in Myocardial Infarction Trial. Am Heart J 2012; 163(2): 200-207.e1.
[http://dx.doi.org/10.1016/j.ahj.2011.11.005] [PMID: 22305837]
[88]
Taniguchi N, Nakamura T, Sawada T, et al. Erythropoietin prevention trial of coronary restenosis and cardiac remodeling after ST-elevated acute myocardial infarction (EPOC-AMI): A pilot, randomized, placebo-controlled study. Circ J 2010; 74(11): 2365-71.
[http://dx.doi.org/10.1253/circj.CJ-10-0267] [PMID: 20834185]
[89]
Ozawa T, Toba K, Suzuki H, et al. Single-dose intravenous administration of recombinant human erythropoietin is a promising treatment for patients with acute myocardial infarction - randomized controlled pilot trial of EPO/AMI-1 study -. Circ J 2010; 74(7): 1415-23.
[http://dx.doi.org/10.1253/circj.CJ-10-0109] [PMID: 20501957]
[90]
Minamino T, Higo S, Araki R, et al. Low-dose erythropoietin in patients with ST-segment elevation myocardial infarction (EPO-AMI-II) ― A randomized controlled clinical trial. Circ J 2018; 82(4): 1083-91.
[http://dx.doi.org/10.1253/circj.CJ-17-0889] [PMID: 29398672]
[91]
Seo WW, Suh JW, Oh IY, et al. Efficacy of intracoronary erythropoietin delivery before reperfusion-gauging infarct size in patients with acute ST-segment elevation myocardial infarction (ICEBERG). Int Heart J 2019; 60(2): 255-63.
[http://dx.doi.org/10.1536/ihj.18-035] [PMID: 30799375]
[92]
Mocini D, Muso P, Guendouz E, et al. Endogenous erythropoietin and a single bolus of 40,000 IU of epoetin alpha do not protect the heart from ischaemia-reperfusion injury during extracorporeal circulation for cardiac surgery. Perfusion 2008; 23(3): 187-92.
[http://dx.doi.org/10.1177/0267659108097627] [PMID: 19029270]
[93]
Joyeux-Faure M, Durand M, Bedague D, et al. Evaluation of the effect of one large dose of erythropoietin against cardiac and cerebral ischemic injury occurring during cardiac surgery with cardiopulmonary bypass: A randomized double-blind placebo-controlled pilot study. Fundam Clin Pharmacol 2012; 26(6): 761-70.
[http://dx.doi.org/10.1111/j.1472-8206.2011.00992.x] [PMID: 21929528]
[94]
Kuhn M. Cardiac actions of atrial natriuretic peptide: New visions of an old friend. Circ Res 2015; 116(8): 1278-80.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306325] [PMID: 25858056]
[95]
Sivaraman V, Yellon DM. Pharmacologic therapy that simulates conditioning for cardiac ischemic/reperfusion injury. J Cardiovasc Pharmacol Ther 2014; 19(1): 83-96.
[http://dx.doi.org/10.1177/1074248413499973] [PMID: 24038018]
[96]
Hong L, Xi J, Zhang Y, et al. Atrial natriuretic peptide prevents the mitochondrial permeability transition pore opening by inactivating glycogen synthase kinase 3β via PKG and PI3K in cardiac H9c2 cells. Eur J Pharmacol 2012; 695(1-3): 13-9.
[http://dx.doi.org/10.1016/j.ejphar.2012.07.053] [PMID: 22975711]
[97]
Shi Z, Fu F, Yu L, et al. Vasonatrin peptide attenuates myocardial ischemia-reperfusion injury in diabetic rats and underlying mechanisms. Am J Physiol Heart Circ Physiol 2015; 308(4): H281-90.
[http://dx.doi.org/10.1152/ajpheart.00666.2014] [PMID: 25485902]
[98]
Charan K, Goyal A, Gupta JK, Yadav HN. Role of atrial natriuretic peptide in ischemic preconditioning–induced cardioprotection in the diabetic rat heart. J Surg Res 2016; 201(2): 272-8.
[http://dx.doi.org/10.1016/j.jss.2015.10.045] [PMID: 27020807]
[99]
Yang XM, Philipp S, Downey JM, Cohen MV. Atrial natriuretic peptide administered just prior to reperfusion limits infarction in rabbit hearts. Basic Res Cardiol 2006; 101(4): 311-8.
[http://dx.doi.org/10.1007/s00395-006-0587-2] [PMID: 16604440]
[100]
Kitakaze M, Asakura M, Kim J, et al. Human atrial natriuretic peptide and nicorandil as adjuncts to reperfusion treatment for acute myocardial infarction (J-WIND): Two randomised trials. Lancet 2007; 370(9597): 1483-93.
[http://dx.doi.org/10.1016/S0140-6736(07)61634-1] [PMID: 17964349]
[101]
Kuga H, Ogawa K, Oida A, et al. Administration of atrial natriuretic peptide attenuates reperfusion phenomena and preserves left ventricular regional wall motion after direct coronary angioplasty for acute myocardial infarction. Circ J 2003; 67(5): 443-8.
[http://dx.doi.org/10.1253/circj.67.443] [PMID: 12736485]
[102]
Baines CP, Wang L, Cohen MV, Downey JM. Myocardial protection by insulin is dependent on phospatidylinositol 3-kinase but not protein kinase C or K ATP channels in the isolated rabbit heart. Basic Res Cardiol 1999; 94(3): 188-98.
[http://dx.doi.org/10.1007/s003950050142] [PMID: 10424237]
[103]
Jonassen AK, Sack MN, Mjøs OD, Yellon DM. Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell-survival signaling. Circ Res 2001; 89(12): 1191-8.
[http://dx.doi.org/10.1161/hh2401.101385] [PMID: 11739285]
[104]
Davidson SM, Hausenloy D, Duchen MR, Yellon DM. Signalling via the reperfusion injury signalling kinase (RISK) pathway links closure of the mitochondrial permeability transition pore to cardioprotection. Int J Biochem Cell Biol 2006; 38(3): 414-9.
[http://dx.doi.org/10.1016/j.biocel.2005.09.017] [PMID: 16280253]
[105]
Vogt A, Htun P, Kluge A, Zimmermann R, Schaper W. Insulin-like growth factor-II delays myocardial infarction in experimental coronary artery occlusion. Cardiovasc Res 1997; 33(2): 469-77.
[http://dx.doi.org/10.1016/S0008-6363(96)00212-X] [PMID: 9074712]
[106]
Fuglesteg BN, Tiron C, Jonassen AK, Mjøs OD, Ytrehus K. Pretreatment with insulin before ischaemia reduces infarct size in Langendorff-perfused rat hearts. Acta Physiol (Oxf) 2009; 195(2): 273-82.
[http://dx.doi.org/10.1111/j.1748-1716.2008.01901.x] [PMID: 19143095]
[107]
Zhang HF, Fan Q, Qian XX, et al. Role of insulin in the anti-apoptotic effect of glucose-insulin-potassium in rabbits with acute myocardial ischemia and reperfusion. Apoptosis 2004; 9(6): 777-83.
[http://dx.doi.org/10.1023/B:APPT.0000045796.58715.82] [PMID: 15505420]
[108]
Zhang HX, Zang YM, Huo JH, et al. Physiologically tolerable insulin reduces myocardial injury and improves cardiac functional recovery in myocardial ischemic/reperfused dogs. J Cardiovasc Pharmacol 2006; 48(6): 306-13.
[http://dx.doi.org/10.1097/01.fjc.0000249873.73197.c3] [PMID: 17204910]
[109]
Díaz R, Paolasso EA, Piegas LS, et al. Metabolic modulation of acute myocardial infarction. Circulation 1998; 98(21): 2227-34.
[http://dx.doi.org/10.1161/01.CIR.98.21.2227] [PMID: 9867443]
[110]
Ceremużyński L, Budaj A, Czepiel A, et al. Low-dose glucoseinsulin-potassium is ineffective in acute myocardial infarction: Results of a randomized multicenter Pol-GIK trial. Cardiovasc Drugs Ther 1999; 13(3): 191-200.
[http://dx.doi.org/10.1023/A:1007787924085] [PMID: 10439881]
[111]
Díaz-Araya G, Nettle D, Castro P, et al. Oxidative stress after reperfusion with primary coronary angioplasty: Lack of effect of glucose-insulin-potassium infusion. Crit Care Med 2002; 30(2): 417-21.
[http://dx.doi.org/10.1097/00003246-200202000-00025] [PMID: 11889322]
[112]
van der Horst ICC, Zijlstra F, van’t Hof AWJ, et al. Glucose-insulin-potassium infusion inpatients treated with primary angioplasty for acute myocardial infarction. J Am Coll Cardiol 2003; 42(5): 784-91.
[http://dx.doi.org/10.1016/S0735-1097(03)00830-1] [PMID: 12957421]
[113]
Castro PF, Larrain G, Baeza R, et al. Effects of glucose-insulin-potassium solution on myocardial salvage and left ventricular function after primary angioplasty. Crit Care Med 2003; 31(8): 2152-5.
[http://dx.doi.org/10.1097/01.CCM.0000079604.46997.7B] [PMID: 12973173]
[114]
Pache J, Kastrati A, Mehilli J, et al. A randomized evaluation of the effects of glucose-insulin-potassium infusion on myocardial salvage in patients with acute myocardial infarction treated with reperfusion therapy. Am Heart J 2004; 148(1): 105.
[http://dx.doi.org/10.1016/j.ahj.2004.01.019] [PMID: 15215812]
[115]
Mehta SR, Yusuf S, Díaz R, et al. Effect of glucose-insulin-potassium infusion on mortality in patients with acute ST-segment elevation myocardial infarction: The CREATE-ECLA randomized controlled trial. JAMA 2005; 293(4): 437-46.
[http://dx.doi.org/10.1001/jama.293.4.437] [PMID: 15671428]
[116]
Timmer JR, Svilaas T, Ottervanger JP, et al. Glucose-insulin-potassium infusion in patients with acute myocardial infarction without signs of heart failure: The Glucose-Insulin-Potassium Study (GIPS)-II. J Am Coll Cardiol 2006; 47(8): 1730-1.
[http://dx.doi.org/10.1016/j.jacc.2006.01.040] [PMID: 16631017]
[117]
Malmberg K, Rydén L, Wedel H, et al. Intense metabolic control by means of insulin in patients with diabetes mellitus and acute myocardial infarction (DIGAMI 2): Effects on mortality and morbidity. Eur Heart J 2005; 26(7): 650-61.
[http://dx.doi.org/10.1093/eurheartj/ehi199] [PMID: 15728645]
[118]
Díaz R, Goyal A, Mehta SR, et al. Glucose-insulin-potassium therapy in patients with ST-segment elevation myocardial infarction. JAMA 2007; 298(20): 2399-405.
[http://dx.doi.org/10.1001/jama.298.20.2399] [PMID: 18042917]
[119]
Malmberg K. Prospective randomized study of intensive insulin treatment on long-term survival after acute myocardial infarction in patients with diabetes mellitus. BMJ 1997; 314: 1512-5.
[http://dx.doi.org/10.1136/bmj.314.7093.1512] [PMID: 9169397]
[120]
Chaudhuri A, Janicke D, Wilson MF, et al. Anti-inflammatory and profibrinolytic effect of insulin in acute ST-segment-elevation myocardial infarction. Circulation 2004; 109(7): 849-54.
[http://dx.doi.org/10.1161/01.CIR.0000116762.77804.FC] [PMID: 14757687]
[121]
Krljanac G, Vasiljević Z, Radovanović M, et al. Effects of glucose-insulin-potassium infusion on ST-elevation myocardial infarction in patients treated with thrombolytic therapy. Am J Cardiol 2005; 96(8): 1053-8.
[http://dx.doi.org/10.1016/j.amjcard.2005.05.068] [PMID: 16214437]
[122]
Yazici M, Demircan S, Durna K, Yasar E, Acar Z, Sahin M. Effect of glucose-insulin-potassium infusion on myocardial damage due to percutaneous coronary revascularization. Am J Cardiol 2005; 96(11): 1517-20.
[http://dx.doi.org/10.1016/j.amjcard.2005.07.060] [PMID: 16310433]
[123]
Bucciarelli-Ducci C, Bianchi M, De Luca L, et al. Effects of glucose-insulin-potassium infusion on myocardial perfusion and left ventricular remodeling in patients treated with primary angioplasty for ST-elevation acute myocardial infarction. Am J Cardiol 2006; 98(10): 1349-53.
[http://dx.doi.org/10.1016/j.amjcard.2006.06.025] [PMID: 17134627]
[124]
Malmberg K, Rydén L, Efendic S, et al. Randomized trial of insulin-glucose infusion followed by subcutaneous insulin treatment in diabetic patients with acute myocardial infarction (DIGAMI study): Effects on mortality at 1 year. J Am Coll Cardiol 1995; 26(1): 57-65.
[http://dx.doi.org/10.1016/0735-1097(95)00126-K] [PMID: 7797776]
[125]
Mamas MA, Neyses L, Fath-Ordoubadi F. A meta-analysis of glucose-insulin-potassium therapy for treatment of acute myocardial infarction. Exp Clin Cardiol 2010; 15(2): e20-4.
[PMID: 20631859]
[126]
Bouida W, Beltaief K, Msolli MA, et al. One‐year outcome of intensive insulin therapy combined to glucose‐insulin‐potassium in acute coronary syndrome: A randomized controlled study. J Am Heart Assoc 2017; 6(11): e006674.
[http://dx.doi.org/10.1161/JAHA.117.006674] [PMID: 29138181]
[127]
Fan Y, Zhang AM, Xiao YB, Weng YG, Hetzer R. Glucose–insulin–potassium therapy in adult patients undergoing cardiac surgery: A meta-analysis. Eur J Cardiothorac Surg 2011; 40(1): 192-9.
[http://dx.doi.org/10.1016/j.ejcts.2010.10.007] [PMID: 21075642]
[128]
Toombs CF, Moore TL, Shebuski RJ. Limitation of infarct size in the rabbit by ischaemic preconditioning is reversible with glibenclamide. Cardiovasc Res 1993; 27(4): 617-22.
[http://dx.doi.org/10.1093/cvr/27.4.617] [PMID: 8324795]
[129]
Mocanu MM, Maddock HL, Baxter GF, Lawrence CL, Standen NB, Yellon DM. Glimepiride, a novel sulfonylurea, does not abolish myocardial protection afforded by either ischemic preconditioning or diazoxide. Circulation 2001; 103(25): 3111-6.
[http://dx.doi.org/10.1161/01.CIR.103.25.3111] [PMID: 11425777]
[130]
Maddock HL, Siedlecka SM, Yellon DM. Myocardial protection from either ischaemic preconditioning or nicorandil is not blocked by gliclazide. Cardiovasc Drugs Ther 2004; 18(2): 113-9.
[http://dx.doi.org/10.1023/B:CARD.0000029028.75316.5e] [PMID: 15162072]
[131]
Tomai F, Crea F, Gaspardone A, et al. Ischemic preconditioning during coronary angioplasty is prevented by glibenclamide, a selective ATP-sensitive K+ channel blocker. Circulation 1994; 90(2): 700-5.
[http://dx.doi.org/10.1161/01.CIR.90.2.700] [PMID: 8044938]
[132]
Tomai F, Danesi A, Ghini AS, et al. Effects of KATPchannel blockade by glibenclamide on the warm-up phenomenon. Eur Heart J 1999; 20(3): 196-202.
[http://dx.doi.org/10.1053/euhj.1998.1311] [PMID: 10082152]
[133]
Öuvoünç KENAN. Effects of glibenclamide, a k atp channel blocker, on warm-up phenomenon in type 11 diabetic patients with chronic stable angina pectoris. Clin Cardiol 2000; 23(7): 535-9.
[http://dx.doi.org/10.1002/clc.4960230713] [PMID: 10894443]
[134]
Ferreira BMA, Moffa PJ, Falcão A, et al. The effects of glibenclamide, a K(ATP) channel blocker, on the warm-up phenomenon. Ann Noninvasive Electrocardiol 2005; 10(3): 356-62.
[http://dx.doi.org/10.1111/j.1542-474X.2005.00650.x] [PMID: 16029388]
[135]
Loubani M, Fowler A, Standen NB, Galiñanes M. The effect of gliclazide and glibenclamide on preconditioning of the human myocardium. Eur J Pharmacol 2005; 515(1-3): 142-9.
[http://dx.doi.org/10.1016/j.ejphar.2005.04.002] [PMID: 15894305]
[136]
Bilinska M, Potocka J, Korzeniowska-Kubacka I, Piotrowicz R. ‘Warm-up’ phenomenon in diabetic patients with stable angina treated with diet or sulfonylureas. Coron Artery Dis 2007; 18(6): 455-62.
[http://dx.doi.org/10.1097/MCA.0b013e3282a30676] [PMID: 17700217]
[137]
Hausenloy DJ, Wynne AM, Mocanu MM, Yellon DM. Glimepiride treatment facilitates ischemic preconditioning in the diabetic heart. J Cardiovasc Pharmacol Ther 2013; 18(3): 263-9.
[http://dx.doi.org/10.1177/1074248412468945] [PMID: 23263382]
[138]
Klepzig H, Kober G, Matter C, et al. Sulfonylureas and ischaemic preconditioning; a double-blind, placebo-controlled evaluation of glimepiride and glibenclamide. Eur Heart J 1999; 20(6): 439-46.
[http://dx.doi.org/10.1053/euhj.1998.1242] [PMID: 10213347]
[139]
Lee TM, Chou TF. Impairment of myocardial protection in type 2 diabetic patients. J Clin Endocrinol Metab 2003; 88(2): 531-7.
[http://dx.doi.org/10.1210/jc.2002-020904] [PMID: 12574175]
[140]
Hueb W, Uchida AH, Gersh BJ, et al. Effect of a hypoglycemic agent on ischemic preconditioning in patients with type 2 diabetes and stable angina pectoris. Coron Artery Dis 2007; 18(1): 55-9.
[http://dx.doi.org/10.1097/MCA.0b013e328011c0a9] [PMID: 17172931]
[141]
Rahmi RM, Uchida AH, Rezende PC, et al. Effect of hypoglycemic agents on ischemic preconditioning in patients with type 2 diabetes and symptomatic coronary artery disease. Diabetes Care 2013; 36(6): 1654-9.
[http://dx.doi.org/10.2337/dc12-1495] [PMID: 23250803]
[142]
Ussher JR, Drucker DJ. Cardiovascular actions of incretin-based therapies. Circ Res 2014; 114(11): 1788-803.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.301958] [PMID: 24855202]
[143]
Giblett JP, Clarke SJ, Dutka DP, Hoole SP. Glucagon-like peptide-1. JACC Basic Transl Sci 2016; 1(4): 267-76.
[http://dx.doi.org/10.1016/j.jacbts.2016.03.011] [PMID: 30167515]
[144]
Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes 2005; 54(1): 146-51.
[http://dx.doi.org/10.2337/diabetes.54.1.146] [PMID: 15616022]
[145]
Bose AK, Mocanu MM, Carr RD, Yellon DM. Glucagon like peptide-1 is protective against myocardial ischemia/reperfusion injury when given either as a preconditioning mimetic or at reperfusion in an isolated rat heart model. Cardiovasc Drugs Ther 2005; 19(1): 9-11.
[http://dx.doi.org/10.1007/s10557-005-6892-4] [PMID: 15883751]
[146]
Timmers L, Henriques JPS, de Kleijn DPV, et al. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J Am Coll Cardiol 2009; 53(6): 501-10.
[http://dx.doi.org/10.1016/j.jacc.2008.10.033] [PMID: 19195607]
[147]
Kavianipour M, Ehlers MR, Malmberg K, et al. Glucagon-like peptide-1 (7–36) amide prevents the accumulation of pyruvate and lactate in the ischemic and non-ischemic porcine myocardium. Peptides 2003; 24(4): 569-78.
[http://dx.doi.org/10.1016/S0196-9781(03)00108-6] [PMID: 12860201]
[148]
Kristensen J, Mortensen UM, Schmidt M, Nielsen PH, Nielsen TT, Maeng M. Lack of cardioprotection from subcutaneously and preischemic administered Liraglutide in a closed chest porcine ischemia reperfusion model. BMC Cardiovasc Disord 2009; 9(1): 31.
[http://dx.doi.org/10.1186/1471-2261-9-31] [PMID: 19627582]
[149]
Chinda K, Chattipakorn S, Chattipakorn N. Cardioprotective effects of incretin during ischaemia-reperfusion. Diab Vasc Dis Res 2012; 9(4): 256-69.
[http://dx.doi.org/10.1177/1479164112440816] [PMID: 22496404]
[150]
Read PA, Hoole SP, White PA, et al. A pilot study to assess whether glucagon-like peptide-1 protects the heart from ischemic dysfunction and attenuates stunning after coronary balloon occlusion in humans. Circ Cardiovasc Interv 2011; 4(3): 266-72.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.110.960476] [PMID: 21586690]
[151]
Lønborg J, Vejlstrup N, Kelbæk H, et al. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart J 2012; 33(12): 1491-9.
[http://dx.doi.org/10.1093/eurheartj/ehr309] [PMID: 21920963]
[152]
Read PA, Khan FZ, Dutka DP. Cardioprotection against ischaemia induced by dobutamine stress using glucagon-like peptide-1 in patients with coronary artery disease. Heart 2012; 98(5): 408-13.
[http://dx.doi.org/10.1136/hrt.2010.219345] [PMID: 21561896]
[153]
Nikolaidis LA, Mankad S, Sokos GG, et al. Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation 2004; 109(8): 962-5.
[http://dx.doi.org/10.1161/01.CIR.0000120505.91348.58] [PMID: 14981009]
[154]
McCormick LM, Kydd AC, Read PA, et al. Chronic dipeptidyl peptidase-4 inhibition with sitagliptin is associated with sustained protection against ischemic left ventricular dysfunction in a pilot study of patients with type 2 diabetes mellitus and coronary artery disease. Circ Cardiovasc Imaging 2014; 7(2): 274-81.
[http://dx.doi.org/10.1161/CIRCIMAGING.113.000785] [PMID: 24503784]
[155]
Ahmed LA, Salem HA, Attia AS, Agha AM. Pharmacological preconditioning with nicorandil and pioglitazone attenuates myocardial ischemia/reperfusion injury in rats. Eur J Pharmacol 2011; 663(1-3): 51-8.
[http://dx.doi.org/10.1016/j.ejphar.2011.04.038] [PMID: 21549700]
[156]
Sasaki H, Ogawa K, Shimizu M, et al. The insulin sensitizer pioglitazone improves the deterioration of ischemic preconditioning in type 2 diabetes mellitus rats. Int Heart J 2007; 48(5): 623-35.
[http://dx.doi.org/10.1536/ihj.48.623] [PMID: 17998772]
[157]
Sarraf M, Lu L, Ye S, Reiter MJ, Greyson CR, Schwartz GG. Thiazolidinedione drugs promote onset, alter characteristics, and increase mortality of ischemic ventricular fibrillation in pigs. Cardiovasc Drugs Ther 2012; 26(3): 195-204.
[http://dx.doi.org/10.1007/s10557-012-6384-2] [PMID: 22450779]
[158]
Kataoka Y, Yagi N, Kokubu N, Kasahara Y, Abe M, Otsuka Y. Effect of pretreatment with pioglitazone on reperfusion injury in diabetic patients with acute myocardial infarction. Circ J 2011; 75(8): 1968-74.
[http://dx.doi.org/10.1253/circj.CJ-11-0098] [PMID: 21670539]
[159]
Solskov L, Løfgren B, Kristiansen SB, et al. Metformin induces cardioprotection against ischaemia/reperfusion injury in the rat heart 24 hours after administration. Basic Clin Pharmacol Toxicol 2008; 103(1): 82-7.
[http://dx.doi.org/10.1111/j.1742-7843.2008.00234.x] [PMID: 18484962]
[160]
Wang X, Yang L, Kang L, et al. Metformin attenuates myocardial ischemia-reperfusion injury via up-regulation of antioxidant enzymes. PLoS One 2017; 12(8): e0182777.
[http://dx.doi.org/10.1371/journal.pone.0182777] [PMID: 28817623]
[161]
Zhang L, Zhang X, Guan L, Zhou D, Ge J. AMPK/mTOR-mediated therapeutic effect of metformin on myocardial ischaemia reperfusion injury in diabetic rat. Acta Cardiol 2022; 7: 1-8.
[http://dx.doi.org/10.1080/00015385.2021.2024701] [PMID: 34994666]
[162]
Shi Y, Hou SA. Protective effects of metformin against myocardial ischemia reperfusion injury via AMPK dependent suppression of NOX4. Mol Med Rep 2021; 24(4): 712.
[http://dx.doi.org/10.3892/mmr.2021.12351] [PMID: 34396450]
[163]
Oidor-Chan VH, Hong E, Pérez-Severiano F, et al. Fenofibrate plus metformin produces cardioprotection in a type 2 diabetes and acute myocardial infarction model. PPAR Res 2016; 2016: 1-14.
[http://dx.doi.org/10.1155/2016/8237264] [PMID: 27069466]
[164]
Calvert JW, Gundewar S, Jha S, et al. Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes 2008; 57(3): 696-705.
[http://dx.doi.org/10.2337/db07-1098] [PMID: 18083782]
[165]
Paiva M, Riksen NP, Davidson SM, et al. Metformin prevents myocardial reperfusion injury by activating the adenosine receptor. J Cardiovasc Pharmacol 2009; 53(5): 373-8.
[http://dx.doi.org/10.1097/FJC.0b013e31819fd4e7] [PMID: 19295441]
[166]
Basnet S, Kozikowski A, Makaryus AN, et al. Metformin and myocardial injury in patients with diabetes and ST‐segment elevation myocardial infarction: A propensity score matched analysis. J Am Heart Assoc 2015; 4(10): e002314.
[http://dx.doi.org/10.1161/JAHA.115.002314] [PMID: 26494519]
[167]
El Messaoudi S, Schreuder TH, Kengen RD, et al. Impact of metformin on endothelial ischemia-reperfusion injury in humans in vivo: A prospective randomized open, blinded-endpoint study. PLoS One 2014; 9(4): e96062.
[http://dx.doi.org/10.1371/journal.pone.0096062] [PMID: 24755906]
[168]
Banerjee A, Locke-Winter C, Rogers KB, et al. Preconditioning against myocardial dysfunction after ischemia and reperfusion by an α 1-adrenergic mechanism. Circ Res 1993; 73(4): 656-70.
[http://dx.doi.org/10.1161/01.RES.73.4.656] [PMID: 8396503]
[169]
Bankwala Z, Hale SL, Kloner RA. α-adrenoceptor stimulation with exogenous norepinephrine or release of endogenous catecholamines mimics ischemic preconditioning. Circulation 1994; 90(2): 1023-8.
[http://dx.doi.org/10.1161/01.CIR.90.2.1023] [PMID: 8044915]
[170]
Kitakaze M, Hori M, Morioka T, et al. Alpha 1-adrenoceptor activation mediates the infarct size-limiting effect of ischemic preconditioning through augmentation of 5′-nucleotidase activity. J Clin Invest 1994; 93(5): 2197-205.
[http://dx.doi.org/10.1172/JCI117216] [PMID: 8182151]
[171]
Tomai F, Crea F, Gaspardone A, et al. Phentolamine prevents adaptation to ischemia during coronary angioplasty: Role of α-adrenergic receptors in ischemic preconditioning. Circulation 1997; 96(7): 2171-7.
[http://dx.doi.org/10.1161/01.CIR.96.7.2171] [PMID: 9337186]
[172]
Cho Y, Nam K, Kim T, et al. Sevoflurane, propofol and carvedilol block myocardial protection by limb remote ischemic preconditioning. Int J Mol Sci 2019; 20(2): 269.
[http://dx.doi.org/10.3390/ijms20020269] [PMID: 30641885]
[173]
Öhman J, Kudira R, Albinsson S, Olde B, Erlinge D. Ticagrelor induces adenosine triphosphate release from human red blood cells. Biochem Biophys Res Commun 2012; 418(4): 754-8.
[http://dx.doi.org/10.1016/j.bbrc.2012.01.093] [PMID: 22306816]
[174]
van Giezen JJJ, Sidaway J, Glaves P, Kirk I, Björkman JA. Ticagrelor inhibits adenosine uptake in vitro and enhances adenosine-mediated hyperemia responses in a canine model. J Cardiovasc Pharmacol Ther 2012; 17(2): 164-72.
[http://dx.doi.org/10.1177/1074248411410883] [PMID: 21697355]
[175]
Nanhwan MK, Ling S, Kodakandla M, Nylander S, Ye Y, Birnbaum Y. Chronic treatment with ticagrelor limits myocardial infarct size: An adenosine and cyclooxygenase-2-dependent effect. Arterioscler Thromb Vasc Biol 2014; 34(9): 2078-85.
[http://dx.doi.org/10.1161/ATVBAHA.114.304002] [PMID: 25012137]
[176]
Ye Y, Birnbaum GD, Perez-Polo JR, Nanhwan MK, Nylander S, Birnbaum Y. Ticagrelor protects the heart against reperfusion injury and improves remodeling after myocardial infarction. Arterioscler Thromb Vasc Biol 2015; 35(8): 1805-14.
[http://dx.doi.org/10.1161/ATVBAHA.115.305655] [PMID: 26044583]
[177]
Liu X, Gu Y, Liu Y, Zhang M, Wang Y, Hu L. Ticagrelor attenuates myocardial ischaemia-reperfusion injury possibly through downregulating galectin-3 expression in the infarct area of rats. Br J Clin Pharmacol 2018; 84(6): 1180-6.
[http://dx.doi.org/10.1111/bcp.13536] [PMID: 29381821]
[178]
Verouhis D, Ekström M, Settergren M, Sörensson P, Pernow J, Saleh N. Ticagrelor does not protect against endothelial ischemia-reperfusion injury in patients with coronary artery disease. J Cardiovasc Pharmacol Ther 2021; 26(3): 253-9.
[http://dx.doi.org/10.1177/1074248420968693] [PMID: 33094636]
[179]
D’Amario D, Restivo A, Leone AM, et al. Ticagrelor and preconditioning in patients with stable coronary artery disease (TAPER-S): A randomized pilot clinical trial. Trials 2020; 21(1): 192.
[http://dx.doi.org/10.1186/s13063-020-4116-7] [PMID: 32066489]
[180]
Zaugg M, Lucchinetti E, Uecker M, Pasch T, Schaub MC. Anaesthetics and cardiac preconditioning. Part I. Signalling and cytoprotective mechanisms. Br J Anaesth 2003; 91(4): 551-65.
[http://dx.doi.org/10.1093/bja/aeg205] [PMID: 14504159]
[181]
Pravdic D, Sedlic F, Mio Y, Vladic N, Bienengraeber M, Bosnjak ZJ. Anesthetic-induced preconditioning delays opening of mitochondrial permeability transition pore via protein Kinase C-ε-mediated pathway. Anesthesiology 2009; 111(2): 267-74.
[http://dx.doi.org/10.1097/ALN.0b013e3181a91957] [PMID: 19568162]
[182]
Hu ZY, Liu J. Mechanism of cardiac preconditioning with volatile anaesthetics. Anaesth Intensive Care 2009; 37(4): 532-8.
[http://dx.doi.org/10.1177/0310057X0903700402] [PMID: 19681408]
[183]
Belhomme D, Peynet J, Louzy M, Launay JM, Kitakaze M, Menasché P. Evidence for preconditioning by isoflurane in coronary artery bypass graft surgery. Circulation 1999; 100(19) (Suppl.): II340-4.
[PMID: 10567326]
[184]
Penta de Peppo A, Polisca P, Tomai F, et al. Recovery of LV contractility in man is enhanced by preischemic administration of enflurane. Ann Thorac Surg 1999; 68(1): 112-8.
[http://dx.doi.org/10.1016/S0003-4975(99)00466-X] [PMID: 10421125]
[185]
De Hert SG, Cromheecke S, ten Broecke PW, et al. Effects of propofol, desflurane, and sevoflurane on recovery of myocardial function after coronary surgery in elderly high-risk patients. Anesthesiology 2003; 99(2): 314-23.
[http://dx.doi.org/10.1097/00000542-200308000-00013] [PMID: 12883404]
[186]
De Hert SG, Van der Linden PJ, Cromheecke S, et al. Cardioprotective properties in patients with coronary modalities with cardiopulmonary bypass surgery are related to the modalities of its administration. Anesthesiology 2004; 101: 299-310.
[http://dx.doi.org/10.1097/00000542-200408000-00009] [PMID: 15277911]
[187]
Amr YM, Yassin IM. Cardiac protection during on-pump coronary artery bypass grafting: Ischemic versus isoflurane preconditioning. Semin Cardiothorac Vasc Anesth 2010; 14(3): 205-11.
[http://dx.doi.org/10.1177/1089253210376839] [PMID: 20656748]
[188]
Wang J, Zheng H, Chen C, Lu W, Zhang Y. Sevoflurane at 1 MAC provides optimal myocardial protection during off-pump CABG. Scand Cardiovasc J 2013; 47(3): 175-84.
[http://dx.doi.org/10.3109/14017431.2012.760749] [PMID: 23302012]
[189]
Guerrero Orriach JL, Galán Ortega M, Ramirez Aliaga M, Iglesias P, Rubio Navarro M, Cruz Mañas J. Prolonged sevoflurane administration in the off-pump coronary artery bypass graft surgery: Beneficial effects. J Crit Care 2013; 28(5): 879.e13-8.
[http://dx.doi.org/10.1016/j.jcrc.2013.06.004] [PMID: 23886454]
[190]
Jiao X-F, Lin X-M, Ni X-F, et al. Volatile total intravenous anesthesia anesthetic patients updated trials versus coronary artery bypass grafting: A meta-analysis and trial sequential analysis of randomized controlled trials. PLoS One 2019; 14: e0224562.
[http://dx.doi.org/10.1371/journal.pone.0224562] [PMID: 31661512]
[191]
Landoni G, Lomivorotov VV, Nigro Neto C, et al. Volatile anesthetics versus total intravenous anesthesia for cardiac surgery. N Engl J Med 2019; 380(13): 1214-25.
[http://dx.doi.org/10.1056/NEJMoa1816476] [PMID: 30888743]
[192]
Bonanni A, Signori A, Alicino C, et al. Volatile anesthetics versus propofol for cardiac surgery with cardiopulmonary bypass. Anesthesiology 2020; 132(6): 1429-46.
[http://dx.doi.org/10.1097/ALN.0000000000003236] [PMID: 32205551]
[193]
Kukreja RC, Salloum FN, Das A, Koka S, Ockaili RA, Xi L. Emerging new uses of phosphodiesterase-5 inhibitors in cardiovascular diseases. Exp Clin Cardiol 2011; 16(4): e30-5.
[PMID: 22131856]
[194]
Ockaili R, Salloum F, Hawkins J, Kukreja RC. Sildenafil (Viagra) induces powerful cardioprotective effect via opening of mitochondrial K ATP channels in rabbits. Am J Physiol Heart Circ Physiol 2002; 283(3): H1263-9.
[http://dx.doi.org/10.1152/ajpheart.00324.2002] [PMID: 12181158]
[195]
Das S, Maulik N, Das DK, Kadowitz PJ, Bivalacqua TJ. Cardioprotection with sildenafil, a selective inhibitor of cyclic 3′5′-monophosphate-specific phosphodiesterase 5. Drugs Exp Clin Res 2002; 28(6): 213-9.
[PMID: 12776574]
[196]
Bremer YA, Salloum F, Ockaili R, Chou E, Moskowitz WB, Kukreja RC. Sildenafil citrate (viagra) induces cardioprotective effects after ischemia/reperfusion injury in infant rabbits. Pediatr Res 2005; 57(1): 22-7.
[http://dx.doi.org/10.1203/01.PDR.0000147736.27672.15] [PMID: 15531735]
[197]
Sesti C, Florio V, Johnson EG, Kloner RA. The phosphodiesterase-5 inhibitor tadalafil reduces myocardial infarct size. Int J Impot Res 2007; 19(1): 55-61.
[http://dx.doi.org/10.1038/sj.ijir.3901497] [PMID: 16858368]
[198]
Salloum FN, Chau VQ, Hoke NN, et al. Phosphodiesterase-5 inhibitor, tadalafil, protects against myocardial ischemia/reperfusion through protein-kinase g-dependent generation of hydrogen sulfide. Circulation 2009; 120(11_suppl_1) (Suppl.): S31-6.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.843979] [PMID: 19752383]
[199]
Zhang Q, Yuan W, Wang G, Wu J, Wang M, Li C. The protective effects of a phosphodiesterase 5 inhibitor, sildenafil, on postresuscitation cardiac dysfunction of cardiac arrest: Metabolic evidence from microdialysis. Crit Care 2014; 18(6): 641.
[http://dx.doi.org/10.1186/s13054-014-0641-7] [PMID: 25475018]
[200]
Thadani U, Smith W, Nash S, et al. The effect of vardenafil, a potent and highly selective phosphodiesterase-5 inhibitor for the treatment of erectile dysfunction, on the cardiovascular response to exercise in patients with coronary artery disease. J Am Coll Cardiol 2002; 40(11): 2006-12.
[http://dx.doi.org/10.1016/S0735-1097(02)02563-9] [PMID: 12475462]
[201]
Patterson D, Kloner R, Effron M, et al. The effect of tadalafil on the time to exercise-induced myocardial ischaemia in subjects with coronary artery disease. Br J Clin Pharmacol 2005; 60(5): 459-68.
[http://dx.doi.org/10.1111/j.1365-2125.2005.02479.x] [PMID: 16236035]
[202]
Lauder Brunton T. Use of nitrite of amyl in angina pectoris. Lancet 1867; 90(2291): 97-8.
[http://dx.doi.org/10.1016/S0140-6736(02)51392-1]
[203]
Heusch G. Nitroglycerin and delayed preconditioning in humans: Yet another new mechanism for an old drug? Circulation 2001; 103(24): 2876-8.
[http://dx.doi.org/10.1161/01.CIR.103.24.2876] [PMID: 11413072]
[204]
Banerjee S, Tang XL, Qiu Y, et al. Nitroglycerin induces late preconditioning against stunning myocardial via the PKC-dependent pathway. Am J Physiol 1999; 277: H2488-94.
[PMID: 10600873]
[205]
Gori T, Di Stolfo G, Dragoni S, et al. The mechanism of nitrate-induced preconditioning. Clin Hemorheol Microcirc 2008; 39(1-4): 191-6.
[http://dx.doi.org/10.3233/CH-2008-1081] [PMID: 18503125]
[206]
Yui H, Imaizumi U, Beppu H, et al. Comparative effects of verapamil, nicardipine, and nitroglycerin on myocardial ischemia/reperfusion injury. Anesthesiol Res Pract 2011; 2011: 1-6.
[http://dx.doi.org/10.1155/2011/521084] [PMID: 21403860]
[207]
Lascano EC, Del Valle HF, Negroni JA. Nitroglycerin induces late preconditioning against arrhythmias but not stunning in conscious sheep. Scand Cardiovasc J 2007; 41(3): 160-6.
[http://dx.doi.org/10.1080/14017430701329295] [PMID: 17487765]
[208]
Szilvassy Z, Ferdinandy P, Nagy I, Jakab I, Koltai M. The effect of continuous versus intermittent treatment with transdermal nitroglycerin on pacing-induced preconditioning in conscious rabbits. Br J Pharmacol 1997; 121(3): 491-6.
[http://dx.doi.org/10.1038/sj.bjp.0701163] [PMID: 9179391]
[209]
Hu Y, Yang X, Zhang L, et al. Perioperative diltiazem or nitroglycerin in on-pump coronary artery bypass: A systematic review and network meta-analysis. PLoS One 2018; 13(8): e0203315.
[http://dx.doi.org/10.1371/journal.pone.0203315] [PMID: 30161246]
[210]
Eriksson KE, Eidhagen F, Liska J, Franco-Cereceda A, Lundberg JO, Weitzberg E. Effects of inorganic nitrate on ischaemia-reperfusion injury after coronary artery bypass surgery: A randomized controlled trial. Br J Anaesth 2021; 127: 547-55.
[http://dx.doi.org/10.1016/j.bja.2021.06.046]
[211]
Hamarneh A, Sivaraman V, Bulluck H, et al. The effect of remote ischemic conditioning and glyceryl trinitrate on perioperative myocardial injury in cardiac bypass surgery patients: Rationale and design of the ERIC-GTN study. Clin Cardiol 2015; 38(11): 641-6.
[http://dx.doi.org/10.1002/clc.22445] [PMID: 26412308]
[212]
Matsubara T, Minatoguchi S, Matsuo H, et al. Three minute, but not one minute, ischemia and nicorandil have a preconditioning effect in patients with coronary artery disease. J Am Coll Cardiol 2000; 35(2): 345-51.
[http://dx.doi.org/10.1016/S0735-1097(99)00539-2] [PMID: 10676679]
[213]
Leesar MA, Stoddard MF, Dawn B, Jasti VG, Masden R, Bolli R. Delayed preconditioning-mimetic action of nitroglycerin in patients undergoing coronary angioplasty. Circulation 2001; 103(24): 2935-41.
[http://dx.doi.org/10.1161/01.CIR.103.24.2935] [PMID: 11413083]
[214]
Tang XL, Xuan YT, Zhu Y, Shirk G, Bolli R. Nicorandil induces late preconditioning against myocardial infarction in conscious rabbits. Am J Physiol Heart Circ Physiol 2004; 286(4): H1273-80.
[http://dx.doi.org/10.1152/ajpheart.01055.2003] [PMID: 14684373]
[215]
Tsuchida A, Miura T, Tanno M, et al. Infarct size limitation by nicorandil. J Am Coll Cardiol 2002; 40(8): 1523-30.
[http://dx.doi.org/10.1016/S0735-1097(02)02268-4] [PMID: 12392845]
[216]
Imagawa J, Baxter GF, Yellon DM. Myocardial protection afforded by nicorandil and ischaemic preconditioning in a rabbit infarct model in vivo. J Cardiovasc Pharmacol 1998; 31(1): 74-9.
[http://dx.doi.org/10.1097/00005344-199801000-00011] [PMID: 9456280]
[217]
Mizumura T, Nithipatikom K, Gross GJ. Effects of nicorandil and glyceryl trinitrate on infarct size, adenosine release, and neutrophil infiltration in the dog. Cardiovasc Res 1995; 29(4): 482-9.
[http://dx.doi.org/10.1016/S0008-6363(96)88523-3] [PMID: 7796441]
[218]
Wu H, Ye M, Yang J, et al. Nicorandil protects the heart from ischemia/reperfusion injury by attenuating endoplasmic reticulum response-induced apoptosis through PI3K/Akt signaling pathway. Cell Physiol Biochem 2015; 35(6): 2320-32.
[http://dx.doi.org/10.1159/000374035] [PMID: 25896165]
[219]
Yi B, Luo J, Jiang Y, et al. Nicorandil for periprocedural myocardial injury in elective percutaneous coronary intervention: A meta-analysis of 10 randomized controlled trials. Angiology 2020; 71(7): 609-15.
[http://dx.doi.org/10.1177/0003319720919327] [PMID: 32295385]
[220]
Kawakita N, Ejiri K, Miyoshi T, et al. Protective effect of nicorandil on myocardial injury following percutaneous coronary intervention in older patients with stable coronary artery disease: Secondary analysis of a randomized, controlled trial (RINC). PLoS One 2018; 13(4): e0194623.
[http://dx.doi.org/10.1371/journal.pone.0194623] [PMID: 29659585]
[221]
Ye Z, Lu H, Su Q, Long M, Li L. Efficacy and safety of nicorandil on perioperative myocardial injury in patients undergoing elective percutaneous coronary intervention: Results of the PENMIPCI trial. Drug Des Devel Ther 2018; 12: 2591-9.
[http://dx.doi.org/10.2147/DDDT.S173931] [PMID: 30174413]
[222]
Soboleva G, Gostishev RV, Rogoza AN, et al. Pharmacological preconditioning by Nicorandil in prevention of ischaemic myocardial injury during an elective percutaneous coronary intervention. Eur Heart J 2020; 41: 946-1463.
[http://dx.doi.org/10.1093/ehjci/ehaa946.1463]
[223]
Blanc P, Aouifi A, Bouvier H, et al. Safety of oral nicorandil before coronary artery bypass graft surgery. Br J Anaesth 2001; 87(6): 848-54.
[http://dx.doi.org/10.1093/bja/87.6.848] [PMID: 11878685]
[224]
Kawamura T, Kadosaki M, Nara N, Wei J, Endo S, Inada K. Nicorandil attenuates NF-kappaB activation, adhesion molecule expression, and cytokine production in patients with coronary artery bypass surgery. Shock 2005; 24(2): 103-8.
[http://dx.doi.org/10.1097/01.shk.0000168874.83401.3f] [PMID: 16044078]
[225]
Ezzat MAW, Mohamed EEH, Ghaffar AMA, Helmy AA, Aboelwafa WA, Ali EM. Cardio-protective effects of oral nicorandil in patients undergoing cardiac valve surgery. World J Cardiovasc Dis 2019; 9(10): 707-17.
[http://dx.doi.org/10.4236/wjcd.2019.910064]
[226]
Kureishi Y, Luo Z, Shiojima I, et al. The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat Med 2000; 6(9): 1004-10.
[http://dx.doi.org/10.1038/79510] [PMID: 10973320]
[227]
Bell RM, Yellon DM. Atorvastatin, administered at the onset of reperfusion, and independent oflipid lowering, protects the myocardiumby up-regulating a pro-survival pathway. J Am Coll Cardiol 2003; 41(3): 508-15.
[http://dx.doi.org/10.1016/S0735-1097(02)02816-4] [PMID: 12575984]
[228]
Simoncini T, Genazzani AR, Liao JK. Nongenomic mechanisms of endothelial nitric oxide synthase activation by the selective estrogen receptor modulator raloxifene. Circulation 2002; 105(11): 1368-73.
[http://dx.doi.org/10.1161/hc1102.105267] [PMID: 11901050]
[229]
Ledoux S, Laouari D, Essig M, et al. Lovastatin enhances ecto-5′-nucleotidase activity and cell surface expression in endothelial cells: Implication of rho-family GTPases. Circ Res 2002; 90(4): 420-7.
[http://dx.doi.org/10.1161/hh0402.105668] [PMID: 11884371]
[230]
Zuo Y, Wang Y, Hu H, Cui W. Atorvastatin protects myocardium against ischemia-reperfusion injury through inhibiting miR-199a-5p. Cell Physiol Biochem 2016; 39(3): 1021-30.
[http://dx.doi.org/10.1159/000447809] [PMID: 27537066]
[231]
Gu W, Kehl F, Krolikowski JG, Pagel PS, Warltier DC, Kersten JR. Simvastatin restores ischemic preconditioning in the presence of hyperglycemia through a nitric oxide-mediated mechanism. Anesthesiology 2008; 108(4): 634-42.
[http://dx.doi.org/10.1097/ALN.0b013e3181672590] [PMID: 18362595]
[232]
Bao N, Ushikoshi H, Kobayashi H, et al. Simvastatin reduces myocardial infarct size via increased nitric oxide production in normocholesterolemic rabbits. J Cardiol 2009; 53(1): 102-7.
[http://dx.doi.org/10.1016/j.jjcc.2008.09.012] [PMID: 19167645]
[233]
Sun W, Pan R, Song J, Sun H. The effects of simvastatin preconditioning on the expression of caspase-3 after myocardial ischemia reperfusion injury in rats. Exp Ther Med 2019; 17(3): 2230-4.
[http://dx.doi.org/10.3892/etm.2019.7164] [PMID: 30783483]
[234]
Mendieta G, Ben-Aicha S, Gutiérrez M, et al. Intravenous statin administration during myocardial infarction compared with oral post-infarct administration. J Am Coll Cardiol 2020; 75(12): 1386-402.
[http://dx.doi.org/10.1016/j.jacc.2020.01.042] [PMID: 32216907]
[235]
Kim JW, Yun KH, Kim EK, et al. Effect of high dose rosuvastatin loading before primary percutaneous coronary intervention on infarct size in patients with ST-segment elevation myocardial infarction. Korean Circ J 2014; 44(2): 76-81.
[http://dx.doi.org/10.4070/kcj.2014.44.2.76] [PMID: 24653736]
[236]
Marenzi G, Cosentino N, Cortinovis S, et al. Myocardial infarct size in patients on long-term statin therapy undergoing primary percutaneous coronary intervention for ST-elevation myocardial infarction. Am J Cardiol 2015; 116(12): 1791-7.
[http://dx.doi.org/10.1016/j.amjcard.2015.09.016] [PMID: 26602070]
[237]
Patti G, Cannon CP, Murphy SA, et al. Clinical benefit of pretreatment intervention in patients collaborative percutaneous coronary artery analysis of 13 randomized patient-level meta-analysis. Circulation 2011; 123: 1622-32.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.002451] [PMID: 21464051]
[238]
Zheng Z, Jayaram R, Jiang L, et al. Perioperative rosuvastatin in cardiac surgery. N Engl J Med 2016; 374(18): 1744-53.
[http://dx.doi.org/10.1056/NEJMoa1507750] [PMID: 27144849]
[239]
Putzu A, de Carvalho e Silva CMPD, de Almeida JP, et al. Perioperative statin therapy in cardiac and non-cardiac surgery: A systematic review and meta-analysis of randomized controlled trials. Ann Intensive Care 2018; 8(1): 95.
[http://dx.doi.org/10.1186/s13613-018-0441-3] [PMID: 30264290]
[240]
Zhen-Han L, Rui S, Dan C, Xiao-Li Z, Qing-Chen W, Bo F. Perioperative statin administration with decreased risk of postoperative atrial fibrillation, but not acute kidney injury or myocardial infarction: A meta-analysis. Sci Rep 2017; 7(1): 10091.
[http://dx.doi.org/10.1038/s41598-017-10600-x] [PMID: 28855628]
[241]
Heeschen C, Hamm CW, Laufs U, Snapinn S, Böhm M, White HD. Withdrawal of statins increases event rates in patients with acute coronary syndromes. Circulation 2002; 105(12): 1446-52.
[http://dx.doi.org/10.1161/01.CIR.0000012530.68333.C8] [PMID: 11914253]
[242]
Daskalopoulou SS, Delaney JAC, Filion KB, Brophy JM, Mayo NE, Suissa S. Discontinuation of statin therapy following an acute myocardial infarction: A population-based study. Eur Heart J 2008; 29(17): 2083-91.
[http://dx.doi.org/10.1093/eurheartj/ehn346] [PMID: 18664465]
[243]
Bates E, Bode C, Costa M, et al. Intracoronary KAI-9803 as an adjunct to primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction. Circulation 2008; 117(7): 886-96.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.759167] [PMID: 18250271]
[244]
Miyaji Y, Walter S, Chen L, et al. Distribution of KAI-9803, a novel δ-protein kinase C inhibitor, after intravenous administration to rats. Drug Metab Dispos 2011; 39(10): 1946-53.
[http://dx.doi.org/10.1124/dmd.111.040725] [PMID: 21712433]
[245]
Lincoff AM, Roe M, Aylward P, et al. Inhibition of delta-protein kinase C by delcasertib as an adjunct to primary percutaneous coronary intervention for acute anterior ST-segment elevation myocardial infarction: Results of the protection AMI randomized controlled trial. Eur Heart J 2014; 35(37): 2516-23.
[http://dx.doi.org/10.1093/eurheartj/ehu177] [PMID: 24796339]
[246]
Ma N, Bai J, Zhang W, et al. Trimetazidine protects against cardiac ischemia/reperfusion injury via effects on cardiac miRNA-21 expression, Akt and the Bcl-2/Bax pathway. Mol Med Rep 2016; 14(5): 4216-22.
[http://dx.doi.org/10.3892/mmr.2016.5773] [PMID: 27666568]
[247]
Argaud L, Gomez L, Gateau-Roesch O, et al. Trimetazidine inhibits mitochondrial permeability transition pore opening and prevents lethal ischemia–reperfusion injury. J Mol Cell Cardiol 2005; 39(6): 893-9.
[http://dx.doi.org/10.1016/j.yjmcc.2005.09.012] [PMID: 16243351]
[248]
Iskesen I, Saribulbul O, Cerrahoglu M, Var A, Nazli Y, Sirin H. Trimetazidine reduces oxidative stress in cardiac surgery. Circ J 2006; 70(9): 1169-73.
[http://dx.doi.org/10.1253/circj.70.1169] [PMID: 16936431]
[249]
Dai Z-L, Song Y-F, Tian Y, et al. Trimetazidine offers in elderly coronary artery disease patients non-cardiac surgery: A randomized, double-blind, placebo-controlled trial. BMC Cardiovasc Disord 2021; 21: 473.
[http://dx.doi.org/10.1186/s12872-021-02287-w] [PMID: 34598676]
[250]
Zhang Y, Ma X, Shi D. Effect of trimetazidine in patients undergoing percutaneous coronary intervention: A meta-analysis. PLoS One 2015; 10(9): e0137775.
[http://dx.doi.org/10.1371/journal.pone.0137775] [PMID: 26367001]
[251]
Costa LMA, Rezende PC, Garcia RMR, et al. Role of trimetazidine in ischemic preconditioning in patients with symptomatic coronary artery disease. Medicine (Baltimore) 2015; 94(33): e1161.
[http://dx.doi.org/10.1097/MD.0000000000001161] [PMID: 26287407]
[252]
Penna C, Mancardi D, Rastaldo R, Pagliaro P. Cardioprotection: A radical view. Biochim Biophys Acta Bioenerg 2009; 1787(7): 781-93.
[http://dx.doi.org/10.1016/j.bbabio.2009.02.008] [PMID: 19248760]
[253]
Murry CE, Richard VJ, Jennings RB, Reimer KA. Preconditioning with ischemia: Is the protective effect mediated by free radicalinduced myocardial stunning? Circulation 1988; 78 (Suppl II): Abs II-77.
[254]
Baines CP, Goto M, Downey JM. Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium. J Mol Cell Cardiol 1997; 29(1): 207-16.
[http://dx.doi.org/10.1006/jmcc.1996.0265] [PMID: 9040035]
[255]
Tritto I, D’Andrea D, Eramo N, et al. Oxygen radicals can induce preconditioning in rabbit hearts. Circ Res 1997; 80(5): 743-8.
[http://dx.doi.org/10.1161/01.RES.80.5.743] [PMID: 9130455]
[256]
Kaeffer N, Richard V, Thuillez C. Delayed coronary endothelial protection 24 hours after preconditioning: Role of free radicals. Circulation 1997; 96(7): 2311-6.
[http://dx.doi.org/10.1161/01.CIR.96.7.2311] [PMID: 9337205]
[257]
Vanden Hoek TL, Becker LB, Shao Z, Li C, Schumacker PT. Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem 1998; 273(29): 18092-8.
[http://dx.doi.org/10.1074/jbc.273.29.18092] [PMID: 9660766]
[258]
Yue Y, Krenz M, Cohen MV, Downey JM, Critz SD. Menadione mimics the infarct-limiting effect of preconditioning in isolated rat hearts. Am J Physiol Heart Circ Physiol 2001; 281(2): H590-5.
[http://dx.doi.org/10.1152/ajpheart.2001.281.2.H590] [PMID: 11454561]
[259]
Forbes RA, Steenbergen C, Murphy E. Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism. Circ Res 2001; 88(8): 802-9.
[http://dx.doi.org/10.1161/hh0801.089342] [PMID: 11325872]
[260]
Horwitz LD, Fennessey PV, Shikes RH, Kong Y. Marked reduction in myocardial infarct size due to prolonged infusion of an antioxidant during reperfusion. Circulation 1994; 89(4): 1792-801.
[http://dx.doi.org/10.1161/01.CIR.89.4.1792] [PMID: 8149545]
[261]
Hattori R, Otani H, Maulik N, Das DK. Pharmacological preconditioning with resveratrol: Role of nitric oxide. Am J Physiol Heart Circ Physiol 2002; 282(6): H1988-95.
[http://dx.doi.org/10.1152/ajpheart.01012.2001] [PMID: 12003802]
[262]
Sebbag L, Forrat R, Canet E, Renaud S, Delaye J, de Lorgeril M. Effects of dietary supplementation with alpha-tocopherol on myocardial infarct size and ventricular arrhythmias in a dog model of ischemia-reperfusion. J Am Coll Cardiol 1994; 24(6): 1580-5.
[http://dx.doi.org/10.1016/0735-1097(94)90158-9] [PMID: 7930294]
[263]
Wang R. Two’s company, three’s a crowd: Can H 2 S be the third endogenous gaseous transmitter? FASEB J 2002; 16(13): 1792-8.
[http://dx.doi.org/10.1096/fj.02-0211hyp] [PMID: 12409322]
[264]
Bian JS, Yong QC, Pan TT, et al. Role of hydrogen sulfide in the cardioprotection caused by ischemic preconditioning in the rat heart and cardiac myocytes. J Pharmacol Exp Ther 2006; 316(2): 670-8.
[http://dx.doi.org/10.1124/jpet.105.092023] [PMID: 16204473]
[265]
Zhao Y, Biggs TD, Xian M. Hydrogen sulfide (H 2 S) releasing agents: Chemistry and biological applications. Chem Commun (Camb) 2014; 50(80): 11788-805.
[http://dx.doi.org/10.1039/C4CC00968A] [PMID: 25019301]
[266]
Issa K, Kimmoun A, Collin S, et al. Compared effects of inhibition and exogenous administration of hydrogen sulphide in ischaemia-reperfusion injury. Crit Care 2013; 17(4): R129.
[http://dx.doi.org/10.1186/cc12808] [PMID: 23841996]
[267]
Sivarajah A, Collino M, Yasin M, et al. Anti-apoptotic and anti-inflammatory effects of hydrogen sulfide in a rat model of regional myocardial I/R. Shock 2009; 31(3): 267-74.
[http://dx.doi.org/10.1097/SHK.0b013e318180ff89] [PMID: 18636044]
[268]
Ji Y, Pang Q, Xu G, Wang L, Wang J, Zeng Y. Exogenous hydrogen sulfide postconditioning protects isolated rat hearts against ischemia-reperfusion injury. Eur J Pharmacol 2008; 587(1-3): 1-7.
[http://dx.doi.org/10.1016/j.ejphar.2008.03.044] [PMID: 18468595]
[269]
Gao Y, Yao X, Zhang Y, et al. The protective role of hydrogen sulfide in myocardial ischemia–reperfusion-induced injury in diabetic rats. Int J Cardiol 2011; 152(2): 177-83.
[http://dx.doi.org/10.1016/j.ijcard.2010.07.012] [PMID: 21316771]
[270]
Toldo S, Das A, Mezzaroma E, et al. Induction of microRNA-21 with exogenous hydrogen sulfide attenuates myocardial ischemic and inflammatory injury in mice. Circ Cardiovasc Genet 2014; 7(3): 311-20.
[http://dx.doi.org/10.1161/CIRCGENETICS.113.000381] [PMID: 24825878]
[271]
Citi V, Corvino A, Fiorino F, et al. Structure-activity relationships study of isothiocyanates for H2S releasing properties: 3-Pyridyl-isothiocyanate as a new promising cardioprotective agent. J Adv Res 2021; 27: 41-53.
[http://dx.doi.org/10.1016/j.jare.2020.02.017] [PMID: 33318865]
[272]
Wang H, Shi X, Cheng L, Han J, Mu J. Hydrogen sulfide restores cardioprotective effects of remote ischemic preconditioning in aged rats via HIF-1α/Nrf2 signaling pathway. Korean J Physiol Pharmacol 2021; 25(3): 239-49.
[http://dx.doi.org/10.4196/kjpp.2021.25.3.239] [PMID: 33859064]
[273]
Karwi QG, Bice JS, Baxter GF. Pre- and postconditioning the heart with hydrogen sulfide (H2S) against ischemia/reperfusion injury in vivo: A systematic review and meta-analysis. Basic Res Cardiol 2018; 113(1): 6.
[http://dx.doi.org/10.1007/s00395-017-0664-8] [PMID: 29242986]
[274]
Smith WL, Garavito RM, DeWitt DL. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J Biol Chem 1996; 271(52): 33157-60.
[http://dx.doi.org/10.1074/jbc.271.52.33157] [PMID: 8969167]
[275]
Shinmura K, Tang XL, Wang Y, et al. Cyclooxygenase-2 mediates the cardioprotective effects of the late phase of ischemic preconditioning in conscious rabbits. Proc Natl Acad Sci USA 2000; 97(18): 10197-202.
[http://dx.doi.org/10.1073/pnas.97.18.10197] [PMID: 10963682]
[276]
Shinmura K, Nagai M, Tamaki K, Tani M, Bolli R. COX-2-derived prostacyclin mediates opioid-induced late phase of preconditioning in isolated rat hearts. Am J Physiol Heart Circ Physiol 2002; 283(6): H2534-43.
[http://dx.doi.org/10.1152/ajpheart.00209.2002] [PMID: 12388283]
[277]
Shinmura K, Kodani E, Xuan YT, Dawn B, Tang XL, Bolli R. Effect of aspirin on late preconditioning against myocardial stunning in conscious rabbits. J Am Coll Cardiol 2003; 41(7): 1183-94.
[http://dx.doi.org/10.1016/S0735-1097(03)00086-X] [PMID: 12679220]
[278]
Xuan YT, Guo Y, Zhu Y, et al. Role of the protein kinase C-epsilon-Raf-1-MEK-1/2-p44/42 MAPK signaling cascade in the activation of signal transducers and activators of transcription 1 and 3 and induction of cyclooxygenase-2 after ischemic preconditioning. Circulation 2005; 112(13): 1971-8.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.561522] [PMID: 16172266]
[279]
Guo Y, Tukaye DN, Wu WJ, et al. The COX-2/PGI2 receptor axis plays an obligatory role in mediating the cardioprotection conferred by the late phase of ischemic preconditioning. PLoS One 2012; 7(7): e41178.
[http://dx.doi.org/10.1371/journal.pone.0041178] [PMID: 22844439]
[280]
Hennan JK, Huang J, Barrett TD, et al. Effects of selective cyclooxygenase-2 inhibition on vascular responses and thrombosis in canine coronary arteries. Circulation 2001; 104(7): 820-5.
[http://dx.doi.org/10.1161/hc3301.092790] [PMID: 11502709]
[281]
Timmers L, Sluijter JPG, Verlaan CWJ, et al. Cyclooxygenase-2 inhibition increases mortality, enhances left ventricular remodeling, and impairs systolic function after myocardial infarction in the pig. Circulation 2007; 115(3): 326-32.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.647230] [PMID: 17210840]
[282]
Dalal D, Dubreuil M, Peloquin C, et al. Meloxicam and risk of myocardial infarction: A population-based nested case–control study. Rheumatol Int 2017; 37(12): 2071-8.
[http://dx.doi.org/10.1007/s00296-017-3835-x] [PMID: 29030657]
[283]
Masclee GMC, Straatman H, Arfè A, et al. Risk of acute myocardial infarction during use of individual NSAIDs: A nested case-control study from the SOS project. PLoS One 2018; 13(11): e0204746.
[http://dx.doi.org/10.1371/journal.pone.0204746] [PMID: 30383755]
[284]
Gaster G, Pedersen L, Ehrenstein V, et al. Cardiovascular risks associated with use of non-steroidal anti-inflammatory drugs in patients with non-obstructive coronary artery disease. Eur Heart J Cardiovasc Pharmacother 2021; pvab082.
[PMID: 34864969]
[285]
Lee TM, Chang NC, Lin SZ. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic Biol Med 2017; 104: 298-310.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.01.035] [PMID: 28132924]
[286]
Tanajak P, Sa-nguanmoo P, Sivasinprasasn S, et al. Cardioprotection of dapagliflozin and vildagliptin in rats with cardiac ischemia-reperfusion injury. J Endocrinol 2018; 236(2): 69-84.
[http://dx.doi.org/10.1530/JOE-17-0457] [PMID: 29142025]
[287]
Zhou H, Wang S, Zhu P, Hu S, Chen Y, Ren J. Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission. Redox Biol 2018; 15: 335-46.
[http://dx.doi.org/10.1016/j.redox.2017.12.019] [PMID: 29306791]
[288]
Baker HE, Kiel AM, Luebbe ST, et al. Inhibition of sodium–glucose cotransporter-2 preserves cardiac function during regional myocardial ischemia independent of alterations in myocardial substrate utilization. Basic Res Cardiol 2019; 114(3): 25.
[http://dx.doi.org/10.1007/s00395-019-0733-2] [PMID: 31004234]
[289]
Hu Z, Ju F, Du L, Abbott GW. Empagliflozin protects the heart against ischemia/reperfusion-induced sudden cardiac death. Cardiovasc Diabetol 2021; 20(1): 199.
[http://dx.doi.org/10.1186/s12933-021-01392-6] [PMID: 34607570]
[290]
Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015; 373(22): 2117-28.
[http://dx.doi.org/10.1056/NEJMoa1504720] [PMID: 26378978]
[291]
Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017; 377(7): 644-57.
[http://dx.doi.org/10.1056/NEJMoa1611925] [PMID: 28605608]
[292]
Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2019; 380(4): 347-57.
[http://dx.doi.org/10.1056/NEJMoa1812389] [PMID: 30415602]
[293]
Hausenloy DJ, Lim SY, Ong SG, Davidson SM, Yellon DM. Mitochondrial cyclophilin-D as a critical mediator of ischaemic preconditioning. Cardiovasc Res 2010; 88(1): 67-74.
[http://dx.doi.org/10.1093/cvr/cvq113] [PMID: 20400621]
[294]
Song K, Wang S, Qi D. Effects of cyclosporine on reperfusion injury in patients: A meta-analysis of randomized controlled trials. Oxid Med Cell Longev 2015; 2015: 1-6.
[http://dx.doi.org/10.1155/2015/287058] [PMID: 26167239]
[295]
Cung TT, Morel O, Cayla G, et al. Cyclosporine before PCI in patients with acute myocardial infarction. N Engl J Med 2015; 373(11): 1021-31.
[http://dx.doi.org/10.1056/NEJMoa1505489] [PMID: 26321103]
[296]
Lalonde F, Poirier P, Sylvestre MP, Arvisais D, Curnier D. Exercise-induced ischemic preconditioning detected by sequential exercise stress tests: A meta-analysis. Eur J Prev Cardiol 2015; 22(1): 100-12.
[http://dx.doi.org/10.1177/2047487313502447] [PMID: 23983070]
[297]
Alburquerque-Béjar JJ, Barba I, Inserte J, et al. Combination therapy with remote ischaemic conditioning and insulin or exenatide enhances infarct size limitation in pigs. Cardiovasc Res 2015; 107(2): 246-54.
[http://dx.doi.org/10.1093/cvr/cvv171] [PMID: 26045476]
[298]
Huang MH, Wu Y, Nguyen V, et al. Heart protection by combination therapy with esmolol and milrinone at late-ischemia and early reperfusion. Cardiovasc Drugs Ther 2011; 25(3): 223-32.
[http://dx.doi.org/10.1007/s10557-011-6302-z] [PMID: 21562974]
[299]
Yang XM, Cui L, Alhammouri A, Downey JM, Cohen MV. Triple therapy greatly increases myocardial salvage during ischemia/reperfusion in the in situ rat heart. Cardiovasc Drugs Ther 2013; 27(5): 403-12.
[http://dx.doi.org/10.1007/s10557-013-6474-9] [PMID: 23832692]
[300]
Fan Y, Yang S, Zhang X, Cao Y, Huang Y. Comparison of cardioprotective efficacy resulting from a combination of atorvastatin and ischaemic post-conditioning in diabetic and non-diabetic rats. Clin Exp Pharmacol Physiol 2012; 39(11): 938-43.
[http://dx.doi.org/10.1111/1440-1681.12014] [PMID: 23106693]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy