Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Application of Machine Learning Technology in the Prediction of ADME- Related Pharmacokinetic Parameters

Author(s): Ying Wang, Yonghua Zhan*, Changhu Liu and Wenhua Zhan*

Volume 30, Issue 17, 2023

Published on: 07 October, 2022

Page: [1945 - 1962] Pages: 18

DOI: 10.2174/0929867329666220819122205

Price: $65

Abstract

Background: As an important determinant in drug discovery, the accurate analysis and acquisition of pharmacokinetic parameters are very important for the clinical application of drugs. At present, the research and development of new drugs mainly obtain their pharmacokinetic parameters through data analysis, physiological model construction and other methods, but the results are often quite different from the actual situation, needing more manpower and material resources.

Objective: We mainly discuss the application of machine learning technology in the prediction of pharmacokinetic parameters, which are mainly related to the quantitative study of drug absorption, distribution, metabolism and excretion in the human body, such as bioavailability, clearance, apparent volume of distribution and so on.

Methods: This paper first introduces the pharmacokinetic parameters, the relationship between the quantitative structure-activity relationship model and machine learning, then discusses the application of machine learning technology in different prediction models, and finally discusses the limitations, prospects and future development of the machine learning model in predicting pharmacokinetic parameters.

Results: Unlike traditional pharmacokinetic analysis, machine learning technology can use computers and algorithms to speed up the acquisition of pharmacokinetic parameters to varying degrees. It provides a new idea to speed up and shorten the cycle of drug development, and has been successfully applied in drug design and development.

Conclusion: The use of machine learning technology has great potential in predicting pharmacokinetic parameters. It also provides more choices and opportunities for the design and development of clinical drugs in the future.

Keywords: Drug discovery, Machine learning, Pharmacokinetic parameters, absorption, distribution, metabolism, excretion, Quantitative structure-activity relationship.

[1]
Plenge, R.M.; Scolnick, E.M.; Altshuler, D. Validating therapeutic targets through human genetics. Nat. Rev. Drug Discov., 2013, 12(8), 581-594.
[http://dx.doi.org/10.1038/nrd4051] [PMID: 23868113]
[2]
Scannell, J.W.; Blanckley, A.; Boldon, H.; Warrington, B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov., 2012, 11(3), 191-200.
[http://dx.doi.org/10.1038/nrd3681] [PMID: 22378269]
[3]
Park, K. A review of computational drug repurposing. Transl. Clin. Pharmacol., 2019, 27(2), 59-63.
[http://dx.doi.org/10.12793/tcp.2019.27.2.59] [PMID: 32055582]
[4]
Zheng, W.; Thorne, N.; McKew, J.C. Phenotypic screens as a renewed approach for drug discovery. Drug Discov. Today, 2013, 18(21-22), 1067-1073.
[http://dx.doi.org/10.1016/j.drudis.2013.07.001] [PMID: 23850704]
[5]
Potemkin, V.; Grishina, M. Grid-Based technologies for in silico screening and drug design. Curr. Med. Chem., 2018, 25(29), 3526-3537.
[http://dx.doi.org/10.2174/0929867325666180309112454] [PMID: 29521207]
[6]
Li, A.P. Screening for human ADME/Tox drug properties in drug discovery. Drug Discov. Today, 2001, 6(7), 357-366.
[http://dx.doi.org/10.1016/S1359-6446(01)01712-3] [PMID: 11267922]
[7]
Wagner, J.G. Pharmacokinetics. Annu. Rev. Pharmacol., 1968, 8, 67-94.
[http://dx.doi.org/10.1146/annurev.pa.08.040168.000435] [PMID: 4875402]
[8]
Rescigno, A. Fundamental concepts in pharmacokinetics. Pharmacol. Res., 1997, 35(5), 363-390.
[http://dx.doi.org/10.1006/phrs.1997.0175] [PMID: 9299200]
[9]
Wagner, J.G. History of pharmacokinetics. Pharmacol. Ther., 1981, 12(3), 537-562.
[http://dx.doi.org/10.1016/0163-7258(81)90097-8] [PMID: 7025032]
[10]
Verbeeck, R.K. Pharmacokinetic drug interactions with nonsteroidal anti-inflammatory drugs. Clin. Pharmacokinet., 1990, 19(1), 44-66.
[http://dx.doi.org/10.2165/00003088-199019010-00004] [PMID: 2199127]
[11]
Hochhaus, G.; Barrett, J.S.; Derendorf, H. Evolution of pharmacokinetics and pharmacokinetic/dynamic correlations during the 20th century. J. Clin. Pharmacol., 2000, 40(9), 908-917.
[http://dx.doi.org/10.1177/00912700022009648] [PMID: 10975063]
[12]
Wang, C.K.; Craik, D.J. Cyclic peptide oral bioavailability: Lessons from the past. Biopolymers, 2016, 106(6), 901-909.
[http://dx.doi.org/10.1002/bip.22878] [PMID: 27178381]
[13]
Prueksaritanont, T.; Tang, C. ADME of biologics-what have we learned from small molecules? AAPS J., 2012, 14(3), 410-419.
[http://dx.doi.org/10.1208/s12248-012-9353-6] [PMID: 22484625]
[14]
van de Waterbeemd, H. High-throughput and in silico techniques in drug metabolism and pharmacokinetics. Curr. Opin. Drug Discov. Devel., 2002, 5(1), 33-43.
[PMID: 11865671]
[15]
Shimamura, K.; Wajima, T.; Yano, Y. Pharmacokinetic prediction for intravenous beta-lactam antibiotics in pediatric patients. J. Pharm. Sci., 2007, 96(11), 3125-3139.
[http://dx.doi.org/10.1002/jps.20977] [PMID: 17722099]
[16]
Kubinyi, H. QSAR and 3D QSAR in drug design Part 1: Methodology. Drug Discov. Today, 1997, 2(11), 457-467.
[http://dx.doi.org/10.1016/S1359-6446(97)01079-9]
[17]
Kassel, D.B. Applications of high-throughput ADME in drug discovery. Curr. Opin. Chem. Biol., 2004, 8(3), 339-345.
[http://dx.doi.org/10.1016/j.cbpa.2004.04.015] [PMID: 15183334]
[18]
Born, J.; Manica, M. Trends in deep learning for Property-driven drug design. Curr. Med. Chem., 2021, 28(38), 7862-7886.
[http://dx.doi.org/10.2174/0929867328666210729115728] [PMID: 34325627]
[19]
de Moura, E.P.; Fernandes, N.D.; Monteiro, A.F.M.; de Medeiros, H.I.R.; Scotti, M.T.; Scotti, L. Machine learning, molecular modeling and QSAR studies of natural products against Alzheimer’s disease. Curr. Med. Chem., 2021, 28(38), 7808-7829.
[http://dx.doi.org/10.2174/0929867328666210603104749] [PMID: 34082666]
[20]
Scotti, M.T.; Monteiro, A.F.M.; de Oliveira Viana, J.; Bezerra Mendonça Junior, F.J.; Ishiki, H.M.; Tchouboun, E.N.; De Araújo, R.S.A.; Scotti, L. Recent theoretical studies concerning important tropical infections. Curr. Med. Chem., 2020, 27(5), 795-834.
[http://dx.doi.org/10.2174/0929867326666190711121418] [PMID: 31296154]
[21]
Tropsha, A. Best practices for QSAR model development, validation, and exploitation. Mol. Inform., 2010, 29(6-7), 476-488.
[http://dx.doi.org/10.1002/minf.201000061] [PMID: 27463326]
[22]
Roy, K.; Mitra, I. On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design. Comb. Chem. High. T. Scr., 2011, 14(6), 450-474.
[http://dx.doi.org/10.2174/138620711795767893] [PMID: 21521150]
[23]
Qiao, L.S.; Cai, Y.L.; He, Y.S.; Jiang, L.D.; Huo, X.Q.; Zhang, Y.L. Trend of multi-scale QSAR in drug design. Asian J. Chem., 2014, 26(18), 5917-5922.
[http://dx.doi.org/10.14233/ajchem.2014.18490]
[24]
Rivera-Borroto, O.M.; Marrero-Ponce, Y.; Meneses-Marcel, A.; Escario, J.A.; Barrio, A.G.; Aran, V.J.; Alho, M.A.M.; Pereira, D.M.; Nogal, J.J.; Torrens, F.; Ibarra-Velarde, F.; Montenegro, Y.V.; Huesca-Guillen, A.; Rivera, N.; Vogel, C. Discovery of novel trichomonacidals using LDA-driven QSAR models and bond-based bilinear indices as molecular descriptors. QSAR Comb. Sci., 2009, 28(1), 9-26.
[http://dx.doi.org/10.1002/qsar.200610165]
[25]
Cherkasov, A.; Muratov, E.N.; Fourches, D.; Varnek, A.; Baskin, I.I.; Cronin, M.; Dearden, J.; Gramatica, P.; Martin, Y.C.; Todeschini, R.; Consonni, V.; Kuz’min, V.E.; Cramer, R.; Benigni, R.; Yang, C.; Rathman, J.; Terfloth, L.; Gasteiger, J.; Richard, A.; Tropsha, A. QSAR modeling: Where have you been? Where are you going to? J. Med. Chem., 2014, 57(12), 4977-5010.
[http://dx.doi.org/10.1021/jm4004285] [PMID: 24351051]
[26]
Arrieta, A.B.; Diaz-Rodriguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; Garcia, S.; Gil-Lopez, S.; Molina, D.; Benjamins, R.; Chatila, R.; Herrera, F. Explainable artificial intelligence(XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion, 2020, 58, 85-112.
[27]
Panch, T.; Szolovits, P.; Atun, R. Artificial intelligence, machine learning and health systems. J. Glob. Health, 2018, 8(2), 020303.
[http://dx.doi.org/10.7189/jogh.08.020303] [PMID: 30405904]
[28]
Wójcikowski, M.; Siedlecki, P.; Ballester, P.J. Building machine-learning scoring functions for structure-based prediction of intermolecular binding affinity. Methods Mol. Biol., 2019, 2053, 1-12.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_1] [PMID: 31452095]
[29]
de Azevedo, W.F. Application of machine learning techniques for drug discovery. Curr. Med. Chem., 2021, 28(38), 7805-7807.
[http://dx.doi.org/10.2174/092986732838211207154549] [PMID: 34911417]
[30]
Veit-Acosta, M.; de Azevedo Junior, W.F. Computational prediction of binding affinity for CDK2-ligand complexes. A protein target for cancer drug discovery. Curr. Med. Chem., 2022, 29(14), 2438-2455.
[http://dx.doi.org/10.2174/0929867328666210806105810] [PMID: 34365938]
[31]
Bitencourt-Ferreira, G.; Rizzotto, C.; de Azevedo Junior, W.F. Machine learning-based scoring functions, development and applications with SAnDReS. Curr. Med. Chem., 2021, 28(9), 1746-1756.
[http://dx.doi.org/10.2174/0929867327666200515101820] [PMID: 32410551]
[32]
Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electron. Mark., 2021, 31(3), 685-695.
[http://dx.doi.org/10.1007/s12525-021-00475-2]
[33]
Bzdok, D.; Krzywinski, M.; Altman, N. Machine learning: Supervised methods. Nat. Methods, 2018, 15(1), 5-6.
[http://dx.doi.org/10.1038/nmeth.4551] [PMID: 30100821]
[34]
Gibson, B.R.; Rogers, T.T.; Zhu, X. Human semi-supervised learning. Top. Cogn. Sci., 2013, 5(1), 132-172.
[http://dx.doi.org/10.1111/tops.12010] [PMID: 23335577]
[35]
LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature, 2015, 521(7553), 436-444.
[http://dx.doi.org/10.1038/nature14539] [PMID: 26017442]
[36]
Teramoto, R.; Fukunishi, H. Supervised scoring models with docked ligand conformations for structure-based virtual screening. J. Chem. Inf. Model., 2007, 47(5), 1858-1867.
[http://dx.doi.org/10.1021/ci700116z] [PMID: 17685604]
[37]
Yu, W.M.; Cheng, X.A.; Li, Z.B.; Jiang, Z.R. Predicting drug-target interactions based on an improved semi-supervised learning approach. Drug Dev. Res., 2011, 72(2), 219-224.
[http://dx.doi.org/10.1002/ddr.20418]
[38]
Ma, J.; Sheridan, R.P.; Liaw, A.; Dahl, G.E.; Svetnik, V. Deep neural nets as a method for quantitative structure-activity relationships. J. Chem. Inf. Model., 2015, 55(2), 263-274.
[http://dx.doi.org/10.1021/ci500747n] [PMID: 25635324]
[39]
Kenakin, T.P. Cellular assays as portals to seven-transmembrane receptor-based drug discovery. Nat. Rev. Drug Discov., 2009, 8(8), 617-626.
[http://dx.doi.org/10.1038/nrd2838] [PMID: 19609267]
[40]
Obach, R.S.; Lombardo, F.; Waters, N.J. Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds. Drug Metab. Dispos., 2008, 36(7), 1385-1405.
[http://dx.doi.org/10.1124/dmd.108.020479] [PMID: 18426954]
[41]
Mehvar, R. Clearance concepts: Fundamentals and application to pharmacokinetic behavior of drugs. J. Pharm. Pharm. Sci., 2018, 21(1s), 88s-102s.
[http://dx.doi.org/10.18433/jpps29896] [PMID: 30041730]
[42]
Rowland, M.; Benet, L.Z.; Graham, G.G. Clearance concepts in pharmacokinetics. J. Pharmacokinet. Biopharm., 1973, 1(2), 123-136.
[http://dx.doi.org/10.1007/BF01059626] [PMID: 4764426]
[43]
Smith, D.A.; Beaumont, K.; Maurer, T.S.; Di, L. Relevance of half-life in drug design. J. Med. Chem., 2018, 61(10), 4273-4282.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00969] [PMID: 29112446]
[44]
Wu, H.; Huang, J. Optimization of protein and peptide drugs based on the mechanisms of kidney clearance. Protein Pept. Lett., 2018, 25(6), 514-521.
[http://dx.doi.org/10.2174/0929866525666180530122835] [PMID: 29848260]
[45]
Kontermann, R.E. Half-life extended biotherapeutics. Expert Opin. Biol. Ther., 2016, 16(7), 903-915.
[http://dx.doi.org/10.1517/14712598.2016.1165661] [PMID: 26967759]
[46]
Toutain, P.L.; Bousquet-Mélou, A. Volumes of distribution. J. Vet. Pharmacol. Ther., 2004, 27(6), 441-453.
[http://dx.doi.org/10.1111/j.1365-2885.2004.00602.x] [PMID: 15601439]
[47]
Obach, R.S. Prediction of human volume of distribution using in vivo, in vitro, and in silico approaches. Annu. Rep. Med. Chem., 2007, 42, 469-488.
[http://dx.doi.org/10.1016/S0065-7743(07)42030-9]
[48]
Dominguez, R.; Pomerene, E. Studies of the renal excretion of creatinine I. On the functional relation between the rate of output and the concentration in the plasma. J. Biol. Chem., 1934, 104(3), 449-471.
[http://dx.doi.org/10.1016/S0021-9258(18)75718-9]
[49]
Toutain, P.L.; Bousquet-Mélou, A. Bioavailability and its assessment. J. Vet. Pharmacol. Ther., 2004, 27(6), 455-466.
[http://dx.doi.org/10.1111/j.1365-2885.2004.00604.x] [PMID: 15601440]
[50]
Oser, B.L.; Melnick, D.; Hochberg, M. Physiological availability of vitamins: Study of methods for determining availability of vitamins in pharmaceutical products. Ind. Eng. Chem., 1945, 17(7), 405-411.
[51]
Saha, A.; Varghese, T.; Liu, A.; Allen, S.J.; Mirzadegan, T.; Hack, M.D. An analysis of different components of a high-throughput screening library. J. Chem. Inf. Model., 2018, 58(10), 2057-2068.
[http://dx.doi.org/10.1021/acs.jcim.8b00258] [PMID: 30204440]
[52]
Krantz, A. Protein-site targeting. Diversification of the drug discovery process. Nat. Biotechnol., 1998, 16(13), 1294-1294.
[http://dx.doi.org/10.1038/4243] [PMID: 9853592]
[53]
Lyne, P.D. Structure-based virtual screening: An overview. Drug Discov. Today, 2002, 7(20), 1047-1055.
[http://dx.doi.org/10.1016/S1359-6446(02)02483-2] [PMID: 12546894]
[54]
Gertrudes, J.C.; Maltarollo, V.G.; Silva, R.A.; Oliveira, P.R.; Honório, K.M.; da Silva, A.B.F. Machine learning techniques and drug design. Curr. Med. Chem., 2012, 19(25), 4289-4297.
[http://dx.doi.org/10.2174/092986712802884259] [PMID: 22830342]
[55]
Brown, A.C.; Fraser, T.R. On the connection between physiological action and chemical constitution. Earth. Env. Sci. T.R. So., 1868, 25(1), 151-203.
[PMID: 17230757]
[56]
Meyer, K.H. Contributions to the theory of narcosis. Trans. Faraday Soc., 1937, 38, 1062-1068.
[http://dx.doi.org/10.1039/tf9373301062]
[57]
Vemparala, S.; Domene, C.; Klein, M.L. Computational studies on the interactions of inhalational anesthetics with proteins. Acc. Chem. Res., 2010, 43(1), 103-110.
[http://dx.doi.org/10.1021/ar900149j] [PMID: 19788306]
[58]
Hansch, C.; Maloney, P.P.; Fujita, T.; Muir, R.M. Correlation of biological activity of phenoxyacetic acids with hammett substituent constants and partition coefficients. Nature, 1962, 194(4824), 178-180.
[http://dx.doi.org/10.1038/194178b0]
[59]
Cox, R.; Green, D.V.S.; Luscombe, C.N.; Malcolm, N.; Pickett, S.D. QSAR workbench: Automating QSAR modeling to drive compound design. J. Comput. Aided Mol. Des., 2013, 27(4), 321-336.
[http://dx.doi.org/10.1007/s10822-013-9648-4] [PMID: 23615761]
[60]
Helguera, A.M.; Combes, R.D.; González, M.P.; Cordeiro, M.N.D.S. Applications of 2D descriptors in drug design: A DRAGON tale. Curr. Top. Med. Chem., 2008, 8(18), 1628-1655.
[http://dx.doi.org/10.2174/156802608786786598] [PMID: 19075771]
[61]
Karelson, M.; Lobanov, V.S.; Katritzky, A.R. Quantum-chemical descriptors in QSAR/QSPR studies. Chem. Rev., 1996, 96(3), 1027-1044.
[http://dx.doi.org/10.1021/cr950202r] [PMID: 11848779]
[62]
Dong, J.; Cao, D.S.; Miao, H.Y.; Liu, S.; Deng, B.C.; Yun, Y.H.; Wang, N.N.; Lu, A.P.; Zeng, W.B.; Chen, A.F. ChemDes: An integrated web-based platform for molecular descriptor and fingerprint computation. J. Cheminform., 2015, 7(60), 60.
[http://dx.doi.org/10.1186/s13321-015-0109-z] [PMID: 26664458]
[63]
Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science, 2015, 349(6245), 255-260.
[http://dx.doi.org/10.1126/science.aaa8415] [PMID: 26185243]
[64]
Fox, T.; Kriegl, J.M. Machine learning techniques for in silico modeling of drug metabolism. Curr. Top. Med. Chem., 2006, 6(15), 1579-1591.
[http://dx.doi.org/10.2174/156802606778108915] [PMID: 16918470]
[65]
Gawehn, E.; Hiss, J.A.; Schneider, G. Deep learning in drug discovery. Mol. Inform., 2016, 35(1), 3-14.
[http://dx.doi.org/10.1002/minf.201501008] [PMID: 27491648]
[66]
Pan, S.J.; Yang, Q.A. A survey on transfer learning. IEEE Trans. Knowl. Data Eng., 2010, 22(10), 1345-1359.
[http://dx.doi.org/10.1109/TKDE.2009.191]
[67]
Zhang, Y.; Yang, Q. An overview of multi-task learning. Natl. Sci. Rev., 2018, 5(1), 30-43.
[http://dx.doi.org/10.1093/nsr/nwx105] [PMID: 30034911]
[68]
Reker, D. Practical considerations for active machine learning in drug discovery. Drug Discov. Today. Technol., 2019, 32-33, 73-79.
[http://dx.doi.org/10.1016/j.ddtec.2020.06.001] [PMID: 33386097]
[69]
Goan, E.; Fookes, C. Bayesian neural networks: An introduction and survey. Lect. Notes Math., 2020, 2259, 45-87.
[http://dx.doi.org/10.1007/978-3-030-42553-1_3]
[70]
Poggesi, I. Predicting human pharmacokinetics from preclinical data. Curr. Opin. Drug Discov. Devel., 2004, 7(1), 100-111.
[PMID: 14982153]
[71]
Ther, L.; Winne, D. Drug absorption. Annu. Rev. Pharmacol., 1971, 11, 57-70.
[http://dx.doi.org/10.1146/annurev.pa.11.040171.000421] [PMID: 4948504]
[72]
Yoshida, F.; Topliss, J.G. QSAR model for drug human oral bioavailability. J. Med. Chem., 2000, 43(13), 2575-2585.
[http://dx.doi.org/10.1021/jm0000564] [PMID: 10891117]
[73]
Yap, C.W.; Li, H.; Ji, Z.L.; Chen, Y.Z. Regression methods for developing QSAR and QSPR models to predict compounds of specific pharmacodynamic, pharmacokinetic and toxicological properties. Mini Rev. Med. Chem., 2007, 7(11), 1097-1107.
[http://dx.doi.org/10.2174/138955707782331696] [PMID: 18045213]
[74]
Liu, H.X.; Hu, R.J.; Zhang, R.S.; Yao, X.J.; Liu, M.C.; Hu, Z.D.; Fan, B.T. The prediction of human oral absorption for diffusion rate-limited drugs based on heuristic method and support vector machine. J. Comput. Aided Mol. Des., 2005, 19(1), 33-46.
[http://dx.doi.org/10.1007/s10822-005-0095-8] [PMID: 16059665]
[75]
Kumar, R.; Sharma, A.; Varadwaj, P.K. A prediction model for oral bioavailability of drugs using physicochemical properties by support vector machine. J. Nat. Sci. Biol. Med., 2011, 2(2), 168-173.
[http://dx.doi.org/10.4103/0976-9668.92325] [PMID: 22346230]
[76]
Fagerholm, U.; Hellberg, S.; Spjuth, O. Advances in predictions of oral bioavailability of candidate drugs in man with new machine learning methodology. Molecules, 2021, 26(9), 2-11.
[http://dx.doi.org/10.3390/molecules26092572] [PMID: 33925103]
[77]
Suenderhauf, C.; Hammann, F.; Huwyler, J. Computational prediction of blood-brain barrier permeability using decision tree induction. Molecules, 2012, 17(9), 10429-10445.
[http://dx.doi.org/10.3390/molecules170910429] [PMID: 22941223]
[78]
Yuan, Y.; Zheng, F.; Zhan, C.G. Improved prediction of blood-brain barrier permeability through machine learning with combined use of molecular property-based descriptors and fingerprints. AAPS J., 2018, 20(3), 54.
[http://dx.doi.org/10.1208/s12248-018-0215-8] [PMID: 29564576]
[79]
Wang, Z.; Yang, H.; Wu, Z.; Wang, T.; Li, W.; Tang, Y.; Liu, G. In silico prediction of blood-brain barrier permeability of compounds by machine learning and resampling mMethods. ChemMedChem, 2018, 13(20), 2189-2201.
[http://dx.doi.org/10.1002/cmdc.201800533] [PMID: 30110511]
[80]
Liu, L.; Zhang, L.; Feng, H.; Li, S.; Liu, M.; Zhao, J.; Liu, H. Prediction of the blood-brain barrier (BBB) permeability of chemicals based on machine-learning and ensemble methods. Chem. Res. Toxicol., 2021, 34(6), 1456-1467.
[http://dx.doi.org/10.1021/acs.chemrestox.0c00343] [PMID: 34047182]
[81]
Shi, Z.W.; Chu, Y.Y.; Zhang, Y.H.; Wang, Y.J.; Wei, D.Q. Prediction of blood-brain barrier permeability of compounds by fusing resampling strategies and eXtreme gradient boosting. IEEE Access, 2021, 9, 9557-9566.
[http://dx.doi.org/10.1109/ACCESS.2020.3047852]
[82]
Saxena, D.; Sharma, A.; Siddiqui, M.H.; Kumar, R. Development of machine learning based blood-brain barrier permeability prediction models using physicochemical properties, MACCS and substructure fingerprints. Curr. Bioinform., 2021, 16(6), 855-864.
[http://dx.doi.org/10.2174/1574893616666210203104013]
[83]
Xue, C.X.; Zhang, R.S.; Liu, H.X.; Yao, X.J.; Liu, M.C.; Hu, Z.D.; Fan, B.T. QSAR models for the prediction of binding affinities to human serum albumin using the heuristic method and a support vector machine. J. Chem. Inf. Comput. Sci., 2004, 44(5), 1693-1700.
[http://dx.doi.org/10.1021/ci049820b] [PMID: 15446828]
[84]
Basant, N.; Gupta, S.; Singh, K.P. Predicting binding affinities of diverse pharmaceutical chemicals to human serum plasma proteins using QSPR modelling approaches. SAR QSAR Environ. Res., 2016, 27(1), 67-85.
[http://dx.doi.org/10.1080/1062936X.2015.1133700] [PMID: 26854728]
[85]
Sun, L.; Yang, H.; Li, J.; Wang, T.; Li, W.; Liu, G.; Tang, Y. In silico prediction of compounds binding to human plasma proteins by QSAR models. ChemMedChem, 2018, 13(6), 572-581.
[http://dx.doi.org/10.1002/cmdc.201700582] [PMID: 29057587]
[86]
Yuan, Y.W.; Chang, S.; Zhang, Z.; Li, Z.G.; Li, S.Z.; Xie, P.; Yau, W.P.; Lin, H.S.; Cai, W.M.; Zhang, Y.C.; Xiang, X.Q. A novel strategy for prediction of human plasma protein binding using machine learning techniques. Chemom. Intell. Lab. Syst., 2020, 199, 1-16.
[http://dx.doi.org/10.1016/j.chemolab.2020.103962]
[87]
Watanabe, R.; Esaki, T.; Kawashima, H.; Natsume-Kitatani, Y.; Nagao, C.; Ohashi, R.; Mizuguchi, K. Predicting fraction unbound in human plasma from chemical structure: Improved accuracy in the low value ranges. Mol. Pharm., 2018, 15(11), 5302-5311.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00785] [PMID: 30259749]
[88]
Mulpuru, V.; Mishra, N. In silico prediction of fraction unbound in human plasma from chemical fingerprint using automated machine learning. ACS Omega, 2021, 6(10), 6791-6797.
[http://dx.doi.org/10.1021/acsomega.0c05846] [PMID: 33748592]
[89]
Louis, B.; Agrawal, V.K. Prediction of human volume of distribution values for drugs using linear and nonlinear quantitative structure pharmacokinetic relationship models. Interdiscip. Sci., 2014, 6(1), 71-83.
[http://dx.doi.org/10.1007/s12539-014-0166-4] [PMID: 24464707]
[90]
Freitas, A.A.; Limbu, K.; Ghafourian, T. Predicting volume of distribution with decision tree-based regression methods using predicted tissue:plasma partition coefficients. J. Cheminform., 2015, 7(6), 6.
[http://dx.doi.org/10.1186/s13321-015-0054-x] [PMID: 25767566]
[91]
Murad, N.; Pasikanti, K.K.; Madej, B.D.; Minnich, A.; McComas, J.M.; Crouch, S.; Polli, J.W.; Weber, A.D. Predicting volume of distribution in humans: Performance of in silico methods for a large set of structurally diverse clinical compounds. Drug Metab. Dispos., 2021, 49(2), 169-178.
[http://dx.doi.org/10.1124/dmd.120.000202] [PMID: 33239335]
[92]
Kosugi, Y.; Hosea, N. Direct comparison of total clearance prediction: Computational machine learning model versus bottom-up approach using in vitro assay. Mol. Pharm., 2020, 17(7), 2299-2309.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b01294] [PMID: 32478525]
[93]
Iwata, H.; Matsuo, T.; Mamada, H.; Motomura, T.; Matsushita, M.; Fujiwara, T.; Kazuya, M.; Handa, K. Prediction of total drug clearance in humans using animal data: Proposal of a multimodal learning method based on deep learning. J. Pharm. Sci., 2021, 110(4), 1834-1841.
[http://dx.doi.org/10.1016/j.xphs.2021.01.020] [PMID: 33497658]
[94]
Mamada, H.; Nomura, Y.; Uesawa, Y. Prediction model of clearance by a novel quantitative structure-activity relationship approach, combination deepsnap-deep learning and conventional machine learning. ACS Omega, 2021, 6(36), 23570-23577.
[http://dx.doi.org/10.1021/acsomega.1c03689] [PMID: 34549154]
[95]
Quinones, C.; Caceres, J.; Stud, M.; Martinez, A. Prediction of drug half-life values of antihistamines based on the CODES/neural network model. QSAR Comb. Sci., 2000, 19(5), 448-454.
[96]
Lu, J.; Lu, D.; Zhang, X.; Bi, Y.; Cheng, K.; Zheng, M.; Luo, X. Estimation of elimination half-lives of organic chemicals in humans using gradient boosting machine. Biochim. Biophys. Acta, 2016, 1860(11 Pt B), 2664-2671.
[http://dx.doi.org/10.1016/j.bbagen.2016.05.019] [PMID: 27217074]
[97]
Turner, J.V.; Maddalena, D.J.; Cutler, D.J. Pharmacokinetic parameter prediction from drug structure using artificial neural networks. Int. J. Pharm., 2004, 270(1-2), 209-219.
[http://dx.doi.org/10.1016/j.ijpharm.2003.10.011] [PMID: 14726136]
[98]
Zandkarimi, M.; Shafiei, M.; Hadizadeh, F.; Darbandi, M.A.; Tabrizian, K. Prediction of pharmacokinetic parameters using a genetic algorithm combined with an artificial neural network for a series of alkaloid drugs. Sci. Pharm., 2013, 82(1), 53-70.
[http://dx.doi.org/10.3797/scipharm.1306-10] [PMID: 24634842]
[99]
Wang, Y.; Liu, H.; Fan, Y.; Chen, X.; Yang, Y.; Zhu, L.; Zhao, J.; Chen, Y.; Zhang, Y. In silico prediction of human intravenous pharmacokinetic parameters with improved accuracy. J. Chem. Inf. Model., 2019, 59(9), 3968-3980.
[http://dx.doi.org/10.1021/acs.jcim.9b00300] [PMID: 31403793]
[100]
Turner, J.V.; Maddalena, D.J.; Cutler, D.J.; Agatonovic-Kustrin, S. Multiple pharmacokinetic parameter prediction for a series of cephalosporins. J. Pharm. Sci., 2003, 92(3), 552-559.
[http://dx.doi.org/10.1002/jps.10314] [PMID: 12587116]
[101]
Ye, Z.; Yang, Y.; Li, X.; Cao, D.; Ouyang, D. An integrated transfer learning and multitask learning approach for pharmacokinetic parameter prediction. Mol. Pharm., 2019, 16(2), 533-541.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00816] [PMID: 30571137]
[102]
Wessel, M.D.; Jurs, P.C.; Tolan, J.W.; Muskal, S.M. Prediction of human intestinal absorption of drug compounds from molecular structure. J. Chem. Inf. Comput. Sci., 1998, 38(4), 726-735.
[http://dx.doi.org/10.1021/ci980029a] [PMID: 9691477]
[103]
Kumar, R.; Sharma, A.; Siddiqui, M.H.; Tiwari, R.K. Prediction of human intestinal absorption of compounds using artificial intelligence techniques. Curr. Drug Discov. Technol., 2017, 14(4), 244-254.
[http://dx.doi.org/10.2174/1570163814666170404160911] [PMID: 28382857]
[104]
Wang, X.; Liu, M.; Zhang, L.; Wang, Y.; Li, Y.; Lu, T. Optimizing pharmacokinetic property prediction based on integrated datasets and a deep learning approach. J. Chem. Inf. Model., 2020, 60(10), 4603-4613.
[http://dx.doi.org/10.1021/acs.jcim.0c00568] [PMID: 32804486]
[105]
Wishart, D.S.; Knox, C.; Guo, A.C.; Shrivastava, S.; Hassanali, M.; Stothard, P.; Chang, Z.; Woolsey, J. DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res., 2006, 34, D668-D672.
[http://dx.doi.org/10.1093/nar/gkj067] [PMID: 16381955]
[106]
Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; Overington, J.P. ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Res., 2012, 40, D1100-D1107.
[http://dx.doi.org/10.1093/nar/gkr777] [PMID: 21948594]
[107]
Wang, Y.; Xiao, J.; Suzek, T.O.; Zhang, J.; Wang, J.; Bryant, S.H. PubChem: A public information system for analyzing bioactivities of small molecules. Nucleic Acids Res., 2009, 37, W623-W633.
[http://dx.doi.org/10.1093/nar/gkp456] [PMID: 19498078]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy