Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Design, Synthesis, and Evaluation of Novel Pyruvate Dehydrogenase Kinase Inhibitors

Author(s): Deniz Arslan, Matthieu Schoumacher, Sébastien Dilly, Benaïssa Elmoualij, Danièle Zorzi, Pascale Quatresooz, Vincent Lambert, Agnès Noël, Bernard Pirotte* and Pascal de Tullio

Volume 19, Issue 3, 2023

Published on: 03 October, 2022

Page: [276 - 296] Pages: 21

DOI: 10.2174/1573406418666220819102627

Price: $65

Abstract

Aims: The present work describes the synthesis and the biological evaluation of novel compounds acting as pyruvate dehydrogenase kinase (PDK) inhibitors. These drugs should become a new therapeutic approach for the treatment of pathologies improved by the control of the blood lactate level.

Methods: Four series of compounds belonging to N-(4-(N-alkyl/aralkylsulfamoyl)phenyl)-2- methylpropanamides and 1,2,4-benzothiadiazine 1,1-dioxides were prepared and evaluated as PDK inhibitors.

Results: The newly synthesized N-(4-(N-alkyl/aralkylsulfamoyl)phenyl)-2-methylpropanamides structurally related to previously reported reference compounds 4 and 5 were found to be potent PDK inhibitors (i.e. 10d: IC50 = 41 nM). 1,2,4-Benzothiadiazine 1,1-dioxides carrying a (methyl/ trifluoromethyl)-propanamide moiety at the 6-position were also designed as conformationally restricted ring-closed analogues of N-(4-(N-alkyl/aralkylsulfamoyl)phenyl)-2-hydroxy-2-methylpropanamides. Most of them were found to be less potent than their ring-opened analogues. Interestingly, the best choice of hydrocarbon side chain at the 4-position was the benzyl chain, providing 11c (IC50 = 3.6 μM) belonging to “unsaturated” 1,2,4-benzothiadiazine 1,1-dioxides, and 12c (IC50 = 0.5 μM) belonging to “saturated’ 1,2,4-benzothiadiazine 1,1-dioxides.

Conclusion: This work showed that ring-closed analogues of N-(4-(N-alkyl/aralkylsulfamoyl) phenyl)- 2-hydroxy-2-methylpropanamides were less active as PDK inhibitors than their corresponding ring-opened analogues. However, the introduction of a bulkier substituent at the 4-position of the 1,2,4-benzothiadiazine 1,1-dioxide core structure, such as a benzyl or a phenethyl side chain, was allowed, opening the way to the design of new inhibitors with improved PDK inhibitory activity.

Keywords: Pyruvate dehydrogenase kinase inhibitor, pyruvate dehydrogenase complex, lactate, conformationally restricted analogues, benzothiadiazine dioxides, 2-hydroxy-2-(methyl/trifluoromethyl)propanamides.

Graphical Abstract

[1]
Lambert, V.; Hansen, S.; Schoumacher, M.; Lecomte, J.; Leenders, J.; Hubert, P.; Herfs, M.; Blacher, S.; Carnet, O.; Yip, C.; Blaise, P.; Duchateau, E.; Locht, B.; Thys, M.; Cavalier, E.; Gothot, A.; Govaerts, B.; Rakic, J.M.; Noel, A.; de Tullio, P. Pyruvate dehydrogenase kinase/lactate axis: A therapeutic target for neovascular age-related macular degeneration identified by metabolomics. J. Mol. Med. (Berl.), 2020, 98(12), 1737-1751.
[http://dx.doi.org/10.1007/s00109-020-01994-9] [PMID: 33079232]
[2]
Porporato, P.E.; Payen, V.L.; De Saedeleer, C.J.; Préat, V.; Thissen, J-P.; Feron, O.; Sonveaux, P. Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice. Angiogenesis, 2012, 15(4), 581-592.
[http://dx.doi.org/10.1007/s10456-012-9282-0] [PMID: 22660894]
[3]
Kersten, E.; Paun, C.C.; Schellevis, R.L.; Hoyng, C.B.; Delcourt, C.; Lengyel, I.; Peto, T.; Ueffing, M.; Klaver, C.C.W.; Dammeier, S.; den Hollander, A.I.; de Jong, E.K. Systemic and ocular fluid compounds as potential biomarkers in age-related macular degeneration. Surv. Ophthalmol., 2018, 63(1), 9-39.
[http://dx.doi.org/10.1016/j.survophthal.2017.05.003] [PMID: 28522341]
[4]
Korotchkina, L.G.; Patel, M.S. Probing the mechanism of inactivation of human pyruvate dehydrogenase by phosphorylation of three sites. J. Biol. Chem., 2001, 276(8), 5731-5738.
[http://dx.doi.org/10.1074/jbc.M007558200] [PMID: 11092882]
[5]
Roche, T.E.; Hiromasa, Y. Pyruvate dehydrogenase kinase regulatory mechanisms and inhibition in treating diabetes, heart ischemia, and cancer. Cell. Mol. Life Sci., 2007, 64(7-8), 830-849.
[http://dx.doi.org/10.1007/s00018-007-6380-z] [PMID: 17310282]
[6]
Gray, L.R.; Tompkins, S.C.; Taylor, E.B. Regulation of pyruvate metabolism and human disease. Cell. Mol. Life Sci., 2014, 71(14), 2577-2604.
[http://dx.doi.org/10.1007/s00018-013-1539-2] [PMID: 24363178]
[7]
Stacpoole, P.W. Therapeutic targeting of the pyruvate dehydrogenase complex/pyruvate dehydrogenase kinase (PDC/PDK) axis in cancer. J. Natl. Cancer Inst., 2017, 109(11), djx071.
[http://dx.doi.org/10.1093/jnci/djx071] [PMID: 29059435]
[8]
Bhandary, S.; Aguan, K. Pyruvate dehydrogenase complex deficiency and its relationship with epilepsy frequency-An overview. Epilepsy Res., 2015, 116, 40-52.
[http://dx.doi.org/10.1016/j.eplepsyres.2015.07.002] [PMID: 26354166]
[9]
Patel, K.P.; O’Brien, T.W.; Subramony, S.H.; Shuster, J.; Stacpoole, P.W. The spectrum of pyruvate dehydrogenase complex deficiency: Clinical, biochemical and genetic features in 371 patients. Mol. Genet. Metab., 2012, 106(3), 385-394.
[http://dx.doi.org/10.1016/j.ymgme.2012.03.017] [PMID: 22896851]
[10]
Jeoung, N.H. Pyruvate dehydrogenase kinases: Therapeutic targets for diabetes and cancers. Diabetes Metab. J., 2015, 39(3), 188-197.
[http://dx.doi.org/10.4093/dmj.2015.39.3.188] [PMID: 26124988]
[11]
Zhang, S.L.; Hu, X.; Zhang, W.; Yao, H.; Tam, K.Y. Development of pyruvate dehydrogenase kinase inhibitors in medicinal chemistry with particular emphasis as anticancer agents. Drug Discov. Today, 2015, 20(9), 1112-1119.
[http://dx.doi.org/10.1016/j.drudis.2015.03.012] [PMID: 25842042]
[12]
Saunier, E.; Benelli, C.; Bortoli, S. The pyruvate dehydrogenase complex in cancer: An old metabolic gatekeeper regulated by new pathways and pharmacological agents. Int. J. Cancer, 2016, 138(4), 809-817.
[http://dx.doi.org/10.1002/ijc.29564] [PMID: 25868605]
[13]
Kato, M.; Li, J.; Chuang, J.L.; Chuang, D.T. Distinct structural mechanisms for inhibition of pyruvate dehydrogenase kinase isoforms by AZD7545, dichloroacetate, and radicicol. Structure, 2007, 15(8), 992-1004.
[http://dx.doi.org/10.1016/j.str.2007.07.001] [PMID: 17683942]
[14]
Knoechel, T.R.; Tucker, A.D.; Robinson, C.M.; Phillips, C.; Taylor, W.; Bungay, P.J.; Kasten, S.A.; Roche, T.E.; Brown, D.G. Regulatory roles of the N-terminal domain based on crystal structures of human pyruvate dehydrogenase kinase 2 containing physiological and synthetic ligands. Biochemistry, 2006, 45(2), 402-415.
[http://dx.doi.org/10.1021/bi051402s] [PMID: 16401071]
[15]
Li, J.; Kato, M.; Chuang, D.T. Pivotal role of the C-terminal DW-motif in mediating inhibition of pyruvate dehydrogenase kinase 2 by dichloroacetate. J. Biol. Chem., 2009, 284(49), 34458-34467.
[http://dx.doi.org/10.1074/jbc.M109.065557] [PMID: 19833728]
[16]
Kankotia, S.; Stacpoole, P.W. Dichloroacetate and cancer: New home for an orphan drug? Biochim. Biophys. Acta, 2014, 1846(2), 617-629.
[http://dx.doi.org/10.1016/j.bbcan.2014.08.005] [PMID: 25157892]
[17]
Chu, Q.S.C.; Sangha, R.; Spratlin, J.; Vos, L.J.; Mackey, J.R.; McEwan, A.J.; Venner, P.; Michelakis, E.D. A phase I open-labeled, single-arm, dose-escalation, study of dichloroacetate (DCA) in patients with advanced solid tumors. Invest. New Drugs, 2015, 33(3), 603-610.
[http://dx.doi.org/10.1007/s10637-015-0221-y] [PMID: 25762000]
[18]
Stacpoole, P.W. Lactic acidosis. Endocrinol. Metab. Clin. North Am., 1993, 22(2), 221-245.
[http://dx.doi.org/10.1016/S0889-8529(18)30163-4] [PMID: 8325284]
[19]
Bersin, R.M.; Stacpoole, P.W. Dichloroacetate as metabolic therapy for myocardial ischemia and failure. Am. Heart J., 1997, 134(5 Pt 1), 841-855.
[http://dx.doi.org/10.1016/S0002-8703(97)80007-5] [PMID: 9398096]
[20]
Duncan, G.E.; Perkins, L.A.; Theriaque, D.W.; Neiberger, R.E.; Stacpoole, P.W. Dichloroacetate therapy attenuates the blood lactate response to submaximal exercise in patients with defects in mitochondrial energy metabolism. J. Clin. Endocrinol. Metab., 2004, 89(4), 1733-1738.
[http://dx.doi.org/10.1210/jc.2003-031684] [PMID: 15070938]
[21]
Stacpoole, P.W.; Harman, E.M.; Curry, S.H.; Baumgartner, T.G.; Misbin, R.I. Treatment of lactic acidosis with dichloroacetate. N. Engl. J. Med., 1983, 309(7), 390-396.
[http://dx.doi.org/10.1056/NEJM198308183090702] [PMID: 6877297]
[22]
Michelakis, E.D.; Webster, L.; Mackey, J.R. Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br. J. Cancer, 2008, 99(7), 989-994.
[http://dx.doi.org/10.1038/sj.bjc.6604554] [PMID: 18766181]
[23]
Thai, S.F.; Allen, J.W.; DeAngelo, A.B.; George, M.H.; Fuscoe, J.C. Altered gene expression in mouse livers after dichloroacetic acid exposure. Mutat. Res., 2003, 543(2), 167-180.
[http://dx.doi.org/10.1016/S1383-5742(03)00014-0] [PMID: 12644186]
[24]
Stacpoole, P.W.; Gonzalez, M.G.; Vlasak, J.; Oshiro, Y.; Bodor, N. Dichloroacetate derivatives. Metabolic effects and pharmacodynamics in normal rats. Life Sci., 1987, 41(18), 2167-2176.
[http://dx.doi.org/10.1016/0024-3205(87)90535-2] [PMID: 3669916]
[25]
Stacpoole, P.W.; Henderson, G.N.; Yan, Z.; James, M.O. Clinical pharmacology and toxicology of dichloroacetate. Environ. Health Perspect., 1998, 106(Suppl. 4), 989-994.
[http://dx.doi.org/10.1289/ehp.98106s4989] [PMID: 9703483]
[26]
Aicher, T.D.; Anderson, R.C.; Bebernitz, G.R.; Coppola, G.M.; Jewell, C.F.; Knorr, D.C.; Liu, C.; Sperbeck, D.M.; Brand, L.J.; Strohschein, R.J.; Gao, J.; Vinluan, C.C.; Shetty, S.S.; Dragland, C.; Kaplan, E.L.; DelGrande, D.; Islam, A.; Liu, X.; Lozito, R.J.; Maniara, W.M.; Walter, R.E.; Mann, W.R. (R)-3,3,3-Trifluoro-2-hydroxy-2-methylpropionamides are orally active inhibitors of pyruvate dehydrogenase kinase. J. Med. Chem., 1999, 42(15), 2741-2746.
[http://dx.doi.org/10.1021/jm9902584] [PMID: 10425084]
[27]
Aicher, T.D.; Anderson, R.C.; Gao, J.; Shetty, S.S.; Coppola, G.M.; Stanton, J.L.; Knorr, D.C.; Sperbeck, D.M.; Brand, L.J.; Vinluan, C.C.; Kaplan, E.L.; Dragland, C.J.; Tomaselli, H.C.; Islam, A.; Lozito, R.J.; Liu, X.; Maniara, W.M.; Fillers, W.S.; DelGrande, D.; Walter, R.E.; Mann, W.R. Secondary amides of (R)-3,3,3-trifluoro-2-hydroxy-2-methylpropionic acid as inhibitors of pyruvate dehydrogenase kinase. J. Med. Chem., 2000, 43(2), 236-249.
[http://dx.doi.org/10.1021/jm990358+] [PMID: 10649979]
[28]
Bebernitz, G.R.; Aicher, T.D.; Stanton, J.L.; Gao, J.; Shetty, S.S.; Knorr, D.C.; Strohschein, R.J.; Tan, J.; Brand, L.J.; Liu, C.; Wang, W.H.; Vinluan, C.C.; Kaplan, E.L.; Dragland, C.J.; DelGrande, D.; Islam, A.; Lozito, R.J.; Liu, X.; Maniara, W.M.; Mann, W.R. Anilides of (R)-trifluoro-2-hydroxy-2-methylpropionic acid as inhibitors of pyruvate dehydrogenase kinase. J. Med. Chem., 2000, 43(11), 2248-2257.
[http://dx.doi.org/10.1021/jm0000923] [PMID: 10841803]
[29]
Mann, W.R.; Dragland, C.J.; Vinluan, C.C.; Vedananda, T.R.; Bell, P.A.; Aicher, T.D. Diverse mechanisms of inhibition of pyruvate dehydrogenase kinase by structurally distinct inhibitors. Biochim. Biophys. Acta, 2000, 1480(1-2), 283-292.
[http://dx.doi.org/10.1016/S0167-4838(00)00079-0] [PMID: 11004568]
[30]
Mayers, R.M.; Butlin, R.J.; Kilgour, E.; Leighton, B.; Martin, D.; Myatt, J.; Orme, J.P.; Holloway, B.R. AZD7545, a novel inhibitor of pyruvate dehydrogenase kinase 2 (PDHK2), activates pyruvate dehydrogenase in vivo and improves blood glucose control in obese (fa/fa) Zucker rats. Biochem. Soc. Trans., 2003, 31(Pt 6), 1165-1167.
[http://dx.doi.org/10.1042/bst0311165] [PMID: 14641018]
[31]
Morrell, J.A.; Orme, J.; Butlin, R.J.; Roche, T.E.; Mayers, R.M.; Kilgour, E. AZD7545 is a selective inhibitor of pyruvate dehydrogenase kinase 2. Biochem. Soc. Trans., 2003, 31(Pt 6), 1168-1170.
[http://dx.doi.org/10.1042/bst0311168] [PMID: 14641019]
[32]
Kakkar, R.; Arora, R.; Gahlot, P.; Gupta, D. An insight into pyruvate dehydrogenase kinase (PDHK) inhibition through pharmacophore modeling and QSAR studies. J. Comput. Sci., 2014, 5(4), 558-567.
[http://dx.doi.org/10.1016/j.jocs.2014.04.006]
[33]
Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol., 1997, 267(3), 727-748.
[http://dx.doi.org/10.1006/jmbi.1996.0897] [PMID: 9126849]
[34]
Sakkiah, S.; Arooj, M.; Kumar, M.R.; Eom, S.H.; Lee, K.W. Identification of inhibitor binding site in human sirtuin 2 using molecular docking and dynamics simulations. PLoS One, 2013, 8(1), e51429.
[http://dx.doi.org/10.1371/journal.pone.0051429] [PMID: 23382805]
[35]
Tirado-Rives, J.; Jorgensen, W.L. Contribution of conformer focusing to the uncertainty in predicting free energies for protein-ligand binding. J. Med. Chem., 2006, 49(20), 5880-5884.
[http://dx.doi.org/10.1021/jm060763i] [PMID: 17004703]
[36]
Huang, K.; Luo, S.; Cong, Y.; Zhong, S.; Zhang, J.Z.H.; Duan, L. An accurate free energy estimator: Based on MM/PBSA combined with interaction entropy for protein-ligand binding affinity. Nanoscale, 2020, 12(19), 10737-10750.
[http://dx.doi.org/10.1039/C9NR10638C] [PMID: 32388542]
[37]
Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J.Z.H.; Hou, T. End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chem. Rev., 2019, 119(16), 9478-9508.
[http://dx.doi.org/10.1021/acs.chemrev.9b00055] [PMID: 31244000]
[38]
Jackson, J.C.; Vinluan, C.C.; Dragland, C.J.; Sundararajan, V.; Yan, B.; Gounarides, J.S.; Nirmala, N.R.; Topiol, S.; Ramage, P.; Blume, J.E.; Aicher, T.D.; Bell, P.A.; Mann, W.R. Heterologously expressed inner lipoyl domain of dihydrolipoyl acetyltransferase inhibits ATP-dependent inactivation of pyruvate dehydrogenase complex. Identification of important amino acid residues. Biochem. J., 1998, 334(Pt 3), 703-711.
[http://dx.doi.org/10.1042/bj3340703] [PMID: 9729480]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy