Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Anti-Tubercular Activity of Pyrazinamide Conjugates: Synthesis and Structure-Activity Relationship Studies

Author(s): Simranpreet K. Wahan, Sangeeta Sharma and Pooja A. Chawla*

Volume 23, Issue 6, 2023

Published on: 29 September, 2022

Page: [700 - 718] Pages: 19

DOI: 10.2174/1389557522666220819092431

Price: $65

Abstract

Tuberculosis (TB) is an airborne infection caused by the bacteria Mycobacterium Tuberculosis (MTB). It mainly affects the lungs and causes severe coughing, fever, and chest pains. With the rising prevalence of drug-resistant and inactive Tuberculosis (TB), there is an essential need to discover more effective molecules capable of combating this heinous illness. Pyrazinamide is a first-line tuberculosis therapy that shortens prophylactic duration from twelve to six months. The majority of presently used tuberculosis medications were found by a mix of serendipity and innovative chemical alterations of an existing lead drug. Given that the majority of these discoveries occurred years ago, there is a definite need to use fresh methodologies and technology for discovery to meet the grave danger posed by tuberculosis and the rise of treatment resistance strains. Although current research has provided significant insight into TB transmission, diagnosis, and treatment in the last four years, much more progress is needed to successfully reduce tuberculosis prevalence and eventually eradicate it. The disease continues to be a public health concern, second only to HIV/AIDS in high fatality rates. This review focuses on current efforts to translate the anti-tubercular activity of all known pyrazinamide analogues and proposes a novel approach for developing new anti-tubercular drugs based on the fusion of pyrazinamide with various heterocyclic rings that shorten treatment for drug-sensitive and multidrug-resistant tuberculosis.

Keywords: Synthetic schemes, anti-tubercular activity, structural activity relationship studies, in vitro studies, pyrazinamide conjugates, heterocyclic moiety, mycobacterium tuberculosis H37Rv

Graphical Abstract

[1]
Houben, R.M.; Dodd, P.J. The global burden of latent tuberculosis infection: A reestimation using mathematical modelling. PLoS Med., 2016, 13(10), e1002152.
[http://dx.doi.org/10.1371/journal.pmed.1002152] [PMID: 27780211]
[2]
Shea, K.M.; Kammerer, J.S.; Winston, C.A.; Navin, T.R.; Horsburgh, C.R., Jr Estimated rate of reactivation of latent tuberculosis infection in the United States, overall and by population subgroup. Am. J. Epidemiol., 2014, 179(2), 216-225.
[http://dx.doi.org/10.1093/aje/kwt246] [PMID: 24142915]
[3]
Global Tuberculosis Report 2020; Geneva, 2021. Available from:https://www.who.int/publications/i/item/9789240013131
[4]
Conde, M.B.; Lapa, E.; Silva, J.R. New regimens for reducing the duration of the treatment of drug-susceptible pulmonary tuberculosis. Drug Dev. Res., 2011, 72(6), 501-508.
[http://dx.doi.org/10.1002/ddr.20456] [PMID: 22267888]
[5]
Seung, K.J.; Keshavjee, S.; Rich, M.L. Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Cold Spring Harb. Perspect. Med., 2015, 5(9), a017863.
[http://dx.doi.org/10.1101/cshperspect.a017863] [PMID: 25918181]
[6]
Shi, W.; Zhang, X.; Jiang, X.; Yuan, H.; Lee, J.S.; Barry, C.E., III; Wang, H.; Zhang, W.; Zhang, Y. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science, 2011, 333(6049), 1630-1632.
[http://dx.doi.org/10.1126/science.1208813] [PMID: 21835980]
[7]
Barnes, P.F.; Lu, S.; Abrams, J.S.; Wang, E.; Yamamura, M.; Modlin, R.L. Cytokine production at the site of disease in human tuberculosis. Infect. Immun., 1993, 61(8), 3482-3489.
[http://dx.doi.org/10.1128/iai.61.8.3482-3489.1993] [PMID: 8335379]
[8]
Wilkinson, K.A.; Wilkinson, R.J.; Pathan, A.; Ewer, K.; Prakash, M.; Klenerman, P.; Maskell, N.; Davies, R.; Pasvol, G.; Lalvani, A. Ex vivo characterization of early secretory antigenic target 6-specific T cells at sites of active disease in pleural tuberculosis. Clin. Infect. Dis., 2005, 40(1), 184-187.
[http://dx.doi.org/10.1086/426139] [PMID: 15614710]
[9]
Mayosi, M.B.; Reuter, H.; Carstens, M.E.; Doubell, A.F. Cytokine production in patients with tuberculous pericarditis. Int. J. Tuberc. Lung Dis., 2005, 112(23), 439-446.
[10]
Matthews, K.; Wilkinson, K.A.; Kalsdorf, B.; Roberts, T.; Diacon, A.; Walzl, G.; Wolske, J.; Ntsekhe, M.; Syed, F.; Russell, J.; Mayosi, B.M.; Dawson, R.; Dheda, K.; Wilkinson, R.J.; Hanekom, W.A.; Scriba, T.J. Predominance of interleukin-22 over interleukin-17 at the site of disease in human tuberculosis. Tuberculosis (Edinb.), 2011, 91(6), 587-593.
[http://dx.doi.org/10.1016/j.tube.2011.06.009] [PMID: 21767990]
[11]
Scriba, T.J.; Penn-Nicholson, A.; Shankar, S.; Hraha, T.; Thompson, E.G.; Sterling, D.; Nemes, E.; Darboe, F.; Suliman, S.; Amon, L.M.; Mahomed, H.; Erasmus, M.; Whatney, W.; Johnson, J.L.; Boom, W.H.; Hatherill, M.; Valvo, J.; De Groote, M.A.; Ochsner, U.A.; Aderem, A.; Hanekom, W.A.; Zak, D.E. Sequential inflammatory processes define human progression from M. tuberculosis infection to tuberculosis disease. PLoS Pathog., 2017, 13(11), e1006687.
[http://dx.doi.org/10.1371/journal.ppat.1006687] [PMID: 29145483]
[12]
Barry, C.E., III; Boshoff, H.I.; Dartois, V.; Dick, T.; Ehrt, S.; Flynn, J.; Schnappinger, D.; Wilkinson, R.J.; Young, D. The spectrum of latent tuberculosis: Rethinking the biology and intervention strategies. Nat. Rev. Microbiol., 2009, 7(12), 845-855.
[http://dx.doi.org/10.1038/nrmicro2236] [PMID: 19855401]
[13]
Sia, I.G.; Wieland, M.L. Current concepts in the management of tuberculosis. Mayo Clin. Proc., 2011, 86(4), 348-361.
[http://dx.doi.org/10.4065/mcp.2010.0820] [PMID: 21454737]
[14]
Lee, S.H. Tuberculosis infection and latent tuberculosis. Tuberc. Respir. Dis. (Seoul), 2016, 79(4), 201-206.
[http://dx.doi.org/10.4046/trd.2016.79.4.201] [PMID: 27790271]
[15]
Khawbung, J.L.; Nath, D.; Chakraborty, S. Drug resistant tuberculosis: A review. Comp. Immunol. Microbiol. Infect. Dis., 2021, 74, 101574.
[http://dx.doi.org/10.1016/j.cimid.2020.101574] [PMID: 33249329]
[16]
Scorpio, A.; Zhang, Y. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat. Med., 1996, 2(6), 662-667.
[http://dx.doi.org/10.1038/nm0696-662] [PMID: 8640557]
[17]
Shi, W.; Cui, P.; Niu, H.; Zhang, S.; Tønjum, T.; Zhu, B.; Zhang, Y. Introducing RpsA point mutations Δ438A and D123A into the chromosome of Mycobacterium tuberculosis confirms their role in causing resistance to pyrazinamide. Antimicrob. Agents Chemother., 2019, 63(6), 02681-18.
[http://dx.doi.org/10.1128/AAC.02681-18] [PMID: 30858213]
[18]
Khan, M.T.; Malik, S.I.; Bhatti, A.I.; Ali, S.; Khan, A.S.; Zeb, M.T.; Nadeem, T.; Fazal, S. Pyrazinamide-resistant Mycobacterium tuberculosis isolates from Khyber Pakhtunkhwa and rpsA mutations. J. Biol. Regul. Homeost. Agents, 2018, 32(3), 705-709.
[PMID: 29921403]
[19]
Gopal, P.; Tasneen, R.; Yee, M.; Lanoix, J.P.; Sarathy, J.; Rasic, G.; Li, L.; Dartois, V.; Nuermberger, E.; Dick, T. in vivo-selected pyrazinoic acid-resistant Mycobacterium tuberculosis strains harbor missense mutations in the aspartate decarboxylase PanD and the unfoldase ClpC1. ACS Infect. Dis., 2017, 3(7), 492-501.
[http://dx.doi.org/10.1021/acsinfecdis.7b00017] [PMID: 28271875]
[20]
Dillon, N.A.; Peterson, N.D.; Feaga, H.A.; Keiler, K.C.; Baughn, A.D. Anti-tubercular activity of pyrazinamide is independent of trans-translation and RpsA. Sci. Rep., 2017, 7(1), 6135.
[http://dx.doi.org/10.1038/s41598-017-06415-5] [PMID: 28733601]
[21]
Peterson, N.D.; Rosen, B.C.; Dillon, N.A.; Baughn, A.D. Uncoupling environmental pH and intrabacterial acidification from pyrazinamide susceptibility in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2015, 59(12), 7320-7326.
[http://dx.doi.org/10.1128/AAC.00967-15] [PMID: 26369957]
[22]
Dillon, N.A.; Peterson, N.D.; Rosen, B.C.; Baughn, A.D. Pantothenate and pantetheine antagonize the antitubercular activity of pyrazinamide. Antimicrob. Agents Chemother., 2014, 58(12), 7258-7263.
[http://dx.doi.org/10.1128/AAC.04028-14] [PMID: 25246400]
[23]
Esposito, N.; Konas, D.; Goodey, N.M. tuberculosis indole-3-glycerol phosphate synthase: A potential new tuberculosis drug target. ChemBioChem, 2022, 23(2), e202100314.
[PMID: 34383995]
[24]
Boshoff, H.I.; Mizrahi, V.; Barry, C.E., III Effects of pyrazinamide on fatty acid synthesis by whole mycobacterial cells and purified fatty acid synthase I. J. Bacteriol., 2002, 184(8), 2167-2172.
[http://dx.doi.org/10.1128/JB.184.8.2167-2172.2002] [PMID: 11914348]
[25]
Chang, K.C.; Yew, W.W.; Zhang, Y. Pyrazinamide susceptibility testing in Mycobacterium tuberculosis: A systematic review with meta-analyses. Antimicrob. Agents Chemother., 2011, 55(10), 4499-4505.
[http://dx.doi.org/10.1128/AAC.00630-11] [PMID: 21768515]
[26]
Kim, H.; Shibayama, K.; Rimbara, E.; Mori, S. Biochemical characterization of quinolinic acid phosphoribosyltransferase from Mycobacterium tuberculosis H37Rv and inhibition of its activity by pyrazinamide. PLoS One, 2014, 9(6), e100062.
[http://dx.doi.org/10.1371/journal.pone.0100062] [PMID: 24949952]
[27]
Juma, S.P.; Maro, A.; Pholwat, S.; Mpagama, S.G.; Gratz, J.; Liyoyo, A.; Houpt, E.R.; Kibiki, G.S.; Mmbaga, B.T.; Heysell, S.K. Underestimated pyrazinamide resistance may compromise outcomes of pyrazinamide containing regimens for treatment of drug susceptible and multi-drug-resistant tuberculosis in Tanzania. BMC Infect. Dis., 2019, 19(1), 129.
[http://dx.doi.org/10.1186/s12879-019-3757-1] [PMID: 30732572]
[28]
Santucci, P.; Greenwood, D.J.; Fearns, A.; Chen, K.; Jiang, H.; Gutierrez, M.G. Intracellular localisation of Mycobacterium tuberculosis affects efficacy of the antibiotic pyrazinamide. Nat. Commun., 2021, 12(1), 3816.
[http://dx.doi.org/10.1038/s41467-021-24127-3] [PMID: 34155215]
[29]
Riccardi, G.; Pasca, M.R.; Buroni, S. Mycobacterium tuberculosis: Drug resistance and future perspectives. Future Microbiol., 2009, 4(5), 597-614.
[http://dx.doi.org/10.2217/fmb.09.20] [PMID: 19492969]
[30]
Khan, M.T.; Khan, A.; Rehman, A.U.; Wang, Y.; Akhtar, K.; Malik, S.I.; Wei, D.Q. Structural and free energy landscape of novel mutations in ribosomal protein S1 (rpsA) associated with pyrazinamide resistance. Sci. Rep., 2019, 9(1), 7482.
[http://dx.doi.org/10.1038/s41598-019-44013-9] [PMID: 31097767]
[31]
Khan, M.T.; Rehaman, A.U.; Junaid, M.; Malik, S.I.; Wei, D.Q. Insight into novel clinical mutants of RpsA-S324F, E325K, and G341R of Mycobacterium tuberculosis associated with pyrazinamide resistance. Comput. Struct. Biotechnol. J., 2018, 16, 379-387.
[http://dx.doi.org/10.1016/j.csbj.2018.09.004] [PMID: 30402208]
[32]
Mathew, B.; Srivastava, S.; Ross, L.J.; Suling, W.J.; White, E.L.; Woolhiser, L.K.; Lenaerts, A.J.; Reynolds, R.C. Novel pyridopyrazine and pyrimidothiazine derivatives as FtsZ inhibitors. Bioorg. Med. Chem., 2011, 19(23), 7120-7128.
[http://dx.doi.org/10.1016/j.bmc.2011.09.062] [PMID: 22024272]
[33]
Paramasivan, C.N. Overview on drug resistant tuberculosis in India. Indian J. Tuberc., 1998, 45(2), 73-81.
[34]
Asif, M. Study of some analogue of currently clinically used antimycobacterial agents. Int. J. Epidemiol., 2013, 1, 33-44.
[35]
Yabin, S.; Baogang, W.; Likun, X.; Dongna, Z.; Wang, H.; Dou, Y. Antiviral pyrazinamide derivative and preparation method thereof.C.N. Patent 113563273A, October 29 , 2021.
[36]
Johns, B.A.; Kawasuji, T.; Taishi, T.; Taoda, Y. N-[(2,4-difluorophenyl)methyl]-6-hydroxy-3-methyl-5,7-dioxo- 2,3,5,7,11,11a-hexahydro[1,3] oxazolo[3,2-a]pyrido[1,2- d]pyrazine-8-carboxamide having HIV integrase inhibitory activity. U.S. Patent 10927129B2, February 23, 2021.
[37]
Bhamra, I.; Mathieson, M.; Donoghue, C.; Testar, R. . N-pyridinyl acetamide derivatives as Wnt signalling pathway inhibitors. U.S. Patent 10793562B2, 2020.
[38]
Neumann, W.L.; Raghavan, R.; Dorshow, R.B. . Pyrazine derivatives with extended conjugation and methods of using the same inoptical applications. U.S. Patent 20190194172A1, June 27,, 2019.
[39]
Liu-Bugalski, L.; Nguye, N.; Jo, H.; Jones, R.; Mochakin, I.; Caldewell, R.D. Pyrimidine, pyridine and pyrazine as BTK inhibitor and application thereof. C.N. Patent 105814057B, May 3, 2019.
[40]
Chao, F.; Lu, Hongbin , L. Preparation process of pyrazinamide. C.N. Patent 111410636A, July 14, 2020.
[41]
Johnson, M.R. Chloro-pyrazine carboxamide derivatives with epithelial sodium channel blocking activity. U.S. Patent 10071970B2, September 11, 2018.
[42]
Campbell, B.T.; Dong, G.; Garfunkle, J.; Kim, A.; Ornoski, O.; Parker, D.L.; Raghavan, J.R.S.; Xu, L.; Yang, Z. Imidazo-pyrazine derivatives as guanylate cyclase activators. U.S. Patent 9796733B2, October 24,, 2017.
[43]
Furet, P.; Grotzfeld, R.M.; Jones, D.B.; Manley, P.; Marzinzik, A.; Moussaoui, S.; Pelle, X. F. A.; Salem, B.; Schoepfer, J.; Jahnke, W. Thiazole or imidazole substituted pyrimidine, pyridine and pyrazine amide derivatives and related compounds as ABl1, ABl2 and bcr-abl1 inhibitors for the treatment of cancer, specific viral infections and specific CNS disorders. E.P. Patent 2900637B1, August 9,, 2017.
[44]
Johnson, M.R. Chloro-pyrazine carboxamide derivatives with epithelial sodium channel blocking activity. E.P. Patent 3150585A1, April 5, 2017.
[45]
Storck, P.H.; Charrier, J.D.; Rutherford, A.; Paul, M.; Somhairle, M.; Cormick, M.; Marcellus, R.; Knegtel, A.; Durrant, S.J. . Substituted pyrrolo[2,3-b] pyrazines as ATR kinase inhibitors. U.S. Patent 9309250B2, April 12, 2016.
[46]
Yao, W.; Burns, D.M.; Zhuo, J. Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors. E.P. Patent 2721028B1, November 4,, 2015.
[47]
Song, L.; Xingzhou, L.; Zhang, Z.W.; Tianhong, Z. ; Zhang, ; Hai, X. J.; Lili, W.; Zhibing, Z.; Xinbo, Z.; Wang Xiaokui, Z.G. 3-oxo- 3,4-dihydro-2-pyrazinecarboxamide derivative, medicinal composition thereof and preparation method and application of 3-oxo-3,4- dihydro-2-pyrazinecarboxamide derivative. C.N. Patent102712621B, March 11, 2015.
[48]
Tintelnot-Blomley, M.; Wienstra, S.J. Pyrazine derivatives and their use in the treatment of neurological disorders. C.N. Patent 102712621B, March 11, 2015.
[49]
Song, Y.; Pandey, A. Substituted pyrazine-2-carboxamide kinase inhibitors. U.S. Patent 8877760B2, November 4,, 2014.
[50]
MacCormick, S.; Storck, P.H.; Mortimore, M.P.; Charrier, J.D.; Knegtel, R.; Young, S.C.; Pinder, J.; Durrant, S.J. . Pyrrolo[2,3-B]pyrazines useful as inhibitors of ATR kinase. U.S. Patent 8822469B2, September 2,, 2014.
[51]
Fan, J.; Feng, H.; Tang, P.C.; Wang, Y.; Yang, F.; Yang, T. Tetrahydro-imidazo(1,5-a) pyrazine derivatives, preparation method and medical uses thereof. A.U. Patent 2008342461B2, September 5, 2013.
[52]
Dolezal, M.; Jampílek, J.; Osicka, Z.; Kuneš, J.; Buchta, V.; Víchová, P. Substituted 5-aroylpyrazine-2-carboxylic acid derivatives: Synthesis and biological activity. Farmaco, 2003, 58(11), 1105-1111.
[http://dx.doi.org/10.1016/S0014-827X(03)00163-0] [PMID: 14572861]
[53]
Dolezal, M.; Palek, L.; Vinsova, J.; Buchta, V.; Jampilek, J.; Kralova, K. Substituted pyrazinecarboxamides: Synthesis and biological evaluation. Molecules, 2006, 11(4), 242-256.
[http://dx.doi.org/10.3390/11040242] [PMID: 17962755]
[54]
Dolezal, M.; Cmedlova, P.; Palek, L.; Vinsova, J.; Kunes, J.; Buchta, V.; Jampilek, J.; Kralova, K. Synthesis and antimycobacterial evaluation of substituted pyrazinecarboxamides. Eur. J. Med. Chem., 2008, 43(5), 1105-1113.
[http://dx.doi.org/10.1016/j.ejmech.2007.07.013] [PMID: 17870211]
[55]
Sriram, D.; Yogeeswari, P.; Reddy, S.P. Synthesis of pyrazinamide Mannich bases and its antitubercular properties. Bioorg. Med. Chem. Lett., 2006, 16(8), 2113-2116.
[http://dx.doi.org/10.1016/j.bmcl.2006.01.064] [PMID: 16464574]
[56]
Imramovský, A.; Polanc, S.; Vinsová, J.; Kočevar, M.; Jampílek, J.; Recková, Z.; Kaustová, J. A new modification of anti-tubercular active molecules. Bioorg. Med. Chem., 2007, 15(7), 2551-2559.
[http://dx.doi.org/10.1016/j.bmc.2007.01.051] [PMID: 17306980]
[57]
Vergara, F.M.; Lima, C.H.D.S.; Henriques, M.; Candéa, A.L.; Lourenço, M.C.; Ferreira, M.L.; Kaiser, C.R.; de Souza, M.V. Synthesis and antimycobacterial activity of N′-[(E)-(monosubstituted-benzylidene)]-2-pyrazinecarbohydrazide derivatives. Eur. J. Med. Chem., 2009, 44(12), 4954-4959.
[http://dx.doi.org/10.1016/j.ejmech.2009.08.009] [PMID: 19765866]
[58]
Zitko, J.; Servusová, B.; Janoutová, A.; Paterová, P.; Mandíková, J.; Garaj, V.; Vejsová, M.; Marek, J.; Doležal, M. Synthesis and antimycobacterial evaluation of 5-alkylamino-N-phenylpyrazine-2-carboxamides. Bioorg. Med. Chem., 2015, 23(1), 174-183.
[http://dx.doi.org/10.1016/j.bmc.2014.11.014] [PMID: 25438883]
[59]
Chitre, T.S.; Asgaonkar, K.D.; Miniyar, P.B.; Dharme, A.B.; Arkile, M.A.; Yeware, A.; Sarkar, D.; Khedkar, V.M.; Jha, P.C. Synthesis and docking studies of pyrazine-thiazolidinone hybrid scaffold targeting dormant tuberculosis. Bioorg. Med. Chem. Lett., 2016, 26(9), 2224-2228.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.055] [PMID: 27017114]
[60]
Jandourek, O.; Tauchman, M.; Paterova, P.; Konecna, K.; Navratilova, L.; Kubicek, V.; Holas, O.; Zitko, J.; Dolezal, M. Synthesis of novel pyrazinamide derivatives based on 3-chloropyrazine-2-carboxamide and their antimicrobial evaluation. Molecules, 2017, 22(2), 223.
[http://dx.doi.org/10.3390/molecules22020223] [PMID: 28157178]
[61]
Zitko, J.; Dolezal, M.; Svobodova, M.; Vejsova, M.; Kunes, J.; Kucera, R.; Jilek, P. Synthesis and antimycobacterial properties of N-substituted 6-amino-5-cyanopyrazine-2-carboxamides. Bioorg. Med. Chem., 2011, 19(4), 1471-1476.
[http://dx.doi.org/10.1016/j.bmc.2010.12.054] [PMID: 21273083]
[62]
Zitko, J.; Jampílek, J.; Dobrovolný, L.; Svobodová, M.; Kuneš, J.; Doležal, M. Synthesis and antimycobacterial evaluation of N-substituted 3-aminopyrazine-2,5-dicarbonitriles. Bioorg. Med. Chem. Lett., 2012, 22(4), 1598-1601.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.129] [PMID: 22281187]
[63]
Servusová, B.; Paterová, P.; Mandíková, J.; Kubíček, V.; Kučera, R.; Kuneš, J.; Doležal, M.; Zitko, J. Alkylamino derivatives of pyrazinamide: Synthesis and antimycobacterial evaluation. Bioorg. Med. Chem. Lett., 2014, 24(2), 450-453.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.054] [PMID: 24388809]
[64]
Bouz, G.; Juhás, M.; Niklová, P.; Jand’ourek, O.; Paterová, P.; Janoušek, J. Tumová, L.; Kovalíková, Z.; Kastner, P.; Doležal, M.; Zitko, J. Ureidopyrazine derivatives: Synthesis and biological evaluation as anti-infectives and abiotic elicitors. Molecules, 2017, 22(10), 1797.
[http://dx.doi.org/10.3390/molecules22101797]
[65]
Alea, G.V.; Lagua, F.M.G.; Ajero, M.D.M. Synthesis and characterization of pyrazinamide analogs of acetylsalicylic acid and salicylic acid. Philipp. J. Sci., 2017, 146(4), 457-468.
[66]
Zhou, S.; Yang, S.; Huang, G. Design, synthesis and biological activity of pyrazinamide derivatives for anti-Mycobacterium tuberculosis. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 1183-1186.
[http://dx.doi.org/10.1080/14756366.2017.1367774] [PMID: 28870094]
[67]
Al-Tamimi, A.M.S.; Mary, Y.S.; Miniyar, P.B.; Al-Wahaibi, L.H.; El-Emam, A.A.; Armaković, S.; Armaković, S.J. Synthesis, spectroscopic analyses, chemical reactivity and molecular docking study and anti-tubercular activity of pyrazine and condensed oxadiazole derivatives. J. Mol. Struct., 2018, 1164, 459-469.
[http://dx.doi.org/10.1016/j.molstruc.2018.03.085]
[68]
Laborde, J.; Deraeve, C.; de Mesquita Vieira, F.G.; Sournia-Saquet, A.; Rechignat, L.; Villela, A.D.; Abbadi, B.L.; Macchi, F.S.; Pissinate, K.; Bizarro, C.V.; Machado, P.; Basso, L.A.; Pratviel, G.; de França Lopes, L.G.; Sousa, E.H.S.; Bernardes-Génisson, V. Synthesis and mechanistic investigation of iron(II) complexes of isoniazid and derivatives as a redox-mediated activation strategy for anti-tuberculosis therapy. J. Inorg. Biochem., 2018, 179, 71-81.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.11.013] [PMID: 29175704]
[69]
Reddyrajula, R.; Dalimba, U. The bioisosteric modification of pyrazinamide derivatives led to potent antitubercular agents: Synthesis via click approach and molecular docking of pyrazine-1,2,3-triazoles. Bioorg. Med. Chem. Lett., 2020, 30(2), 126846.
[http://dx.doi.org/10.1016/j.bmcl.2019.126846] [PMID: 31839540]
[70]
Zitko, J.; Jand’ourek, O.; Paterová, P.; Navrátilová, L.; Kuneš, J.; Vinšová, J.; Doležal, M. Design, synthesis and antimycobacterial activity of hybrid molecules combining pyrazinamide with a 4-phenylthiazol-2-amine scaffold. MedChemComm, 2018, 9(4), 685-696.
[http://dx.doi.org/10.1039/C8MD00056E] [PMID: 30108959]
[71]
Portaels, F.; Pattyn, S.R. Growth of mycobacteria in relation to the pH of the medium. Ann. Microbiol. (Paris), 1982, 133(2), 213-221.
[PMID: 7149523]
[72]
Šula, L.; Sundaresan, T.K. WHO co-operative studies on a simple culture technique for the isolation of mycobacteria: 2. Comparison of the efficacy of lyophilized liquid medium with that of Löwenstein-Jensen (LJ) medium. Bull. World Health Organ., 1963, 29(5), 607-625.
[PMID: 14102037]
[73]
Šula, L. WHO Co-operative studies on a simple culture technique for the isolation of mycobacteria: 1. Preparation, lyophilization and reconstitution of a simple semi-synthetic concentrated liquid medium; culture technique; growth pattern of different mycobacteria. Bull. World Health Organ., 1963, 29(5), 589-606.
[PMID: 14102036]
[74]
Alegre, O.S. Comparative study of the possibillities Löwentein-Jensen medium and reconstituted lyophilized Sula medium for isolation of Mycobacterium tuberculosis. Bol. Oficina Sanit. Panam., 1967, 63(1), 13-16.
[PMID: 4235866]
[75]
Kumar, D. Beena; Khare, G.; Kidwai, S.; Tyagi, A.K.; Singh, R.; Rawat, D.S. Synthesis of novel 1,2,3-triazole derivatives of isoniazid and their in vitro and in vivo antimycobacterial activity evaluation. Eur. J. Med. Chem., 2014, 81, 301-313.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.005] [PMID: 24852277]
[76]
Hu, Y.Q.; Zhang, S.; Zhao, F.; Gao, C.; Feng, L.S.; Lv, Z.S.; Xu, Z.; Wu, X. Isoniazid derivatives and their anti-tubercular activity. Eur. J. Med. Chem., 2017, 133, 255-267.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.002] [PMID: 28390957]
[77]
Zulqurnain, M.; Fahmi, M.R.G.; Fadlan, A.; Santoso, M. Synthesis and molecular docking study of pyrazine-2-carboxylic acid derivatives IOP Conf. Ser. Mater. Sci. Eng., 2020, 833(1), p. 012057.
[78]
Hassan, N.W.; Saudi, M.N.; Abdel-Ghany, Y.S.; Ismail, A.; Elzahhar, P.A.; Sriram, D.; Nassra, R.; Abdel-Aziz, M.M.; El-Hawash, S.A. Novel pyrazine based anti-tubercular agents: Design, synthesis, biological evaluation and in silico studies. Bioorg. Chem., 2020, 96, 103610.
[http://dx.doi.org/10.1016/j.bioorg.2020.103610] [PMID: 32028062]
[79]
Palomino, J.C.; Martin, A.; Camacho, M.; Guerra, H.; Swings, J.; Portaels, F. Resazurin microtiter assay plate: Simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2002, 46(8), 2720-2722.
[http://dx.doi.org/10.1128/AAC.46.8.2720-2722.2002] [PMID: 12121966]
[80]
Wati, F.A.; Adyarini, P.U.; Fatmawati, S.; Santoso, M. Synthesis of pyrazinamide analogues and their antitubercular bioactivity. Med. Chem. Res., 2020, 29(12), 2157-2163.
[http://dx.doi.org/10.1007/s00044-020-02626-0]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy