Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Topical Mosquito Repellent Formulations for Enhanced Repellency Time and Reduced Toxicity

Author(s): Celio Takashi Higuchi, Newton Andreo Filho, Patricia Santos Lopes, Jeffrey Ernest Grice and Vânia Rodrigues Leite-Silva*

Volume 20, Issue 9, 2023

Published on: 09 July, 2022

Page: [1275 - 1287] Pages: 13

DOI: 10.2174/1567201819666220818162455

Price: $65

Abstract

Mosquito-borne diseases such as dengue, malaria, yellow fever, chikungunya and Zika virus affect millions of people worldwide each year. Vector control and personal protection are very important to minimize the spread of diseases, and the use of repellent is an economic practice to prevent them. The application of repellent, which acts on the skin to form a vapor layer with a repellent odor to mosquitos, is recommended as an economic prevention and practice. The natural botanical product Citronella is an effective mosquito repellent due to the high concentrations of active chemical constituents present, notably terpenic alcohols. However, citronella tends to evaporate quickly from the skin surface, resulting in a rapid loss of activity. Strategies to increase repellency time, while at the same time minimizing toxicity, are major focuses of research and development in natural repellent products. Here we highlight the role of extended-release systems (ERS) of citronella oil in this approach.

Keywords: Citronella oil, repellent, extended-release system, safety and efficacy, mosquito, dengue.

Graphical Abstract

[1]
Tavares, M.; da Silva, M.R.M.; de Oliveira de Siqueira, L.B.; Rodrigues, R.A.S.; Bodjolle-d’Almeida, L.; Dos Santos, E.P.; Ricci-Júnior, E. Trends in insect repellent formulations: A review. Int. J. Pharm., 2018, 539(1-2), 190-209.
[http://dx.doi.org/10.1016/j.ijpharm.2018.01.046] [PMID: 29410208]
[2]
Katritzky, A.R.; Wang, Z.; Slavov, S.; Tsikolia, M.; Dobchev, D.; Akhmedov, N.G.; Hall, C.D.; Bernier, U.R.; Clark, G.G.; Linthicum, K.J. Synthesis and bioassay of improved mosquito repellents predicted from chemical structure. Proc. Natl. Acad. Sci. USA, 2008, 105(21), 7359-7364.
[http://dx.doi.org/10.1073/pnas.0800571105] [PMID: 18508970]
[3]
Govindarajan, M.; Sivakumar, R. Repellent properties of Cardiospermum halicacabum Linn. (Family: Sapindaceae) plant leaf extracts against three important vector mosquitoes. Asian Pac. J. Trop. Biomed., 2012, 2(8), 602-607.
[http://dx.doi.org/10.1016/S2221-1691(12)60105-1] [PMID: 23569979]
[4]
Islam, J.; Zaman, K.; Tyagi, V.; Duarah, S.; Dhiman, S.; Chattopadhyay, P. Protection against mosquito vectors Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus using a novel insect repellent, ethyl anthranilate. Acta Trop., 2017, 174, 56-63.
[http://dx.doi.org/10.1016/j.actatropica.2017.06.024] [PMID: 28666890]
[5]
Brown, M.; Hebert, A.A. Insect repellents: An overview. J. Am. Acad. Dermatol., 1997, 36(2 Pt 1), 243-249.
[http://dx.doi.org/10.1016/S0190-9622(97)70289-5] [PMID: 9039177]
[6]
Paumgartten, P.; Delgado, P. Mosquito repellents, effectiveness in preventing diseases and safety during pregnancy. Rev Visa em Debate, 2016, 4, 97-104.
[7]
Rehman, J.U.; Ali, A.; Khan, I.A. Plant based products: Use and development as repellents against mosquitoes: A review. Fitoterapia, 2014, 95, 65-74.
[http://dx.doi.org/10.1016/j.fitote.2014.03.002] [PMID: 24631763]
[8]
Gershenzon, J.; Dudareva, N. The function of terpene natural products in the natural world. Nat. Chem. Biol., 2007, 3(7), 408-414.
[http://dx.doi.org/10.1038/nchembio.2007.5] [PMID: 17576428]
[9]
Maia, M.F.; Moore, S.J. Plant-based insect repellents: A review of their efficacy, development and testing. Malar. J., 2011, 10(Suppl. 1), S11.
[http://dx.doi.org/10.1186/1475-2875-10-S1-S11] [PMID: 21411012]
[10]
Benelli, G.; Pavela, R.; Giordani, C.; Casettari, L.; Curzi, G.; Cappellacci, L.; Petrelli, R.; Maggi, F. Acute and sub-lethal toxicity of eight essential oils of commercial interest against the filariasis mosquito Culex quinquefasciatus and the housefly Musca domestica. Ind. Crops Prod., 2018, 112, 668-680.
[http://dx.doi.org/10.1016/j.indcrop.2017.12.062]
[11]
Benelli, G.; Pavela, R.; Ricciutelli, M.; Lupidi, G.; Maggi, F. Efficacy of the volatile oil from water celery (Helosciadium nodiflorum, Apiaceae) against the filariasis vector Culex quinquefasciatus, the housefly Musca domestica, and the African cotton leafworm Spodoptera littoralis. Chem. Biodivers., 2017, 14(12), 1-9.
[http://dx.doi.org/10.1002/cbdv.201700376] [PMID: 28862791]
[12]
Sinthusiri, J.; Soonwera, M. Efficacy of herbal essential oils as insecticides against the housefly, Musca domestica L. Southeast Asian J. Trop. Med. Public Health, 2013, 44(2), 188-196.
[PMID: 23691628]
[13]
Das, N.G.; Baruah, I.; Talukdar, P.K.; Das, S.C. Evaluation of botanicals as repellents against mosquitoes. J. Vector Borne Dis., 2003, 40(1-2), 49-53.
[PMID: 15119071]
[14]
Yadav, N.P.; Rai, V.K.; Mishra, N.; Sinha, P.; Bawankule, D.U.; Pal, A.; Tripathi, A.K.; Chanotiya, C.S. A novel approach for development and characterization of effective mosquito repellent cream formulation containing citronella oil. BioMed Res. Int., 2014, 2014, 786084.
[http://dx.doi.org/10.1155/2014/786084] [PMID: 25379509]
[15]
Iliou, K.; Kikionis, S.; Petrakis, P.V.; Ioannou, E.; Roussis, V. Citronella oil-loaded electrospun micro/nanofibrous matrices as sustained repellency systems for the Asian tiger mosquito Aedes albopictus. Pest Manag. Sci., 2019, 75(8), 2142-2147.
[http://dx.doi.org/10.1002/ps.5334] [PMID: 30632273]
[16]
Tongnuanchan, P.; Benjakul, S. Essential oils: Extraction, bioactivities, and their uses for food preservation. J. Food Sci., 2014, 79(7), R1231-R1249.
[http://dx.doi.org/10.1111/1750-3841.12492] [PMID: 24888440]
[17]
Gillij, Y.G.; Gleiser, R.M.; Zygadlo, J.A. Mosquito repellent activity of essential oils of aromatic plants growing in Argentina. Bioresour. Technol., 2008, 99(7), 2507-2515.
[http://dx.doi.org/10.1016/j.biortech.2007.04.066] [PMID: 17583499]
[18]
Briassoulis, G.; Narlioglou, M.; Hatzis, T. Toxic encephalopathy associated with use of DEET insect repellents: A case analysis of its toxicity in children. Hum. Exp. Toxicol., 2001, 20(1), 8-14.
[http://dx.doi.org/10.1191/096032701676731093] [PMID: 11339626]
[19]
da Silva, M.R.M.; Ricci-Júnior, E. An approach to natural insect repellent formulations: From basic research to technological development. Acta Trop., 2020, 212, 105419.
[http://dx.doi.org/10.1016/j.actatropica.2020.105419] [PMID: 32119826]
[20]
Songkro, S.; Hayook, N.; Jaisawang, J.; Maneenuan, D.; Chuchome, T.; Kaewnopparat, N. Investigation of inclusion complexes of citronella oil, citronellal and citronellol with b-cyclodextrin for mosquito repellent. J. Incl. Phenom. Macrocycl. Chem., 2012, 72, 339-355.
[http://dx.doi.org/10.1007/s10847-011-9985-7]
[21]
Nerio, L.S.; Olivero-Verbel, J.; Stashenko, E. Repellent activity of essential oils: A review. Bioresour. Technol., 2010, 101(1), 372-378.
[http://dx.doi.org/10.1016/j.biortech.2009.07.048] [PMID: 19729299]
[22]
Songkro, S.; Jenboonlap, M.; Boonprasertpon, M.; Maneenuan, D.; Bouking, K.; Kaewnopparat, N. Effects of glucam P-20, vanillin, and fixolide on mosquito repellency of citronella oil lotions. J. Med. Entomol., 2012, 49(3), 672-677.
[http://dx.doi.org/10.1603/ME11141] [PMID: 22679876]
[23]
Pichersky, E.; Gershenzon, J. The formation and function of plant volatiles: Perfumes for pollinator attraction and defense. Curr. Opin. Plant Biol., 2002, 5(3), 237-243.
[http://dx.doi.org/10.1016/S1369-5266(02)00251-0] [PMID: 11960742]
[24]
Gatehouse, J.A. Plant resistance towards insect herbivores: A dynamic interaction. New Phytol., 2002, 156(2), 145-169.
[http://dx.doi.org/10.1046/j.1469-8137.2002.00519.x] [PMID: 33873279]
[25]
Carey, A.F.; Wang, G.; Su, C.Y.; Zwiebel, L.J.; Carlson, J.R. Odorant reception in the malaria mosquito Anopheles gambiae. Nature, 2010, 464(7285), 66-71.
[http://dx.doi.org/10.1038/nature08834] [PMID: 20130575]
[26]
Logan, J.G.; Stanczyk, N.M.; Hassanali, A.; Kemei, J.; Santana, A.E.G.; Ribeiro, K.A.L.; Pickett, J.A.; Mordue Luntz, A.J. Arm-in-cage testing of natural human-derived mosquito repellents. Malar. J., 2010, 9, 239.
[http://dx.doi.org/10.1186/1475-2875-9-239] [PMID: 20727149]
[27]
Lima, J.B.; Da-Cunha, M.P.; Da Silva, R.C.; Galardo, A.K. Soares, Sda.S.; Braga, I.A.; Ramos, R.P.; Valle, D. Resistance of Aedes aegypti to organophosphates in several municipalities in the State of Rio de Janeiro and Espírito Santo, Brazil. Am. J. Trop. Med. Hyg., 2003, 68(3), 329-333.
[http://dx.doi.org/10.4269/ajtmh.2003.68.329] [PMID: 12685640]
[28]
Macoris, Mde.L.; Andrighetti, M.T.M.; Takaku, L.; Glasser, C.M.; Garbeloto, V.C.; Bracco, J.E. Resistance of Aedes aegypti from the state of São Paulo, Brazil, to organophosphates insecticides. Mem. Inst. Oswaldo Cruz, 2003, 98(5), 703-708.
[http://dx.doi.org/10.1590/S0074-02762003000500020] [PMID: 12973541]
[29]
Chiasson, H.; Vincent, C.; Bostanian, N.J. Insecticidal properties of a Chenopodium-based botanical. J. Econ. Entomol., 2004, 97(4), 1378-1383.
[http://dx.doi.org/10.1093/jee/97.4.1378] [PMID: 15384351]
[30]
Khanuja, S.P.S.; Shasany, A.K.; Pawar, A.; Lal, R.K.; Darokar, M.P.; Naqvi, A.A.; Rajkumar, S.; Sundaresan, V.; Lal, N.; Kumar, S. Essential oil constituents and RAPD markers to establish species relationship in Cymbopogon Spreng. (Poaceae). Biochem. Syst. Ecol., 2005, 33, 171-186.
[http://dx.doi.org/10.1016/j.bse.2004.06.011]
[31]
Avoseh, O.; Oyedeji, O.; Rungqu, P.; Nkeh-Chungag, B.; Oyedeji, A. Cymbopogon species; ethnopharmacology, phytochemistry and the pharmacological importance. Molecules, 2015, 20(5), 7438-7453.
[http://dx.doi.org/10.3390/molecules20057438] [PMID: 25915460]
[32]
Gallardo, A.; Picollo, M.I.; Mougabure-Cueto, G. Lethal activity of individual and mixed monoterpenoids of geranium essential oil on Musca domestica. Parasitol. Res., 2015, 114(3), 1229-1232.
[http://dx.doi.org/10.1007/s00436-015-4315-4] [PMID: 25604671]
[33]
Sessou, P.; Farougou, S.; Kaneho, S.; Djenontin, S.; Alitonou, G.A.; Azokpota, P.; Youssao, I. Sohounhloué, D Bioefficacy of Cymbopogon citratus essential oil against foodborne pathogens in culture medium and in traditional cheese wagashi produced in Benin. Int. Res. J. Microbiol., 2012, 3, 406-415.
[34]
Mahboubi, M.; Kazempour, N. Biochemical activities of iranian Cymbopogon olivieri (Boiss) Bor. essential oil. Indian J. Pharm. Sci., 2012, 74(4), 356-360.
[http://dx.doi.org/10.4103/0250-474X.107071] [PMID: 23626392]
[35]
Da Costa, G.F.F. Cymbopogon citratus and its polyphenols aspotential phytotherapeutic products: An in vivo approach. Thesis Dissertation. University of Coimbra, Coimbra, Portugal, 2015, 318.
[36]
Francisco, V.; Figueirinha, A.; Neves, B.M.; García-Rodríguez, C.; Lopes, M.C.; Cruz, M.T.; Batista, M.T. Cymbopogon citratus as source of new and safe anti-inflammatory drugs: Bio-guided assay using lipopolysaccharide-stimulated macrophages. J. Ethnopharmacol., 2011, 133(2), 818-827.
[http://dx.doi.org/10.1016/j.jep.2010.11.018] [PMID: 21075192]
[37]
Pinto, Z.T.; Sánchez, F.F.; dos Santos, A.R.; Amaral, A.C.F.; Ferreira, J.L.P.; Escalona-Arranz, J.C.; Queiroz, M.M de C. Chemical composition and insecticidal activity of Cymbopogon citratus essential oil from Cuba and Brazil against housefly. Rev. Bras. Parasitol. Vet., 2015, 24, 36-44.
[http://dx.doi.org/10.1590/S1984-29612015006] [PMID: 25909251]
[38]
Bayala, B.; Bassole, I.H.N.; Maqdasy, S.; Baron, S.; Simpore, J.; Lobaccaro, J.A. Cymbopogon citratus and Cymbopogon giganteus essential oils have cytotoxic effects on tumor cell cultures. Identification of citral as a new putative anti-proliferative molecule. Biochimie, 2018, 153, 162-170.
[http://dx.doi.org/10.1016/j.biochi.2018.02.013] [PMID: 29501481]
[39]
Azad, S. Analysis on the antimicrobial and repellent activities of Cymbopogon martinii essential oil. Biosci. Biotechnol. Res. Commun., 2021, 14, 905-915.
[http://dx.doi.org/10.21786/bbrc/14.2.70]
[40]
Tyagi, B.K.; Shahi, A.K.; Kaul, B.L. Evaluation of repellent activities of Cymbopogon essential oils against mosquito vectors of Malaria, Filariasis and Dengue Fever in India. Phytomedicine, 1998, 5(4), 324-329.
[http://dx.doi.org/10.1016/S0944-7113(98)80073-1] [PMID: 23195906]
[41]
Raina, V.K.; Srivastava, S.K.; Aggarwal, K.K.; Syamasundar, K.V.; Khanuja, S.P.S. Essential oil composition of Cymbopogon martinii from different places in India. Flavour Fragrance J., 2003, 18, 312-315.
[http://dx.doi.org/10.1002/ffj.1222]
[42]
Jummes, B.; Sganzerla, W.G.; da Rosa, C.G.; Noronha, C.M.; Nunes, M.R.; Bertoldi, F.C.; Barreto, P.L.M. Antioxidant and antimicrobial poly-ε-caprolactone nanoparticles loaded with Cymbopogon martinii essential oil. Biocatal. Agric. Biotechnol., 2020, 23, 101499.
[http://dx.doi.org/10.1016/j.bcab.2020.101499]
[43]
Mohammad Azmin, S.N.H.; Abdul Halim, A.S.; Mat Nor, M.S. Physicochemical analysis of natural herbal medicated ointment enriched with Cymbopogon nardus and virgin coconut oil. IOP Conf. Ser. Earth Environ. Sci., 2021, 765, 012040.
[http://dx.doi.org/10.1088/1755-1315/765/1/012040]
[44]
Ong, A.S.H. J. Sci. Technol. Tropics, 2009, 5, 3.
[45]
De Silva, G.B.V.U.; Dharmadasa, R.M.; Senanayake, R.A.S.P.; Lintha, A. Selection of superior quality Cymbopogon nardus (L.) Rendle (Poaceae) populations by means of quantity and quality of essential oils. World J. Agric. Res., 2021, 9, 1-8.
[46]
Wany, A.; Jha, S.; Nigam, V.K.; Pandey, D.M. Chemical analysis and therapeutic uses of citronella oil from Cymnopogon winterianus: A short review. Int. J. Adv. Res. (Indore), 2013, 1, 504-521.
[47]
Wany, A.; Kumar, A.; Nallapeta, S.; Jha, S.; Nigam, V.K.; Pandey, D.M. Extraction and characterization of essential oil components based on geraniol and citronellol from Java citronella (Cymbopogon winterianus Jowitt). Plant Growth Regul., 2014, 73, 133-145.
[http://dx.doi.org/10.1007/s10725-013-9875-7]
[48]
Covell, G. Anti-Mosquito Measures with Special Reference to India; Health Bull: Raleigh, 1940.
[49]
Division, P.; Andersen, J. United States environmental protection agency. Proc. Water Environ. Fed., 2012, 2005, 726-737.
[50]
Choi, S.W.; Son, B.W.; Son, Y.S.; Park, Y.I.; Lee, S.K.; Chung, M.H. The wound-healing effect of a glycoprotein fraction isolated from Aloe vera. Br. J. Dermatol., 2001, 145(4), 535-545.
[http://dx.doi.org/10.1046/j.1365-2133.2001.04410.x] [PMID: 11703278]
[51]
Júnior, L.J.Q.; Santos, M.R.V.D.S.; Almeida, J.R.G.D.S.; Ribeiro, L.A.D.A.; Nunes, X.P.; Quintans, J.D.S.S. A systematic review on biological properties of Citronella java essential oil. Recent Prog. Med. Plants, 2015, 36, 361-387.
[52]
Trongtokit, Y.; Rongsriyam, Y.; Komalamisra, N.; Apiwathnasorn, C. Comparative repellency of 38 essential oils against mosquito bites. Phytother. Res., 2005, 19(4), 303-309.
[http://dx.doi.org/10.1002/ptr.1637] [PMID: 16041723]
[53]
Goodyer, L.I.; Croft, A.M.; Frances, S.P.; Hill, N.; Moore, S.J.; Onyango, S.P.; Debboun, M. Expert review of the evidence base for arthropod bite avoidance. J. Travel Med., 2010, 17(3), 182-192.
[http://dx.doi.org/10.1111/j.1708-8305.2010.00402.x] [PMID: 20536888]
[54]
Nuchuchua, O.; Sakulku, U.; Uawongyart, N.; Puttipipatkhachorn, S.; Soottitantawat, A.; Ruktanonchai, U. In vitro characterization and mosquito (Aedes aegypti) repellent activity of essential-oils-loaded nanoemulsions. AAPS PharmSciTech, 2009, 10(4), 1234-1242.
[http://dx.doi.org/10.1208/s12249-009-9323-1] [PMID: 19862624]
[55]
Rubiolo, P.; Sgorbini, B.; Liberto, E.; Cordero, C.; Bicchi, C. Essential oils and volatiles: Sample preparation and analysis. A review. Flavour Fragrance J., 2010, 25, 282-290.
[http://dx.doi.org/10.1002/ffj.1984]
[56]
Hsu, W.S.; Yen, J.H.; Wang, Y.S. Formulas of components of citronella oil against mosquitoes (Aedes aegypti). J. Environ. Sci. Health B, 2013, 48(11), 1014-1019.
[http://dx.doi.org/10.1080/03601234.2013.816613] [PMID: 23998314]
[57]
Solomon, B.; Sahle, F.F.; Gebre-Mariam, T.; Asres, K.; Neubert, R.H.H. Microencapsulation of citronella oil for mosquito-repellent application: Formulation and in vitro permeation studies. Eur. J. Pharm. Biopharm., 2012, 80(1), 61-66.
[http://dx.doi.org/10.1016/j.ejpb.2011.08.003] [PMID: 21924356]
[58]
Makhaik, M.; Naik, S.N.; Tewary, D.K. Evaluation of anti-mosquito properties of essential oils. J. Sci. Ind. Res. (India), 2005, 64, 129-133.
[59]
Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol., 2000, 88(2), 308-316.
[http://dx.doi.org/10.1046/j.1365-2672.2000.00969.x] [PMID: 10736000]
[60]
Chambers, J.E.; Carr, R.L. Biochemical mechanisms contributing to species differences in insecticidal toxicity. Toxicology, 1995, 105(2-3), 291-304.
[http://dx.doi.org/10.1016/0300-483X(95)03225-5] [PMID: 8571366]
[61]
Perry, T.; Batterham, P.; Daborn, P.J. The biology of insecticidal activity and resistance. Insect Biochem. Mol. Biol., 2011, 41(7), 411-422.
[http://dx.doi.org/10.1016/j.ibmb.2011.03.003] [PMID: 21426939]
[62]
Eldefrawi, A.T.; Mansour, N.A.; Eldefrawi, M.E. Insecticides affecting acetylcholine receptor interactions. Pharmacol. Ther., 1982, 16(1), 45-65.
[http://dx.doi.org/10.1016/0163-7258(82)90031-6] [PMID: 6752971]
[63]
Katz, T.M.; Miller, J.H.; Hebert, A.A. Insect repellents: Historical perspectives and new developments. J. Am. Acad. Dermatol., 2008, 58(5), 865-871.
[http://dx.doi.org/10.1016/j.jaad.2007.10.005] [PMID: 18272250]
[64]
Chemicalbook. 2021. Available from: https://www.chemicalbook.com/
[65]
Padalia, R.C.; Verma, R.S.; Chanotiya, C.S.; Yadav, A. Chemical fingerprinting of the fragrant volatiles of nineteen Indian cultivars of Cymbopogon spreng. (Poaceae). Rec. Nat. Prod., 2011, 5, 290-299.
[66]
Park, B.S.; Choi, W.S.; Kim, J.H.; Kim, K.H.; Lee, S.E. Monoterpenes from thyme (Thymus vulgaris) as potential mosquito repellents. J. Am. Mosq. Control Assoc., 2005, 21(1), 80-83.
[http://dx.doi.org/10.2987/8756-971X(2005)21[80:MFTTVA]2.0.CO;2] [PMID: 15825766]
[67]
Ashitani, T.; Garboui, S.S.; Schubert, F.; Vongsombath, C.; Liblikas, I.; Pålsson, K.; Borg-Karlson, A.K. Activity studies of sesquiterpene oxides and sulfides from the plant Hyptis suaveolens (Lamiaceae) and its repellency on Ixodes ricinus (Acari: Ixodidae). Exp. Appl. Acarol., 2015, 67(4), 595-606.
[http://dx.doi.org/10.1007/s10493-015-9965-5] [PMID: 26385208]
[68]
da Silva, R.C.S.; Milet-Pinheiro, P.; Bezerra da Silva, P.C.; da Silva, A.G.; da Silva, M.V.; Navarro, D.M.; da Silva, N.H. (E)-Caryophyllene and α-humulene: Aedes aegypti oviposition deterrents elucidated by gas chromatography-electrophysiological assay of Commiphora leptophloeos leaf oil. PLoS One, 2015, 10(12), e0144586.
[http://dx.doi.org/10.1371/journal.pone.0144586] [PMID: 26650757]
[69]
Akhtar, Y.; Pages, E.; Stevens, A.; Bradbury, R.; da Camara, C.A.G.; Isman, M.B. Effect of chemical complexity of essential oils on feeding deterrence in larvae of the cabbage looper. Physiol. Entomol., 2012, 37, 81-91.
[http://dx.doi.org/10.1111/j.1365-3032.2011.00824.x]
[70]
Melo, M.S.; Guimarães, A.G.; Santana, M.F.; Siqueira, R.S. De Lima, Ado.C.; Dias, A.S.; Santos, M.R.; Onofre, A.S.; Quintans, J.S.; De Sousa, D.P.; Almeida, J.R.; Estevam, C.S.; Araujo, B.S.; Quintans-Júnior, L.J. Anti-inflammatory and redox-protective activities of citronellal. Biol. Res., 2011, 44(4), 363-368.
[http://dx.doi.org/10.4067/S0716-97602011000400008] [PMID: 22446600]
[71]
Taylor, W.G.; Schreck, C.E. Correction to: “chiral-phase capillary gas chromatography and mosquito repellent activity of some oxazolidine derivatives of (+)- and (-)-Citronellal. J. Pharm. Sci., 1985, 74, 1344.
[http://dx.doi.org/10.1016/S0022-3549(15)50922-2]
[72]
Setiawati, W.; Murtiningsih, R.; Hasyim, A. Laboratory and field evaluation of essential oils from Cymbopogon nardus as oviposition deterrent and ovicidal activities against Helicoverpa armigera Hubner on chili pepper. Indones. J. Agric. Sci., 2011, 12, 9.
[http://dx.doi.org/10.21082/ijas.v12n1.2011.p9-16]
[73]
Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils--a review. Food Chem. Toxicol., 2008, 46(2), 446-475.
[http://dx.doi.org/10.1016/j.fct.2007.09.106] [PMID: 17996351]
[74]
Avato, P.; Fortunato, I.M.; Ruta, C.; D’Elia, R. Glandular hairs and essential oils in micropropagated plants of Salvia officinalis L. Plant Sci., 2005, 169, 29-36.
[http://dx.doi.org/10.1016/j.plantsci.2005.02.004]
[75]
Mahmoud, B.M.; Mahmoud, R.; El-Baky, A.; Abo Bakr, F.; Ahmed, G.F.M.G. Antibacterial activity of essential oils and in combination with some standard antimicrobials against different pathogens isolated from some clinical specimens. Am. J. Microbiol. Res., 2016, 4, 16-25.
[76]
Lis-Balchin, M. Aromatherapy Science: A Guide for Healthcare Professionals; London, 2006.
[77]
Tisserand, R.; Balacs, T. Essential Oil Safety: A Guide for Health Care Professionals; London, 1995.
[78]
Rodríguez, J.; Martín, M.J.; Ruiz, M.A.; Clares, B. Current encapsulation strategies for bioactive oils: From alimentary to pharmaceutical perspectives. Food Res. Int., 2016, 83, 41-59.
[http://dx.doi.org/10.1016/j.foodres.2016.01.032]
[79]
Hsieh, W.C.; Chang, C.P.; Gao, Y.L. Controlled release properties of Chitosan encapsulated volatile Citronella oil microcapsules by thermal treatments. Colloids Surf. B Biointerfaces, 2006, 53(2), 209-214.
[http://dx.doi.org/10.1016/j.colsurfb.2006.09.008] [PMID: 17049821]
[80]
Ribeiro, A.D.; Marques, J.; Forte, M. Microencapsulation of citronella oil for solar-activated controlled release as an insect repellent. Appl. Mater. Today, 2016, 5, 90-97.
[http://dx.doi.org/10.1016/j.apmt.2016.09.003]
[81]
Songkro, S.; Yapong, P.; Puechpan, P.; Maneenuan, D.; Boonme, P. Microencapsulation of citronella oil for mosquito repellent: Preparation and evaluation of release characteristics. Songklanakarin J. Sci. Technol., 2018, 40, 767-775.
[82]
Agrawal, N.; Maddikeri, G.L.; Pandit, A.B. Sustained release formulations of citronella oil nanoemulsion using cavitational techniques. Ultrason. Sonochem., 2017, 36, 367-374.
[http://dx.doi.org/10.1016/j.ultsonch.2016.11.037] [PMID: 28069223]
[83]
Xiao, Z.; Tian, T.; Hu, J.; Wang, M.; Zhou, R. Preparation and characterization of chitosan nanoparticles as the delivery system for tuberose fragrance. Flavour Fragrance J., 2014, 29, 22-34.
[http://dx.doi.org/10.1002/ffj.3174]
[84]
Ichiura, H. Low temperature-dependence of N,N-dimethyl-3-methylbenzamide (DEET) release from a functional paper containing paraffin-DEET composites prepared using interfacial polymerization. Chem. Eng. J., 2014, 245, 17-23.
[http://dx.doi.org/10.1016/j.cej.2014.02.019]
[85]
Li, Y.; Huang, Y.Q.; Fan, H.F.; Xia, Q. Heat-resistant sustained-release fragrance microcapsules. J. Appl. Polym. Sci., 2014, 131, 1-7.
[86]
N’guessan, R.; Knols, B.G.J.; Pennetier, C.; Rowland, M. DEET microencapsulation: A slow-release formulation enhancing the residual efficacy of bed nets against malaria vectors. Trans. R. Soc. Trop. Med. Hyg., 2008, 102(3), 259-262.
[http://dx.doi.org/10.1016/j.trstmh.2007.10.012] [PMID: 18082862]
[87]
de Campos, V.E.B.; Ricci-Júnior, E.; Mansur, C.R.E. Nanoemulsions as delivery systems for lipophilic drugs. J. Nanosci. Nanotechnol., 2012, 12(3), 2881-2890.
[http://dx.doi.org/10.1166/jnn.2012.5690] [PMID: 22755138]
[88]
Scalia, S.; Tursilli, R.; Bianchi, A.; Nostro, P.L.; Bocci, E.; Ridi, F.; Baglioni, P. Incorporation of the sunscreen agent, octyl methoxycinnamate in a cellulosic fabric grafted with β-cyclodextrin. Int. J. Pharm., 2006, 308(1-2), 155-159.
[http://dx.doi.org/10.1016/j.ijpharm.2005.11.007] [PMID: 16359835]
[89]
Cal, K.; Centkowska, K. Use of cyclodextrins in topical formulations: Practical aspects. Eur. J. Pharm. Biopharm., 2008, 68(3), 467-478.
[http://dx.doi.org/10.1016/j.ejpb.2007.08.002] [PMID: 17826046]
[90]
Sritabutra, D.; Soonwera, M. Repellent activity of herbal essential oils against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say.). Asian Pac. J. Trop. Dis., 2013, 3, 271-276.
[http://dx.doi.org/10.1016/S2222-1808(13)60069-9]
[91]
Sritabutra, D.; Soonwera, M.; Waltanachanobon, S.; Poungjai, S. Evaluation of herbal essential oil as repellents against Aedes aegypti (L.) and Anopheles dirus Peyton & Harrion. Asian Pac. J. Trop. Biomed., 2011, 1, S124-S128.
[http://dx.doi.org/10.1016/S2221-1691(11)60138-X]
[92]
Tawatsin, A.; Wratten, S.D.; Scott, R.R.; Thavara, U.; Techadamrongsin, Y. Repellency of volatile oils from plants against three mosquito vectors. J. Vector Ecol., 2001, 26(1), 76-82.
[PMID: 11469188]
[93]
Davis, E.E.; Bowen, M.F. Sensory physiological basis for attraction in mosquitoes. J. Am. Mosq. Control Assoc., 1994, 10(2 Pt 2), 316-325.
[PMID: 8965085]
[94]
Seldner, A. Polyol fragrance fixatives. U.S. Patent 4324703, April 13;1982
[95]
Perez, E.P. Method for producing calcium soaps for animal feed U.S. Patent 20090220638A1, 2009 September 3;
[96]
Skinner, W.A.; Tong, H.C.; Maibach, H.I.; Skidmore, D. Human skin-surface lipid fatty acids--mosquito repellents. Experientia, 1970, 26(7), 728-730.
[http://dx.doi.org/10.1007/BF02232510] [PMID: 4393452]
[97]
Wannaruemon, S.; Jimtaisong, A.; Rachtananpun, P. Sodium carboxymethyl chitosan as a fixative for eau de cologne. Trop. J. Pharm. Res., 2013, 12, 45-49.
[http://dx.doi.org/10.4314/tjpr.v12i1.8]
[98]
Environmental Protection Agency (EPA). OPPTS 810.3700. Insect Repellents to be applied to human skin. EPA product Performance test Guidelines, 2010. Available from: https://nepis.epa.gov/Exe/tiff2png.cgi/P100LBO3.PNG?-r+75+-g+7+D%3A%5CZYFILES% 5CINDEX%20DATA%5C06THRU10%5CTIFF%5C00001650%5 CP100LBO3.TIF
[99]
WHO. Guidelines for efficacy testing of mosquito repellents for human skin 2009, 1-6. Available from: https://apps.who.int/iris/ handle/10665/70072
[100]
Thakker, K.D.; Chern, W.H. Development and validation of in vitro release tests for semisolid dosage forms-case study. Dissolut. Technol., 2003, 10, 10-15.
[http://dx.doi.org/10.14227/DT100203P10]
[101]
Frum, Y.; Khan, G.M.; Sefcik, J.; Rouse, J.; Eccleston, G.M.; Meidan, V.M. Towards a correlation between drug properties and in vitro transdermal flux variability. Int. J. Pharm., 2007, 336(1), 140-147.
[http://dx.doi.org/10.1016/j.ijpharm.2006.11.049] [PMID: 17182201]
[102]
Pinto, I.C.; Cerqueira-Coutinho, C.S.; Santos, E.P.; Carmo, F.A.; Ricci-Junior, E. Development and characterization of repellent formulations based on nanostructured hydrogels. Drug Dev. Ind. Pharm., 2017, 43(1), 67-73.
[http://dx.doi.org/10.1080/03639045.2016.1220564] [PMID: 27483992]
[103]
Yang, Y.; Manda, P.; Pavurala, N.; Khan, M.A.; Krishnaiah, Y.S.R. Development and validation of in vitro-in vivo correlation (IVIVC) for estradiol transdermal drug delivery systems. J. Control. Release, 2015, 210, 58-66.
[http://dx.doi.org/10.1016/j.jconrel.2015.05.263] [PMID: 25979329]
[104]
Abdayem, R.; Roussel, L.; Zaman, N.; Pirot, F.; Gilbert, E.; Haftek, M. Deleterious effects of skin freezing contribute to variable outcomes of the predictive drug permeation studies using hydrophilic molecules. Exp. Dermatol., 2015, 24(12), 972-974.
[http://dx.doi.org/10.1111/exd.12825] [PMID: 26268618]
[105]
Maji, T.K.; Baruah, I.; Dube, S.; Hussain, M.R. Microencapsulation of Zanthoxylum limonella oil (ZLO) in glutaraldehyde crosslinked gelatin for mosquito repellent application. Bioresour. Technol., 2007, 98(4), 840-844.
[http://dx.doi.org/10.1016/j.biortech.2006.03.005] [PMID: 16697181]
[106]
Kasting, G.B.; Bhatt, V.D.; Speaker, T.J. Microencapsulation decreases the skin absorption of N,N-diethyl-m-toluamide (DEET). Toxicol. In Vitro, 2008, 22(2), 548-552.
[http://dx.doi.org/10.1016/j.tiv.2007.11.003] [PMID: 18093794]
[107]
Aqil, M.; Ahad, A.; Sultana, Y.; Ali, A. Status of terpenes as skin penetration enhancers. Drug Discov. Today, 2007, 12(23-24), 1061-1067.
[http://dx.doi.org/10.1016/j.drudis.2007.09.001] [PMID: 18061886]
[108]
Harrewijn, P.; Minks, A.K.; Mollema, C. Evolution of plant volatile production in insect-plant relationships. Chemoecology, 1994, 5-6, 55-73.
[http://dx.doi.org/10.1007/BF01259434]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy