Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Melianone inhibits Secreted Aspartic Proteases (SAP), a Virulence Factor During Hyphal Formation in Candida albicans

Author(s): Amalanathan Veni, T. Sivaswamy Lokeswari*, Dhanapal Pavithra and Thennavan Sugapriya

Volume 18, Issue 5, 2022

Published on: 27 September, 2022

Page: [327 - 336] Pages: 10

DOI: 10.2174/1573409918666220818120645

Price: $65

conference banner
Abstract

Background & Objective: Candida albicans (C.-P. Robin) Berkhout, the pathogenic yeasts’ ability to transform from yeast to hyphal forms in the bloodstream is essential during systemic infections. Among the several virulence factors studied, secreted aspartic proteinases (SAPs) involved in hyphal penetration are targets of putative hyphal inhibitors. Upregulation of SAP6 gene, (two-to 31- fold high) during budded to hyphal transition and lack of studies on its inhibition, prompted us to investigate this particular protein using in silico tools.

Results: Hyphal inhibition of germinating yeast cells by melianone, a triterpenoid, from Swietenia mahagoni (L.) Jacq. (Meliaceae) was observed at 0.1 μM (IC50). One of the targets of putative hyphal inhibitors, SAP, was assayed and for the first time, 50 % of the biological SAP activity was found to be inhibited by melianone at 0.125 μM. This data on SAP inhibition led us to analyse the 3-dimensional structure for SAP6 protein that was constructed through a combination of homology modelling and ab-initio method (Phyre2) and validated before performing Induced Fit Docking (IFD). Melianone formed H-bond and hydrophobic interactions with the crucial residues (ASP108, TYR160, ALA161, ASP162, ASP294, THR297, ASP379) in the catalytic site of SAP6 with a glide energy (-)54.9327 kcal/mol upon Induced Fit Docking (IFD).

Conclusion: We report here for the first time on the SAP inhibitory ability of melianone at 0.125 uM. Being a small molecular mass inhibitor, binding with high affinity to the S3 pocket sites of SAP proteins provides evidence for pre-clinical testing of such compounds against fungal pathogens. The study is a valuable insight for further research on novel and effective inhibitors targeting SAP.

Keywords: Melianone, swietenia mahagoni, hyphal inhibition, candida albicans, secreted aspartic proteinases SAP, docking, homology modelling.

Next »
Graphical Abstract

[1]
World Health Organization. Regional Office for South-East Asia. Laboratory manual for diagnosis of fungal opportunistic infections in HIV/AIDS patients. In: WHO Regional Office for South-East Asia; , 2009. Available from: https://apps.who.int/iris/handle/10665/205404
[2]
Toenjes, K.A.; Stark, B.C.; Brooks, K.M.; Johnson, D.I. Inhibitors of cellular signalling are cytotoxic or block the budded-to-hyphal transition in the pathogenic yeast Candida albicans. J. Med. Microbiol., 2009, 58(Pt 6), 779-790.
[http://dx.doi.org/10.1099/jmm.0.006841-0] [PMID: 19429755]
[3]
Yang, W.; Chen, X.; Li, Y.; Guo, S.; Wang, Z.; Yu, X. Advances in pharmacological activities of terpenoids. Nat. Prod. Commun., 2020, 15(3), 1-13.
[http://dx.doi.org/10.1177/1934578X20903555]
[4]
Zhang, T.; Zhong, S.; Li, T.; Zhang, J. Saponins as modulators of nuclear receptors. Crit. Rev. Food Sci. Nutr., 2020, 60(1), 94-107.
[http://dx.doi.org/10.1080/10408398.2018.1514580] [PMID: 30582348]
[5]
Raut, J.S.; Shinde, R.B.; Chauhan, N.M.; Karuppayil, S.M. Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by Candida albicans. Biofouling, 2013, 29(1), 87-96.
[http://dx.doi.org/10.1080/08927014.2012.749398] [PMID: 23216018]
[6]
Zore, G.B.; Thakre, A.D.; Jadhav, S.; Karuppayil, S.M. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle. Phytomedicine, 2011, 18(13), 1181-1190.
[http://dx.doi.org/10.1016/j.phymed.2011.03.008] [PMID: 21596542]
[7]
Hsu, C.C.; Lai, W.L.; Chuang, K.C.; Lee, M.H.; Tsai, Y.C. The inhibitory activity of linalool against the filamentous growth and biofilm formation in Candida albicans. Med. Mycol., 2013, 51(5), 473-482.
[http://dx.doi.org/10.3109/13693786.2012.743051] [PMID: 23210679]
[8]
Manoharan, R.K.; Lee, J.H.; Lee, J. Antibiofilm and antihyphal activities of Cedar leaf essential oil, Camphor and Fenchone derivatives against Candida albicans. Front. Microbiol., 2017, 8, 1476.
[http://dx.doi.org/10.3389/fmicb.2017.01476] [PMID: 28824600]
[9]
Laurençon, L.; Sarrazin, E.; Chevalier, M.; Prêcheur, I.; Herbette, G.; Fernandez, X. Triterpenoid saponins from the aerial parts of Solidago virgaurea alpestris with inhibiting activity of Candida albicans yeast-hyphal conversion. Phytochemistry, 2013, 86(2), 103-111.
[http://dx.doi.org/10.1016/j.phytochem.2012.10.004] [PMID: 23137724]
[10]
Yang, L.; Liu, X.; Zhuang, X.; Feng, X.; Zhong, L.; Ma, T. Antifungal effects of saponin extract from rhizomes of Dioscorea panthaica prain et burk against Candida albicans. Evid. Based Complement. Altern. Med., 2018, 2018, 6095307.
[http://dx.doi.org/10.1155/2018/6095307] [PMID: 29853962]
[11]
Li, Y.; Shan, M.; Li, S.; Wang, Y.; Yang, H.; Chen, Y.; Gu, B.; Zhu, Z. Teasaponin suppresses Candida albicans filamentation by reducing the level of intracellular cAMP. Ann. Transl. Med., 2020, 8(5), 175.
[http://dx.doi.org/10.21037/atm.2020.01.124] [PMID: 32309322]
[12]
Govindachari, T.R.; Suresh, G.; Banumathy, B.; Masilamani, S.; Geetha, G.; Kumari, G.N.K. Antifungal activity of some B, D-seco limonoids from two Meliaceous plants. J. Chem. Ecol., 1999, 25(4), 923-933.
[http://dx.doi.org/10.1023/A:1020809204288]
[13]
Sundar, D.S.; Anandan, S.; Namasivayam, S.K.R. Antifungal activity of Swietenia mahogany on Candida albicans and Cryptococcus neoformans. J. Microbiol. Antimicrob., 2013, 5(6), 55-59.
[http://dx.doi.org/10.5897/JMA10.067]
[14]
Veni, A.; Lokeswari, T.S.; Kumari, G.N.K.; Gayathri, D.; Sudandiradoss, C. Bioactivity of melianone against Salmonella and in silico prediction of a membrane protein target. 3 Biotech., 2020, 10(10), 460-474.
[http://dx.doi.org/10.1007/s13205-020-02441-9] [PMID: 33088657]
[15]
Naglik, J.R.; Challacombe, S.J.; Hube, B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol. Mol. Biol. Rev., 2003, 67(3), 400-428.
[http://dx.doi.org/10.1128/MMBR.67.3.400-428.2003] [PMID: 12966142]
[16]
Jacobsen, I.D.; Wilson, D.; Wächtler, B.; Brunke, S.; Naglik, J.R.; Hube, B. Candida albicans dimorphism as a therapeutic target. Expert Rev. Anti Infect. Ther., 2012, 10(1), 85-93.
[http://dx.doi.org/10.1586/eri.11.152] [PMID: 22149617]
[17]
Mayer, F.L.; Wilson, D.; Hube, B. Candida albicans pathogenicity mechanisms. Virulence, 2013, 4(2), 119-128.
[http://dx.doi.org/10.4161/viru.22913] [PMID: 23302789]
[18]
Bar-Yosef, H.; Vivanco Gonzalez, N.; Ben-Aroya, S.; Kron, S.J.; Kornitzer, D. Chemical inhibitors of Candida albicans hyphal morphogenesis target endocytosis. Sci. Rep., 2017, 7(1), 5692.
[http://dx.doi.org/10.1038/s41598-017-05741-y] [PMID: 28720834]
[19]
Cutfield, S.M.; Dodson, E.J.; Anderson, B.F.; Moody, P.C.E.; Marshall, C.J.; Sullivan, P.A.; Cutfield, J.F. The crystal structure of a major secreted aspartic proteinase from Candida albicans in complexes with two inhibitors. Structure, 1995, 3(11), 1261-1271.
[http://dx.doi.org/10.1016/S0969-2126(01)00261-1] [PMID: 8591036]
[20]
Pranav Kumar, S.K.; Kulkarni, V.M. Insights into the selective inhibition of Candida albicans secreted aspartyl protease: A docking analysis study. Bioorg. Med. Chem., 2002, 10(4), 1153-1170.
[http://dx.doi.org/10.1016/S0968-0896(01)00385-6] [PMID: 11836127]
[21]
Hube, B.; Sanglard, D.; Odds, F.C.; Hess, D.; Monod, M.; Schäfer, W.; Brown, A.J.P.; Gow, N.A.R. Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect. Immun., 1997, 65(9), 3529-3538.
[http://dx.doi.org/10.1128/iai.65.9.3529-3538.1997] [PMID: 9284116]
[22]
Kumar, R.; Shukla, P.K. Amphotericin B resistance leads to enhanced proteinase and phospholipase activity and reduced germ tube formation in Candida albicans. Fungal Biol., 2010, 114(2-3), 189-197.
[http://dx.doi.org/10.1016/j.funbio.2009.12.003] [PMID: 20943129]
[23]
Toenjes, K.A.; Munsee, S.M.; Ibrahim, A.S.; Jeffrey, R.; Edwards, J.E., Jr; Johnson, D.I. Small-molecule inhibitors of the budded-to-hyphal-form transition in the pathogenic yeast Candida albicans. Antimicrob. Agents Chemother., 2005, 49(3), 963-972.
[http://dx.doi.org/10.1128/AAC.49.3.963-972.2005] [PMID: 15728890]
[24]
Dos Santos, A.L. HIV aspartyl protease inhibitors as promising compounds against Candida albicans André Luis Souza dos Santos. World J. Biol. Chem., 2010, 1(2), 21-30.
[http://dx.doi.org/10.4331/wjbc.v1.i2.21] [PMID: 21537366]
[25]
Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc., 2015, 10(6), 845-858.
[http://dx.doi.org/10.1038/nprot.2015.053] [PMID: 25950237]
[26]
Arnold, K.; Bordoli, L.; Kopp, J.; Schwede, T. The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics, 2006, 22(2), 195-201.
[http://dx.doi.org/10.1093/bioinformatics/bti770] [PMID: 16301204]
[27]
Laskowski, R.A.; Jabłońska, J.; Pravda, L.; Vařeková, R.S.; Thornton, J.M. PDBsum: Structural summaries of PDB entries. Protein Sci., 2018, 27(1), 129-134.
[http://dx.doi.org/10.1002/pro.3289] [PMID: 28875543]
[28]
Laskowski, R. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst., 1993, 26(2), 283-291.
[http://dx.doi.org/10.1107/S0021889892009944]
[29]
Cadicamo, C.D.; Mortier, J.; Wolber, G.; Hell, M.; Heinrich, I.E.; Michel, D.; Semlin, L.; Berger, U.; Korting, H.C.; Höltje, H.D.; Koksch, B.; Borelli, C. Design, synthesis, inhibition studies, and molecular modeling of pepstatin analogues addressing different secreted aspartic proteinases of Candida albicans. Biochem. Pharmacol., 2013, 85(7), 881-887.
[http://dx.doi.org/10.1016/j.bcp.2012.12.008] [PMID: 23262278]
[30]
De Bernardis, F.; Chiani, P.; Ciccozzi, M.; Pellegrini, G.; Ceddia, T.; D’Offizzi, G.; Quinti, I.; Sullivan, P.A.; Cassone, A. Elevated aspartic proteinase secretion and experimental pathogenicity of Candida albicans isolates from oral cavities of subjects infected with human immunodeficiency virus. Infect. Immun., 1996, 64(2), 466-471.
[http://dx.doi.org/10.1128/iai.64.2.466-471.1996] [PMID: 8550193]
[31]
Aoki, W.; Kitahara, N.; Miura, N.; Morisaka, H.; Yamamoto, Y.; Kuroda, K.; Ueda, M. Comprehensive characterization of secreted aspartic proteases encoded by a virulence gene family in Candida albicans. J. Biochem., 2011, 150(4), 431-438.
[http://dx.doi.org/10.1093/jb/mvr073] [PMID: 21646240]
[32]
Macdonald, F.; Odds, F.C. Inducible proteinase of Candida albicans in diagnostic serology and in the pathogenesis of systemic candidosis. J. Med. Microbiol., 1980, 13(3), 423-435.
[http://dx.doi.org/10.1099/00222615-13-3-423] [PMID: 6997486]
[33]
Schaller, M.; Krnjaic, N.; Niewerth, M.; Hamm, G.; Hube, B.; Korting, H.C. Effect of antimycotic agents on the activity of aspartyl proteinases secreted by Candida albicans. J. Med. Microbiol., 2003, 52(Pt 3), 247-249.
[http://dx.doi.org/10.1099/jmm.0.05048-0] [PMID: 12621090]
[34]
Tian, G.; Sobotka-Briner, C.D.; Zysk, J.; Liu, X.; Birr, C.; Sylvester, M.A.; Edwards, P.D.; Scott, C.D.; Greenberg, B.D. Linear non-competitive inhibition of solubilized human γ-secretase by pepstatin A methylester, L685458, sulfonamides, and benzodiazepines. J. Biol. Chem., 2002, 277(35), 31499-31505.
[http://dx.doi.org/10.1074/jbc.M112328200] [PMID: 12072428]
[35]
Borg-von Zepelin, M.; Beggah, S.; Boggian, K.; Sanglard, D.; Monod, M. The expression of the secreted aspartyl proteinases Sap4 to Sap6 from Candida albicans in murine macrophages. Mol. Microbiol., 1998, 28(3), 543-554.
[http://dx.doi.org/10.1046/j.1365-2958.1998.00815.x] [PMID: 9632257]
[36]
Bensen, E.S.; Martin, S.J.; Li, M.; Berman, J.; Davis, D.A. Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Mol. Microbiol., 2004, 54(5), 1335-1351.
[http://dx.doi.org/10.1111/j.1365-2958.2004.04350.x] [PMID: 15554973]
[37]
Jebali, A.; Hajjar, F.H.E.; Hekmatimoghaddam, S.; Kazemi, B.; De La Fuente, J.M.; Rashidi, M. Triangular gold nanoparticles conjugated with peptide ligands: A new class of inhibitor for Candida albicans secreted aspartyl proteinase. Biochem. Pharmacol., 2014, 90(4), 349-355.
[http://dx.doi.org/10.1016/j.bcp.2014.05.020] [PMID: 24887590]
[38]
Borelli, C.; Ruge, E.; Lee, J.H.; Schaller, M.; Vogelsang, A.; Monod, M.; Korting, H.C.; Huber, R.; Maskos, K. X-ray structures of Sap1 and Sap5: Structural comparison of the secreted aspartic proteinases from Candida albicans. Proteins, 2008, 72(4), 1308-1319.
[http://dx.doi.org/10.1002/prot.22021] [PMID: 18384081]
[39]
Rüchel, R.; Ritter, B.; Schaffrinski, M. Modulation of experimental systemic murine candidosis by intravenous pepstatin. Zentralbl. Bakteriol., 1990, 273(3), 391-403.
[http://dx.doi.org/10.1016/S0934-8840(11)80443-3] [PMID: 2206206]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy