Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Research Article

Influence of Morphology Change on Photoelectrochemical Activity of Cerium Oxide Nanostructures

Author(s): Ahmad Fallatah, Mohammed Kuku, Rebekah De Penning, Mohammed Almomtan and Sonal Padalkar*

Volume 19, Issue 2, 2023

Published on: 06 September, 2022

Page: [285 - 290] Pages: 6

DOI: 10.2174/1573413718666220817154606

Price: $65

Abstract

Aims: Photocatalysis has become a crucial area in the field of energy generation.

Background: The conversion of solar energy into chemical or thermal energy for various energyrelated applications has taken precedence over many traditional research areas.

Objective: The urgency to become independent of non-renewable energy resources is paramount due to issues of global warming.

Methods: To that end, researchers are exploring various material systems, geometries, and material combinations to obtain ideal photocatalysts for efficient solar conversion. Here, the nanostructures were fabricated via electrodeposition.

Results and Discussion: The morphology was controlled by varying the concentration of chemical additive, namely dimethyl sulfoxide, during the deposition process. The morphology-controlled cerium oxide nanostructures were thoroughly characterized and tested for their photoelectrochemical performances.

Conclusion: Our present investigation contributes to this area of research by studying the influence of morphology on the photoelectrochemical activity of cerium oxide nanostructures.

Keywords: Cerium oxide, Morphology, Electro deposition, water splitting, photocatalysis, voltammetry.

Graphical Abstract

[1]
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358), 37-38.
[http://dx.doi.org/10.1038/238037a0 ] [PMID: 12635268]
[2]
Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528), 269-271.
[http://dx.doi.org/10.1126/science.1061051 ] [PMID: 11452117]
[3]
Zou, Z.; Ye, J.; Sayama, K.; Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 2001, 414(6864), 625-627.
[http://dx.doi.org/10.1038/414625a ] [PMID: 11740556]
[4]
Fox, M.A.; Dulay, M.T. Heterogeneous photocatalysis. Chem. Rev., 1993, 93(1), 341-357.
[http://dx.doi.org/10.1021/cr00017a016]
[5]
Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental applications of semiconductor photocatalysis. Chem. Rev., 1995, 95(1), 69-96.
[http://dx.doi.org/10.1021/cr00033a004]
[6]
Mogensen, M.; Sammes, N.M.; Tompsett, G.A. Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ion., 2000, 129(1-4), 63-94.
[http://dx.doi.org/10.1016/S0167-2738(99)00318-5]
[7]
Novik, N.; Konakov, V.; Archakov, I.Y. Zirconia and ceria based ceramics and nanoceramics-A review on electrochemical and mechani-cal properties. Rev. Adv. Mater. Sci., 2015, 40(2), 188-207.
[8]
Wang, J.; Cao, Z.; Feng, M.; Zhang, G.; Yu, B. Controlled synthesis and optical properties of porous ceria nanosheets on optical fiber via a simple hydrothermal route. J. Mater. Sci. Mater. Electron., 2018, 29(5), 3730-3735.
[http://dx.doi.org/10.1007/s10854-017-8306-3]
[9]
Gopal, C.B.; Haile, S.M. An electrical conductivity relaxation study of oxygen transport in samarium doped ceria. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(7), 2405-2417.
[http://dx.doi.org/10.1039/C3TA13404K]
[10]
Wu, T.; López, N.; Vegge, T.; Hansen, H.A. Facet-dependent electrocatalytic water splitting reaction on CeO2: A DFT+ U study. J. Catal., 2020, 388, 1-10.
[http://dx.doi.org/10.1016/j.jcat.2020.05.001]
[11]
Long, X.; Lin, H.; Zhou, D.; An, Y.; Yang, S. Enhancing full water-splitting performance of transition metal bifunctional electrocatalysts in alkaline solutions by tailoring CeO2–transition metal oxides–Ni nanointerfaces. ACS Energy Lett., 2018, 3(2), 290-296.
[http://dx.doi.org/10.1021/acsenergylett.7b01130]
[12]
Gao, W.; Wang, C.; Ma, F.; Wen, D. Highly active electrocatalysts of CeO2 modified NiMoO4 nanosheet arrays towards water and urea oxidation reactions. Electrochim. Acta, 2019, 320, 134608.
[http://dx.doi.org/10.1016/j.electacta.2019.134608]
[13]
Galani, S.M.; Mondal, A.; Srivastava, D.N.; Panda, A.B. Development of RuO2/CeO2 heterostructure as an efficient OER electrocatalyst for alkaline water splitting. Int. J. Hydrogen Energy, 2020, 45(37), 18635-18644.
[http://dx.doi.org/10.1016/j.ijhydene.2019.08.026]
[14]
Fallatah, A.; Almomtan, M.; Padalkar, S. Cerium oxide based glucose biosensors: Influence of morphology and underlying substrate on biosensor performance. ACS Sustain. Chem.& Eng., 2019, 7(9), 8083-8089.
[http://dx.doi.org/10.1021/acssuschemeng.8b02286]
[15]
Mansingh, S.; Padhi, D.; Parida, K. Enhanced photocatalytic activity of nanostructured Fe doped CeO2 for hydrogen production under visible light irradiation. Int. J. Hydrog. Energy, 2016, 41(32), 14133-14146.
[16]
Cao, F.; Zhang, M.; Yang, K.; Tian, Z.; Li, J.; Qu, Y. Single crystalline CeO2 nanotubes. Nano Res., 2021, 14(3), 715-719.
[http://dx.doi.org/10.1007/s12274-020-3103-3]
[17]
Xue, S.-F.; Li, Y.-J.; Zheng, F.-H.; Bian, X.; Wu, W.-Y.; Yang, C.-H. Characterization of CeO2 microspheres fabricated by an ultrasonic spray pyrolysis method. Rare Met., 2021, 40(1), 31-39.
[http://dx.doi.org/10.1007/s12598-020-01594-z]
[18]
Wang, L.; Fei, L.U.; Meng, F. Influence of ethanediamine content on synthesis of CeO2 nanorods. J. Synth. Cryst., 2012, 41(3), 714-717.
[19]
Lu, X.H.; Huang, X.; Xie, S.L.; Zheng, D.Z.; Liu, Z.Q.; Liang, C.L.; Tong, Y-X. Facile electrochemical synthesis of single crystalline CeO2 octahedrons and their optical properties. Langmuir, 2010, 26(10), 7569-7573.
[http://dx.doi.org/10.1021/la904882t ] [PMID: 20102234]
[20]
Gao, W.; Zhang, Z.; Li, J.; Ma, Y.; Qu, Y. Surface engineering on CeO2 nanorods by chemical redox etching and their enhanced catalytic activity for CO oxidation. Nanoscale, 2015, 7(27), 11686-11691.
[http://dx.doi.org/10.1039/C5NR01846C ] [PMID: 26098593]
[21]
Wu, X.; Yu, H.; Dong, H.; Geng, L. Enhanced infrared radiation properties of CoFe2O4 by single Ce3+-doping with energy-efficient prepa-ration. Ceram. Int., 2014, 40(4), 5905-5911.
[http://dx.doi.org/10.1016/j.ceramint.2013.11.035]
[22]
Mullins, D.R. The surface chemistry of cerium oxide. Surf. Sci. Rep., 2015, 70(1), 42-85.
[http://dx.doi.org/10.1016/j.surfrep.2014.12.001]
[23]
Song, J.H.; Sailor, M.J. Dimethyl sulfoxide as a mild oxidizing agent for porous silicon and its effect on photoluminescence. Inorg. Chem., 1998, 37(13), 3355-3360.
[http://dx.doi.org/10.1021/ic971587u]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy