Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Energy Crisis Links to Autophagy and Ferroptosis in Alzheimer’s Disease: Current Evidence and Future Avenues

Author(s): Da-Long He, Yong-Gang Fan* and Zhan-You Wang*

Volume 21, Issue 1, 2023

Published on: 02 November, 2022

Page: [67 - 86] Pages: 20

DOI: 10.2174/1570159X20666220817140737

Price: $65

Abstract

Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases worldwide. The occult nature of the onset and the uncertainty of the etiology largely impede the development of therapeutic strategies for AD. Previous studies revealed that the disorder of energy metabolism in the brains of AD patients appears far earlier than the typical pathological features of AD, suggesting a tight association between energy crisis and the onset of AD. Energy crisis in the brain is known to be induced by the reductions in glucose uptake and utilization, which may be ascribed to the diminished expressions of cerebral glucose transporters (GLUTs), insulin resistance, mitochondrial dysfunctions, and lactate dysmetabolism. Notably, the energy sensors such as peroxisome proliferators-activated receptor (PPAR), transcription factor EB (TFEB), and AMP-activated protein kinase (AMPK) were shown to be the critical regulators of autophagy, which play important roles in regulating beta-amyloid (Aβ) metabolism, tau phosphorylation, neuroinflammation, iron dynamics, as well as ferroptosis. In this study, we summarized the current knowledge on the molecular mechanisms involved in the energy dysmetabolism of AD and discussed the interplays existing between energy crisis, autophagy, and ferroptosis. In addition, we highlighted the potential network in which autophagy may serve as a bridge between energy crisis and ferroptosis in the progression of AD. A deeper understanding of the relationship between energy dysmetabolism and AD may provide new insight into developing strategies for treating AD; meanwhile, the energy crisis in the progression of AD should gain more attention.

Keywords: Alzheimer's disease, energy crisis, autophagy, ferroptosis, iron metabolism, beta-amyloid, tau protein

Graphical Abstract

[1]
Alzheimer’s disease facts and figures. Alzheimers Dement., 2020, 2020(Mar), 10.
[2]
Liu, P.P.; Xie, Y.; Meng, X.Y.; Kang, J.S. History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduct. Target. Ther., 2019, 4(1), 29.
[http://dx.doi.org/10.1038/s41392-019-0063-8] [PMID: 31637009]
[3]
Long, J.M.; Holtzman, D.M. Alzheimer disease: An update on pathobiology and treatment strategies. Cell, 2019, 179(2), 312-339.
[http://dx.doi.org/10.1016/j.cell.2019.09.001] [PMID: 31564456]
[4]
Cunnane, S.; Nugent, S.; Roy, M.; Courchesne-Loyer, A.; Croteau, E.; Tremblay, S.; Castellano, A.; Pifferi, F.; Bocti, C.; Paquet, N.; Begdouri, H.; Bentourkia, M.; Turcotte, E.; Allard, M.; Barberger-Gateau, P.; Fulop, T.; Rapoport, S.I. Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition, 2011, 27(1), 3-20.
[http://dx.doi.org/10.1016/j.nut.2010.07.021] [PMID: 21035308]
[5]
Reiman, E.M.; Caselli, R.J.; Yun, L.S.; Chen, K.; Bandy, D.; Minoshima, S.; Thibodeau, S.N.; Osborne, D. Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N. Engl. J. Med., 1996, 334(12), 752-758.
[http://dx.doi.org/10.1056/NEJM199603213341202] [PMID: 8592548]
[6]
Glick, D.; Barth, S.; Macleod, K.F. Autophagy: Cellular and molecular mechanisms. J. Pathol., 2010, 221(1), 3-12.
[http://dx.doi.org/10.1002/path.2697] [PMID: 20225336]
[7]
Dikic, I.; Elazar, Z. Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol., 2018, 19(6), 349-364.
[http://dx.doi.org/10.1038/s41580-018-0003-4] [PMID: 29618831]
[8]
Jack, C.R., Jr; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; Liu, E.; Molinuevo, J.L.; Montine, T.; Phelps, C.; Rankin, K.P.; Rowe, C.C.; Scheltens, P.; Siemers, E.; Snyder, H.M.; Sperling, R.; Elliott, C.; Masliah, E.; Ryan, L.; Silverberg, N. NIA‐AA Research framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement., 2018, 14(4), 535-562.
[http://dx.doi.org/10.1016/j.jalz.2018.02.018] [PMID: 29653606]
[9]
Bernier, G.; Nardini, E.; Hogan, R.; Flamier, A. Alzheimer’s disease: A tale of two diseases? Neural Regen. Res., 2021, 16(10), 1958-1964.
[http://dx.doi.org/10.4103/1673-5374.308070] [PMID: 33642366]
[10]
Jha, N.K.; Jha, S.K.; Kumar, D.; Kejriwal, N.; Sharma, R.; Ambasta, R.K.; Kumar, P. Impact of insulin degrading enzyme and neprilysin in alzheimer’s disease biology: Characterization of putative cognates for therapeutic applications. J. Alzheimers Dis., 2015, 48(4), 891-917.
[http://dx.doi.org/10.3233/JAD-150379] [PMID: 26444774]
[11]
Zhao, Y.; Long, Z.; Ding, Y.; Jiang, T.; Liu, J.; Li, Y.; Liu, Y.; Peng, X.; Wang, K.; Feng, M.; He, G. Dihydroartemisinin ameliorates learning and memory in Alzheimer’s disease through promoting autophagosome-lysosome fusion and autolysosomal degradation for Abeta clearance. Front. Aging Neurosci., 2020, 12, 47.
[http://dx.doi.org/10.3389/fnagi.2020.00047] [PMID: 32210783]
[12]
Chen, Y.; Chen, Y.; Liang, Y.; Chen, H.; Ji, X.; Huang, M. Berberine mitigates cognitive decline in an Alzheimer’s Disease Mouse Model by targeting both tau hyperphosphorylation and autophagic clearance. Biomed. Pharmacother., 2020, 121, 109670.
[http://dx.doi.org/10.1016/j.biopha.2019.109670] [PMID: 31810131]
[13]
Uddin, M.S.; Kabir, M.T.; Niaz, K.; Jeandet, P.; Clément, C.; Mathew, B.; Rauf, A.; Rengasamy, K.R.R.; Sobarzo-Sánchez, E.; Ashraf, G.M.; Aleya, L. Molecular insight into the therapeutic promise of flavonoids against Alzheimer’s disease. Molecules, 2020, 25(6), 1267.
[http://dx.doi.org/10.3390/molecules25061267] [PMID: 32168835]
[14]
Hamano, T.; Shirafuji, N.; Yen, S.H.; Yoshida, H.; Kanaan, N.M.; Hayashi, K.; Ikawa, M.; Yamamura, O.; Fujita, Y.; Kuriyama, M.; Nakamoto, Y. Rho-kinase ROCK inhibitors reduce oligomeric tau protein. Neurobiol. Aging, 2020, 89, 41-54.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.12.009] [PMID: 31982202]
[15]
Madadi, S.; Schwarzenbach, H.; Saidijam, M.; Mahjub, R.; Soleimani, M. Potential microRNA-related targets in clearance pathways of amyloid-β: Novel therapeutic approach for the treatment of Alzheimer’s disease. Cell Biosci., 2019, 9(1), 91.
[http://dx.doi.org/10.1186/s13578-019-0354-3] [PMID: 31749959]
[16]
Wang, P.; Wang, Z.Y. Metal ions influx is a double edged sword for the pathogenesis of Alzheimer’s disease. Ageing Res. Rev., 2017, 35, 265-290.
[http://dx.doi.org/10.1016/j.arr.2016.10.003] [PMID: 27829171]
[17]
Liu, J.L.; Fan, Y.G.; Yang, Z.S.; Wang, Z.Y.; Guo, C. Iron and Alzheimer’s disease: From pathogenesis to therapeutic implications. Front. Neurosci., 2018, 12, 632.
[http://dx.doi.org/10.3389/fnins.2018.00632] [PMID: 30250423]
[18]
Zhang, Y.H.; Wang, D.W.; Xu, S.F.; Zhang, S.; Fan, Y.G.; Yang, Y.Y.; Guo, S.Q.; Wang, S.; Guo, T.; Wang, Z.Y.; Guo, C. α-Lipoic acid improves abnormal behavior by mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in P301S Tau transgenic mice. Redox Biol., 2018, 14, 535-548.
[http://dx.doi.org/10.1016/j.redox.2017.11.001] [PMID: 29126071]
[19]
Daulatzai, M.A. Cerebral hypoperfusion and glucose hypometabolism: Key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer’s disease. J. Neurosci. Res., 2017, 95(4), 943-972.
[http://dx.doi.org/10.1002/jnr.23777] [PMID: 27350397]
[20]
Sadowski, M.; Pankiewicz, J.; Scholtzova, H.; Ji, Y.; Quartermain, D.; Jensen, C.H.; Duff, K.; Nixon, R.A.; Gruen, R.J.; Wisniewski, T. Amyloid-beta deposition is associated with decreased hippocampal glucose metabolism and spatial memory impairment in APP/PS1 mice. J. Neuropathol. Exp. Neurol., 2004, 63(5), 418-428.
[http://dx.doi.org/10.1093/jnen/63.5.418] [PMID: 15198121]
[21]
Bélanger, M.; Allaman, I.; Magistretti, P.J. Brain energy metabolism: Focus on astrocyte-neuron metabolic cooperation. Cell Metab., 2011, 14(6), 724-738.
[http://dx.doi.org/10.1016/j.cmet.2011.08.016] [PMID: 22152301]
[22]
Maqbool, M.; Mobashir, M.; Hoda, N. Pivotal role of glycogen synthase kinase-3: A therapeutic target for Alzheimer’s disease. Eur. J. Med. Chem., 2016, 107, 63-81.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.018] [PMID: 26562543]
[23]
Arnold, S.E.; Arvanitakis, Z.; Macauley-Rambach, S.L.; Koenig, A.M.; Wang, H.Y.; Ahima, R.S.; Craft, S.; Gandy, S.; Buettner, C.; Stoeckel, L.E.; Holtzman, D.M.; Nathan, D.M. Brain insulin resistance in type 2 diabetes and Alzheimer disease: Concepts and conundrums. Nat. Rev. Neurol., 2018, 14(3), 168-181.
[http://dx.doi.org/10.1038/nrneurol.2017.185] [PMID: 29377010]
[24]
Alberini, C.M.; Cruz, E.; Descalzi, G.; Bessières, B.; Gao, V. Astrocyte glycogen and lactate: New insights into learning and memory mechanisms. Glia, 2018, 66(6), 1244-1262.
[http://dx.doi.org/10.1002/glia.23250] [PMID: 29076603]
[25]
Magistretti, P.J.; Allaman, I. A cellular perspective on brain energy metabolism and functional imaging. Neuron, 2015, 86(4), 883-901.
[http://dx.doi.org/10.1016/j.neuron.2015.03.035] [PMID: 25996133]
[26]
Vilchez, D.; Ros, S.; Cifuentes, D.; Pujadas, L.; Vallès, J.; García-Fojeda, B.; Criado-García, O.; Fernández-Sánchez, E.; Medraño-Fernández, I.; Domínguez, J.; García-Rocha, M.; Soriano, E.; Rodríguez de Córdoba, S.; Guinovart, J.J. Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy. Nat. Neurosci., 2007, 10(11), 1407-1413.
[http://dx.doi.org/10.1038/nn1998] [PMID: 17952067]
[27]
Carpenter, K.L.H.; Jalloh, I.; Hutchinson, P.J. Glycolysis and the significance of lactate in traumatic brain injury. Front. Neurosci., 2015, 9, 112.
[http://dx.doi.org/10.3389/fnins.2015.00112] [PMID: 25904838]
[28]
Pellerin, L.; Magistretti, P.J. Sweet Sixteen for ANLS. J. Cereb. Blood Flow Metab., 2012, 32(7), 1152-1166.
[http://dx.doi.org/10.1038/jcbfm.2011.149] [PMID: 22027938]
[29]
Takahashi, S. Metabolic compartmentalization between astroglia and neurons in physiological and pathophysiological conditions of the neurovascular unit. Neuropathology, 2020, 40(2), 121-137.
[http://dx.doi.org/10.1111/neup.12639] [PMID: 32037635]
[30]
Morland, C.; Lauritzen, K.H.; Puchades, M.; Holm-Hansen, S.; Andersson, K.; Gjedde, A.; Attramadal, H.; Storm-Mathisen, J.; Bergersen, L.H. The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1: Expression and action in brain. J. Neurosci. Res., 2015, 93(7), 1045-1055.
[http://dx.doi.org/10.1002/jnr.23593] [PMID: 25881750]
[31]
Brooks, G.A. The science and translation of lactate shuttle theory. Cell Metab., 2018, 27(4), 757-785.
[http://dx.doi.org/10.1016/j.cmet.2018.03.008] [PMID: 29617642]
[32]
Bouzier-Sore, A.K.; Voisin, P.; Bouchaud, V.; Bezancon, E.; Franconi, J.M.; Pellerin, L. Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: A comparative NMR study. Eur. J. Neurosci., 2006, 24(6), 1687-1694.
[http://dx.doi.org/10.1111/j.1460-9568.2006.05056.x] [PMID: 17004932]
[33]
Mayorga-Weber, G.; Rivera, F.J.; Castro, M.A. Neuron‐glia (mis)interactions in brain energy metabolism during aging. J. Neurosci. Res., 2022, 100(3), 835-854.
[http://dx.doi.org/10.1002/jnr.25015] [PMID: 35085408]
[34]
Chuquet, J.; Quilichini, P.; Nimchinsky, E.A.; Buzsáki, G. Predominant enhancement of glucose uptake in astrocytes versus neurons during activation of the somatosensory cortex. J. Neurosci., 2010, 30(45), 15298-15303.
[http://dx.doi.org/10.1523/JNEUROSCI.0762-10.2010] [PMID: 21068334]
[35]
Magistretti, P.J.; Allaman, I. Lactate in the brain: From metabolic end-product to signalling molecule. Nat. Rev. Neurosci., 2018, 19(4), 235-249.
[http://dx.doi.org/10.1038/nrn.2018.19] [PMID: 29515192]
[36]
Supplie, L.M.; Düking, T.; Campbell, G.; Diaz, F.; Moraes, C.T.; Götz, M.; Hamprecht, B.; Boretius, S.; Mahad, D.; Nave, K.A. Respiration-deficient astrocytes survive as glycolytic cells in vivo. J. Neurosci., 2017, 37(16), 4231-4242.
[http://dx.doi.org/10.1523/JNEUROSCI.0756-16.2017] [PMID: 28314814]
[37]
Dong, X.; Zhang, Q.; Yu, X.; Wang, D.; Ma, J.; Ma, J.; Shi, S.H. Metabolic lactate production coordinates vasculature development and progenitor behavior in the developing mouse neocortex. Nat. Neurosci., 2022, 25(7), 865-875.
[http://dx.doi.org/10.1038/s41593-022-01093-7] [PMID: 35726058]
[38]
Beard, E.; Lengacher, S.; Dias, S.; Magistretti, P.J.; Finsterwald, C. Astrocytes as key regulators of brain energy metabolism: New therapeutic perspectives. Front. Physiol., 2022, 12, 825816.
[http://dx.doi.org/10.3389/fphys.2021.825816] [PMID: 35087428]
[39]
Henn, R.E.; Noureldein, M.H.; Elzinga, S.E.; Kim, B.; Savelieff, M.G.; Feldman, E.L. Glial-neuron crosstalk in health and disease: A focus on metabolism, obesity, and cognitive impairment. Neurobiol. Dis., 2022, 170, 105766.
[http://dx.doi.org/10.1016/j.nbd.2022.105766] [PMID: 35584728]
[40]
Lauro, C.; Limatola, C. Metabolic reprograming of microglia in the regulation of the innate inflammatory response. Front. Immunol., 2020, 11, 493.
[http://dx.doi.org/10.3389/fimmu.2020.00493] [PMID: 32265936]
[41]
Baik, S.H.; Kang, S.; Lee, W.; Choi, H.; Chung, S.; Kim, J.I.; Mook-Jung, I. A breakdown in metabolic reprogramming causes microglia dysfunction in Alzheimer’s disease. Cell Metab., 2019, 30(3), 493-507.e6.
[http://dx.doi.org/10.1016/j.cmet.2019.06.005] [PMID: 31257151]
[42]
Li, Y.; Lu, B.; Sheng, L.; Zhu, Z.; Sun, H.; Zhou, Y.; Yang, Y.; Xue, D.; Chen, W.; Tian, X.; Du, Y.; Yan, M.; Zhu, W.; Xing, F.; Li, K.; Lin, S.; Qiu, P.; Su, X.; Huang, Y.; Yan, G.; Yin, W. Hexokinase 2-dependent hyperglycolysis driving microglial activation contributes to ischemic brain injury. J. Neurochem., 2018, 144(2), 186-200.
[http://dx.doi.org/10.1111/jnc.14267] [PMID: 29205357]
[43]
Monsorno, K.; Buckinx, A.; Paolicelli, R.C. Microglial metabolic flexibility: Emerging roles for lactate. Trends Endocrinol. Metab., 2022, 33(3), 186-195.
[http://dx.doi.org/10.1016/j.tem.2021.12.001] [PMID: 34996673]
[44]
Manceau, R.; Majeur, D.; Alquier, T. Neuronal control of peripheral nutrient partitioning. Diabetologia, 2020, 63(4), 673-682.
[http://dx.doi.org/10.1007/s00125-020-05104-9] [PMID: 32030470]
[45]
Morita-Takemura, S.; Wanaka, A. Blood-to-brain communication in the hypothalamus for energy intake regulation. Neurochem. Int., 2019, 128, 135-142.
[http://dx.doi.org/10.1016/j.neuint.2019.04.007] [PMID: 31002894]
[46]
Shao, X.; Tang, Y.; Long, H.; Gu, H.; Zhang, J.; Deng, P.; Zhao, Y.; Cen, X. HMG-CoA synthase 2 drives brain metabolic reprogramming in cocaine exposure. Neuropharmacology, 2019, 148, 377-393.
[http://dx.doi.org/10.1016/j.neuropharm.2017.10.001] [PMID: 28987936]
[47]
Puchalska, P.; Crawford, P.A. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab., 2017, 25(2), 262-284.
[http://dx.doi.org/10.1016/j.cmet.2016.12.022] [PMID: 28178565]
[48]
Grabacka, M.; Pierzchalska, M.; Dean, M.; Reiss, K. Regulation of ketone body metabolism and the role of pparalpha. Int. J. Mol. Sci., 2016, 17(12), 2093.
[http://dx.doi.org/10.3390/ijms17122093] [PMID: 27983603]
[49]
Güemes, M.; Hussain, K. Hyperinsulinemic Hypoglycemia. Pediatr. Clin. North Am., 2015, 62(4), 1017-1036.
[http://dx.doi.org/10.1016/j.pcl.2015.04.010] [PMID: 26210630]
[50]
Voronina, P.P.; Adamovich, K.V.; Adamovich, T.V.; Dubouskaya, T.G.; Hrynevich, S.V.; Waseem, T.V.; Fedorovich, S.V. High concentration of ketone body beta-hydroxybutyrate modifies synaptic vesicle cycle and depolarizes plasma membrane of rat brain synaptosomes. J. Mol. Neurosci., 2020, 70(1), 112-119.
[http://dx.doi.org/10.1007/s12031-019-01406-9] [PMID: 31643037]
[51]
Suissa, L; Flachon, V; Guigonis, JM Urinary ketone body loss leads to degeneration of brain white matter in elderly SLC5A8- deficient mice. J. Cereb. Blood Flow Metab., 2019, 271678X19873662.
[52]
Grillo, C.A.; Piroli, G.G.; Hendry, R.M.; Reagan, L.P. Insulin-stimulated translocation of GLUT4 to the plasma membrane in rat hippocampus is PI3-kinase dependent. Brain Res., 2009, 1296, 35-45.
[http://dx.doi.org/10.1016/j.brainres.2009.08.005] [PMID: 19679110]
[53]
Fernandez, A.M.; Hernandez-Garzón, E.; Perez-Domper, P.; Perez-Alvarez, A.; Mederos, S.; Matsui, T.; Santi, A.; Trueba-Saiz, A.; García-Guerra, L.; Pose-Utrilla, J.; Fielitz, J.; Olson, E.N.; Fernandez de la Rosa, R.; Garcia Garcia, L.; Pozo, M.A.; Iglesias, T.; Araque, A.; Soya, H.; Perea, G.; Martin, E.D.; Torres Aleman, I. Insulin regulates astrocytic glucose handling through cooperation with IGF-I. Diabetes, 2017, 66(1), 64-74.
[http://dx.doi.org/10.2337/db16-0861] [PMID: 27999108]
[54]
Bromander, S.; Anckarsäter, R.; Ahrén, B.; Kristiansson, M.; Blennow, K.; Holmäng, A.; Zetterberg, H.; Anckarsäter, H.; Wass, C.E. Cerebrospinal fluid insulin during non-neurological surgery. J. Neural Transm. (Vienna), 2010, 117(10), 1167-1170.
[http://dx.doi.org/10.1007/s00702-010-0456-x] [PMID: 20697751]
[55]
Didier, S.; Sauvé, F.; Domise, M.; Buée, L.; Marinangeli, C.; Vingtdeux, V. AMP-activated protein kinase controls immediate early genes expression following synaptic activation through the PKA/CREB pathway. Int. J. Mol. Sci., 2018, 19(12), 3716.
[http://dx.doi.org/10.3390/ijms19123716] [PMID: 30467274]
[56]
Uehara, T.; Yamasaki, T.; Okamoto, T.; Koike, T.; Kan, S.; Miyauchi, S.; Kira, J.; Tobimatsu, S. Efficiency of a “small-world” brain network depends on consciousness level: A resting-state FMRI study. Cereb. Cortex, 2014, 24(6), 1529-1539.
[http://dx.doi.org/10.1093/cercor/bht004] [PMID: 23349223]
[57]
Tomasi, D.; Wang, G.J.; Volkow, N.D. Energetic cost of brain functional connectivity. Proc. Natl. Acad. Sci. USA, 2013, 110(33), 13642-13647.
[http://dx.doi.org/10.1073/pnas.1303346110] [PMID: 23898179]
[58]
Kealy, J.; Bennett, R.; Woods, B.; Lowry, J.P. Real-time changes in hippocampal energy demands during a spatial working memory task. Behav. Brain Res., 2017, 326, 59-68.
[http://dx.doi.org/10.1016/j.bbr.2017.02.034] [PMID: 28249730]
[59]
Minoshima, S.; Foster, N.L.; Sima, A.A.F.; Frey, K.A.; Albin, R.L.; Kuhl, D.E. Alzheimer’s disease versus dementia with Lewy bodies: Cerebral metabolic distinction with autopsy confirmation. Ann. Neurol., 2001, 50(3), 358-365.
[http://dx.doi.org/10.1002/ana.1133] [PMID: 11558792]
[60]
Barros, L.F.; Bolaños, J.P.; Bonvento, G.; Bouzier-Sore, A.K.; Brown, A.; Hirrlinger, J.; Kasparov, S.; Kirchhoff, F.; Murphy, A.N.; Pellerin, L.; Robinson, M.B.; Weber, B. Current technical approaches to brain energy metabolism. Glia, 2018, 66(6), 1138-1159.
[http://dx.doi.org/10.1002/glia.23248] [PMID: 29110344]
[61]
Meng, X.; Liu, J.; Fan, X.; Bian, C.; Wei, Q.; Wang, Z.; Liu, W.; Jiao, Z. Multi-modal neuroimaging neural network-based feature detection for diagnosis of Alzheimer’s disease. Front. Aging Neurosci., 2022, 14, 911220.
[http://dx.doi.org/10.3389/fnagi.2022.911220] [PMID: 35651528]
[62]
Engel, M.G.; Smith, J.; Mao, K.; Quipildor, G.F.; Cui, M.H.; Gulinello, M.; Branch, C.A.; Gandy, S.E.; Huffman, D.M. Evidence for preserved insulin responsiveness in the aging rat brain. Geroscience, 2022.
[http://dx.doi.org/10.1007/s11357-022-00618-z] [PMID: 35798912]
[63]
Wu, Y.Q.; Wang, Y.N.; Zhang, L.J.; Liu, L.Q.; Pan, Y.C.; Su, T.; Liao, X.L.; Shu, H.Y.; Kang, M.; Ying, P.; Xu, S.H.; Shao, Y. Regional homogeneity in patients with mild cognitive impairment: A resting-state functional magnetic resonance imaging study. Front. Aging Neurosci., 2022, 14, 877281.
[http://dx.doi.org/10.3389/fnagi.2022.877281] [PMID: 35493938]
[64]
Sheline, Y.I.; Morris, J.C.; Snyder, A.Z.; Price, J.L.; Yan, Z.; D’Angelo, G.; Liu, C.; Dixit, S.; Benzinger, T.; Fagan, A.; Goate, A.; Mintun, M.A. APOE4 allele disrupts resting state fMRI connectivity in the absence of amyloid plaques or decreased CSF Aβ42. J. Neurosci., 2010, 30(50), 17035-17040.
[http://dx.doi.org/10.1523/JNEUROSCI.3987-10.2010] [PMID: 21159973]
[65]
Heise, V.; Filippini, N.; Trachtenberg, A.J.; Suri, S.; Ebmeier, K.P.; Mackay, C.E. Apolipoprotein E genotype, gender and age modulate connectivity of the hippocampus in healthy adults. Neuroimage, 2014, 98, 23-30.
[http://dx.doi.org/10.1016/j.neuroimage.2014.04.081] [PMID: 24814213]
[66]
Song, T.; Song, X.; Zhu, C.; Patrick, R.; Skurla, M.; Santangelo, I.; Green, M.; Harper, D.; Ren, B.; Forester, B.P.; Öngür, D.; Du, F. Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer’s disease: A meta-analysis of in vivo magnetic resonance spectroscopy studies. Ageing Res. Rev., 2021, 72, 101503.
[http://dx.doi.org/10.1016/j.arr.2021.101503] [PMID: 34751136]
[67]
Bonvento, G.; Valette, J.; Flament, J.; Mochel, F.; Brouillet, E. Imaging and spectroscopic approaches to probe brain energy metabolism dysregulation in neurodegenerative diseases. J. Cereb. Blood Flow Metab., 2017, 37(6), 1927-1943.
[http://dx.doi.org/10.1177/0271678X17697989] [PMID: 28276944]
[68]
Chen, Q.; Abrigo, J.; Liu, W.; Han, E.Y.; Yeung, D.K.W.; Shi, L.; Au, L.W.C.; Deng, M.; Chen, S.; Leung, E.Y.L.; Ho, C.L.; Mok, V.C.T.; Chu, W.C.W. Lower posterior cingulate n-acetylaspartate to creatine level in early detection of biologically defined Alzheimer’s disease. Brain Sci., 2022, 12(6), 722.
[http://dx.doi.org/10.3390/brainsci12060722] [PMID: 35741606]
[69]
Rijpma, A.; van der Graaf, M.; Meulenbroek, O.; Olde Rikkert, M.G.M.; Heerschap, A. Altered brain high-energy phosphate metabolism in mild Alzheimer’s disease: A 3-dimensional 31P MR spectroscopic imaging study. Neuroimage Clin., 2018, 18, 254-261.
[http://dx.doi.org/10.1016/j.nicl.2018.01.031] [PMID: 29876246]
[70]
Das, N.; Ren, J.; Spence, J.S.; Rackley, A.; Chapman, S.B. Relationship of parieto-occipital brain energy phosphate metabolism and cognition using (31)P MRS at 7-tesla in amnestic mild cognitive impairment. Front. Aging Neurosci., 2020, 12, 222.
[http://dx.doi.org/10.3389/fnagi.2020.00222] [PMID: 33005142]
[71]
Mandal, P.K.; Guha Roy, R.; Samkaria, A.; Maroon, J.C.; Arora, Y. In vivo (13)C magnetic resonance spectroscopy for assessing brain biochemistry in health and disease. Neurochem. Res., 2022, 47(5), 1183-1201.
[http://dx.doi.org/10.1007/s11064-022-03538-8] [PMID: 35089504]
[72]
Minoshima, S.; Cross, D.; Thientunyakit, T.; Foster, N.L.; Drzezga, A. (18)F-FDG PET imaging in neurodegenerative dementing disorders: Insights into subtype classification, emerging disease categories, and mixed dementia with copathologies. J. Nucl. Med., 2022, 63(Suppl. 1), 2S-12S.
[http://dx.doi.org/10.2967/jnumed.121.263194] [PMID: 35649653]
[73]
Silverman, D.H.S.; Small, G.W.; Chang, C.Y.; Lu, C.S.; de Aburto, M.A.K.; Chen, W.; Czernin, J.; Rapoport, S.I.; Pietrini, P.; Alexander, G.E.; Schapiro, M.B.; Jagust, W.J.; Hoffman, J.M.; Welsh-Bohmer, K.A.; Alavi, A.; Clark, C.M.; Salmon, E.; de Leon, M.J.; Mielke, R.; Cummings, J.L.; Kowell, A.P.; Gambhir, S.S.; Hoh, C.K.; Phelps, M.E. Positron emission tomography in evaluation of dementia: Regional brain metabolism and long-term outcome. JAMA, 2001, 286(17), 2120-2127.
[http://dx.doi.org/10.1001/jama.286.17.2120] [PMID: 11694153]
[74]
Marcus, C.; Mena, E.; Subramaniam, R.M. Brain PET in the diagnosis of Alzheimer’s disease. Clin. Nucl. Med., 2014, 39(10), e413-e426.
[http://dx.doi.org/10.1097/RLU.0000000000000547] [PMID: 25199063]
[75]
Pezzoli, S.; Manca, R.; Cagnin, A.; Venneri, A. Alzheimer’s Disease Neuroimaging I. A multimodal neuroimaging and neuropsychological study of visual hallucinations in Alzheimer’s disease. J. Alzheimers Dis., 2022, 1-17.
[http://dx.doi.org/10.3233/JAD-215107] [PMID: 35848016]
[76]
Perovnik, M.; Tomše, P.; Jamšek, J.; Emeršič, A.; Tang, C.; Eidelberg, D.; Trošt, M. Identification and validation of Alzheimer’s disease-related metabolic brain pattern in biomarker confirmed Alzheimer’s dementia patients. Sci. Rep., 2022, 12(1), 11752.
[http://dx.doi.org/10.1038/s41598-022-15667-9] [PMID: 35817836]
[77]
Fernandes, M.; Manfredi, N.; Aluisantonio, L.; Franchini, F.; Chiaravalloti, A.; Izzi, F.; Di Santo, S.; Schillaci, O.; Mercuri, N.B.; Placidi, F.; Liguori, C. Cognitive functioning, cerebrospinal fluid Alzheimer’s disease biomarkers and cerebral glucose metabolism in late‐onset epilepsy of unknown aetiology: A prospective study. Eur. J. Neurosci., 2022, ejn.15734.
[http://dx.doi.org/10.1111/ejn.15734] [PMID: 35678770]
[78]
Croteau, E.; Castellano, C.A.; Fortier, M.; Bocti, C.; Fulop, T.; Paquet, N.; Cunnane, S.C. A cross-sectional comparison of brain glucose and ketone metabolism in cognitively healthy older adults, mild cognitive impairment and early Alzheimer’s disease. Exp. Gerontol., 2018, 107, 18-26.
[http://dx.doi.org/10.1016/j.exger.2017.07.004] [PMID: 28709938]
[79]
Ossenkoppele, R.; Tolboom, N.; Foster-Dingley, J.C.; Adriaanse, S.F.; Boellaard, R.; Yaqub, M.; Windhorst, A.D.; Barkhof, F.; Lammertsma, A.A.; Scheltens, P.; van der Flier, W.M.; van Berckel, B.N.M. Longitudinal imaging of Alzheimer pathology using [11C]PIB, [18F]FDDNP and [18F]FDG PET. Eur. J. Nucl. Med. Mol. Imaging, 2012, 39(6), 990-1000.
[http://dx.doi.org/10.1007/s00259-012-2102-3] [PMID: 22441582]
[80]
Vercruysse, P.; Vieau, D.; Blum, D.; Petersén, Å.; Dupuis, L. Hypothalamic Alterations in neurodegenerative diseases and their relation to abnormal energy metabolism. Front. Mol. Neurosci., 2018, 11, 2.
[http://dx.doi.org/10.3389/fnmol.2018.00002] [PMID: 29403354]
[81]
Ishii, M.; Iadecola, C. Metabolic and non-cognitive manifestations of Alzheimer’s disease: The hypothalamus as both culprit and target of pathology. Cell Metab., 2015, 22(5), 761-776.
[http://dx.doi.org/10.1016/j.cmet.2015.08.016] [PMID: 26365177]
[82]
Niwa, K.; Kazama, K.; Younkin, S.G.; Carlson, G.A.; Iadecola, C. Alterations in cerebral blood flow and glucose utilization in mice overexpressing the amyloid precursor protein. Neurobiol. Dis., 2002, 9(1), 61-68.
[http://dx.doi.org/10.1006/nbdi.2001.0460] [PMID: 11848685]
[83]
Lowe, M.T.J.; Faull, R.L.M.; Christie, D.L.; Waldvogel, H.J. Distribution of the creatine transporter throughout the human brain reveals a spectrum of creatine transporter immunoreactivity. J. Comp. Neurol., 2015, 523(5), 699-725.
[http://dx.doi.org/10.1002/cne.23667] [PMID: 25159005]
[84]
Leveugle, B.; Spik, G.; Perl, D.P.; Bouras, C.; Fillit, H.M.; Hof, P.R. The iron-binding protein lactotransferrin is present in pathologic lesions in a variety of neurodegenerative disorders: A comparative immunohistochemical analysis. Brain Res., 1994, 650(1), 20-31.
[http://dx.doi.org/10.1016/0006-8993(94)90202-X] [PMID: 7953673]
[85]
Peng, W.; Tan, C.; Mo, L.; Jiang, J.; Zhou, W.; Du, J.; Zhou, X.; Liu, X.; Chen, L. Glucose transporter 3 in neuronal glucose metabolism: Health and diseases. Metabolism, 2021, 123, 154869.
[http://dx.doi.org/10.1016/j.metabol.2021.154869] [PMID: 34425073]
[86]
Li, Z.; Zhang, Y.; Zheng, Y.; Liu, W.; Zhang, X.; Li, W.; Zhang, D.; Cai, Q.; Wang, S.; Meng, X.; Huang, G. Intranasal 15d-PGJ2 ameliorates brain glucose hypometabolism via PPARγ-dependent activation of PGC-1α/GLUT4 signalling in APP/PS1 transgenic mice. Neuropharmacology, 2021, 196, 108685.
[http://dx.doi.org/10.1016/j.neuropharm.2021.108685] [PMID: 34175325]
[87]
Ding, F.; Yao, J.; Rettberg, J.R.; Chen, S.; Brinton, R.D. Early decline in glucose transport and metabolism precedes shift to ketogenic system in female aging and Alzheimer’s mouse brain: Implication for bioenergetic intervention. PLoS One, 2013, 8(11), e79977.
[http://dx.doi.org/10.1371/journal.pone.0079977] [PMID: 24244584]
[88]
Ahn, K.C.; Learman, C.R.; Dunbar, G.L.; Maiti, P.; Jang, W.C.; Cha, H.C.; Song, M.S. Characterization of impaired cerebrovascular structure in APP/PS1 mouse brains. Neuroscience, 2018, 385, 246-254.
[http://dx.doi.org/10.1016/j.neuroscience.2018.05.002] [PMID: 29777753]
[89]
Choi, H.; Choi, Y.; Lee, E.J.; Kim, H.; Lee, Y.; Kwon, S.; Hwang, D.W.; Lee, D.S. Hippocampal glucose uptake as a surrogate of metabolic change of microglia in Alzheimer’s disease. J. Neuroinflammation, 2021, 18(1), 190.
[http://dx.doi.org/10.1186/s12974-021-02244-6] [PMID: 34465358]
[90]
McIntosh, A.; Mela, V.; Harty, C.; Minogue, A.M.; Costello, D.A.; Kerskens, C.; Lynch, M.A. Iron accumulation in microglia triggers a cascade of events that leads to altered metabolism and compromised function in APP/PS1 mice. Brain Pathol., 2019, 29(5), 606-621.
[http://dx.doi.org/10.1111/bpa.12704] [PMID: 30661261]
[91]
Holland, R.; McIntosh, A.L.; Finucane, O.M.; Mela, V.; Rubio-Araiz, A.; Timmons, G.; McCarthy, S.A.; Gun’ko, Y.K.; Lynch, M.A. Inflammatory microglia are glycolytic and iron retentive and typify the microglia in APP/PS1 mice. Brain Behav. Immun., 2018, 68, 183-196.
[http://dx.doi.org/10.1016/j.bbi.2017.10.017] [PMID: 29061364]
[92]
Andersson, A.K.; Rönnbäck, L.; Hansson, E. Lactate induces tumour necrosis factor-α, interleukin-6 and interleukin-1β release in microglial- and astroglial-enriched primary cultures. J. Neurochem., 2005, 93(5), 1327-1333.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03132.x] [PMID: 15934951]
[93]
Pan, R.Y.; He, L.; Zhang, J.; Liu, X.; Liao, Y.; Gao, J.; Liao, Y.; Yan, Y.; Li, Q.; Zhou, X.; Cheng, J.; Xing, Q.; Guan, F.; Zhang, J.; Sun, L.; Yuan, Z. Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer’s disease. Cell Metab., 2022, 34(4), 634-648.e6.
[http://dx.doi.org/10.1016/j.cmet.2022.02.013] [PMID: 35303422]
[94]
Doorduijn, A.S.; van de Rest, O.; van der Flier, W.M.; Visser, M. de van der Schueren, M.A.E. Energy and protein intake of Alzheimer’s disease patients compared to cognitively normal controls: Systematic review. J. Am. Med. Dir. Assoc., 2019, 20(1), 14-21.
[http://dx.doi.org/10.1016/j.jamda.2018.06.019] [PMID: 30100233]
[95]
Vogelsang, P.; Giil, L.M.; Lund, A.; Vedeler, C.A.; Parkar, A.P.; Nordrehaug, J.E.; Kristoffersen, E.K. Reduced glucose transporter-1 in brain derived circulating endothelial cells in mild Alzheimer’s disease patients. Brain Res., 2018, 1678, 304-309.
[http://dx.doi.org/10.1016/j.brainres.2017.10.035] [PMID: 29102777]
[96]
Winkler, E.A.; Nishida, Y.; Sagare, A.P.; Rege, S.V.; Bell, R.D.; Perlmutter, D.; Sengillo, J.D.; Hillman, S.; Kong, P.; Nelson, A.R.; Sullivan, J.S.; Zhao, Z.; Meiselman, H.J.; Wenby, R.B.; Soto, J.; Abel, E.D.; Makshanoff, J.; Zuniga, E.; De Vivo, D.C.; Zlokovic, B.V. GLUT1 reductions exacerbate Alzheimer’s disease vasculo-neuronal dysfunction and degeneration. Nat. Neurosci., 2015, 18(4), 521-530.
[http://dx.doi.org/10.1038/nn.3966] [PMID: 25730668]
[97]
Lee, Y.J.; Kim, J.E.; Hwang, I.S.; Kwak, M.H.; Lee, J.H.; Jung, Y.J. an, B.S.; Kwon, H.S.; Kim, B.C.; Kim, S.J.; Kim, J.M.; Hwang, D.Y. Alzheimer’s phenotypes induced by overexpression of human presenilin 2 mutant proteins stimulate significant changes in key factors of glucose metabolism. Mol. Med. Rep., 2013, 7(5), 1571-1578.
[http://dx.doi.org/10.3892/mmr.2013.1404] [PMID: 23546527]
[98]
Szablewski, L. Glucose transporters in brain: In health and in Alzheimer’s disease. J. Alzheimers Dis., 2016, 55(4), 1307-1320.
[http://dx.doi.org/10.3233/JAD-160841] [PMID: 27858715]
[99]
Pearson-Leary, J.; McNay, E.C. Novel roles for the insulin-regulated glucose transporter-4 in hippocampally dependent memory. J. Neurosci., 2016, 36(47), 11851-11864.
[http://dx.doi.org/10.1523/JNEUROSCI.1700-16.2016] [PMID: 27881773]
[100]
De Felice, F.G.; Ferreira, S.T. Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes, 2014, 63(7), 2262-2272.
[http://dx.doi.org/10.2337/db13-1954] [PMID: 24931033]
[101]
Duarte, AI; Santos, MS; Oliveira, CR; Moreira, PI Brain insulin signalling, glucose metabolism and females' reproductive aging: A dangerous triad in Alzheimer's disease. Neuropharmacology, 2018, 136(Pt B), 223-42.
[102]
van der Harg, J.M.; Eggels, L.; Bangel, F.N.; Ruigrok, S.R.; Zwart, R.; Hoozemans, J.J.M.; la Fleur, S.E.; Scheper, W. Insulin deficiency results in reversible protein kinase A activation and tau phosphorylation. Neurobiol. Dis., 2017, 103, 163-173.
[http://dx.doi.org/10.1016/j.nbd.2017.04.005] [PMID: 28400135]
[103]
Gratuze, M.; Joly-Amado, A.; Vieau, D.; Buée, L.; Blum, D. Mutual relationship between tau and central insulin signalling: Consequences for AD and tauopathies? Neuroendocrinology, 2018, 107(2), 181-195.
[http://dx.doi.org/10.1159/000487641] [PMID: 29439247]
[104]
Leboucher, A.; Ahmed, T.; Caron, E.; Tailleux, A.; Raison, S.; Joly-Amado, A.; Marciniak, E.; Carvalho, K.; Hamdane, M.; Bantubungi, K.; Lancel, S.; Eddarkaoui, S.; Caillierez, R.; Vallez, E.; Staels, B.; Vieau, D.; Balschun, D.; Buee, L.; Blum, D. Brain insulin response and peripheral metabolic changes in a Tau transgenic mouse model. Neurobiol. Dis., 2019, 125, 14-22.
[http://dx.doi.org/10.1016/j.nbd.2019.01.008] [PMID: 30665005]
[105]
Zhang, S.; Chai, R.; Yang, Y.Y.; Guo, S.Q.; Wang, S.; Guo, T.; Xu, S.F.; Zhang, Y.H.; Wang, Z.Y.; Guo, C. Chronic diabetic states worsen Alzheimer neuropathology and cognitive deficits accompanying disruption of calcium signaling in leptin-deficient APP/PS1 mice. Oncotarget, 2017, 8(27), 43617-43634.
[http://dx.doi.org/10.18632/oncotarget.17116] [PMID: 28467789]
[106]
Rahman, S.O.; Panda, B.P.; Parvez, S.; Kaundal, M.; Hussain, S.; Akhtar, M.; Najmi, A.K. Neuroprotective role of astaxanthin in hippocampal insulin resistance induced by Aβ peptides in animal model of Alzheimer’s disease. Biomed. Pharmacother., 2019, 110, 47-58.
[http://dx.doi.org/10.1016/j.biopha.2018.11.043] [PMID: 30463045]
[107]
Najem, D.; Bamji-Mirza, M.; Yang, Z.; Zhang, W. Abeta-induced insulin resistance and the effects of insulin on the cholesterol synthesis pathway and Abeta secretion in neural cells. Neurosci. Bull., 2016, 32(3), 227-238.
[http://dx.doi.org/10.1007/s12264-016-0034-9] [PMID: 27207326]
[108]
Zhou, Y.; Xu, B. New insights into anti-diabetes effects and molecular mechanisms of dietary saponins. Crit. Rev. Food Sci. Nutr., 2022, 1-26.
[http://dx.doi.org/10.1080/10408398.2022.2101425] [PMID: 35866515]
[109]
Zhou, K.; Chen, Q.; Chen, J.; Liang, D.; Feng, W.; Liu, M.; Wang, Q.; Wang, R.; Ouyang, Q.; Quan, C.; Chen, S. Spatiotemporal regulation of insulin signaling by liquid–liquid phase separation. Cell Discov., 2022, 8(1), 64.
[http://dx.doi.org/10.1038/s41421-022-00430-1] [PMID: 35790738]
[110]
Akhtar, A.; Sah, S.P. Insulin signaling pathway and related molecules: Role in neurodegeneration and Alzheimer’s disease. Neurochem. Int., 2020, 135, 104707.
[http://dx.doi.org/10.1016/j.neuint.2020.104707] [PMID: 32092326]
[111]
Long, H-Z.; Cheng, Y.; Zhou, Z-W.; Luo, H-Y.; Wen, D-D.; Gao, L-C. Pi3k/Akt signal pathway: a target of natural products in the prevention and treatment of Alzheimer’s disease and Parkinson’s disease. Front. Pharmacol., 2021, 12, 648636.
[http://dx.doi.org/10.3389/fphar.2021.648636] [PMID: 33935751]
[112]
Das, A.; Bhattacharya, B.; Roy, S. Decrypting a path based approach for identifying the interplay between PI3K and GSK3 signaling cascade from the perspective of cancer. Genes Dis., 2022, 9(4), 868-888.
[http://dx.doi.org/10.1016/j.gendis.2021.12.025] [PMID: 35685456]
[113]
Rapaka, D.; Bitra, V.R.; Challa, S.R.; Adiukwu, P.C. mTOR signaling as a molecular target for the alleviation of Alzheimer’s disease pathogenesis. Neurochem. Int., 2022, 155, 105311.
[http://dx.doi.org/10.1016/j.neuint.2022.105311] [PMID: 35218870]
[114]
Mulder, F.V.M.; Peeters, E.F.H.I.; Westerink, J.; Zwartkruis, F.J.T.; de Ranitz-Greven, W.L. The long-term effect of mTOR inhibition on lipid and glucose metabolism in tuberous sclerosis complex: Data from the Dutch TSC registry. Orphanet J. Rare Dis., 2022, 17(1), 252.
[http://dx.doi.org/10.1186/s13023-022-02385-8] [PMID: 35804402]
[115]
Karwi, Q.G.; Lopaschuk, G.D. Branched-chain amino acid metabolism in the failing heart. Cardiovasc. Drugs Ther., 2022.
[http://dx.doi.org/10.1007/s10557-022-07320-4] [PMID: 35150384]
[116]
Du, X.; Di Malta, C.; Fang, Z.; Shen, T.; Niu, X.; Chen, M.; Jin, B.; Yu, H.; Lei, L.; Gao, W.; Song, Y.; Wang, Z.; Xu, C.; Cao, Z.; Liu, G.; Li, X. Nuciferine protects against high-fat diet-induced hepatic steatosis and insulin resistance via activating TFEB-mediated autophagy–lysosomal pathway. Acta Pharm. Sin. B, 2022, 12(6), 2869-2886.
[http://dx.doi.org/10.1016/j.apsb.2021.12.012] [PMID: 35755273]
[117]
Moloney, A.M.; Griffin, R.J.; Timmons, S.; O’Connor, R.; Ravid, R.; O’Neill, C. Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol. Aging, 2010, 31(2), 224-243.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.04.002] [PMID: 18479783]
[118]
Bosco, D.; Fava, A.; Plastino, M.; Montalcini, T.; Pujia, A. Possible implications of insulin resistance and glucose metabolism in Alzheimer’s disease pathogenesis. J. Cell. Mol. Med., 2011, 15(9), 1807-1821.
[http://dx.doi.org/10.1111/j.1582-4934.2011.01318.x] [PMID: 21435176]
[119]
Lanzillotta, C.; Di Domenico, F.; Perluigi, M.; Butterfield, D.A. Targeting mitochondria in Alzheimer disease: Rationale and perspectives. CNS Drugs, 2019, 33(10), 957-969.
[http://dx.doi.org/10.1007/s40263-019-00658-8] [PMID: 31410665]
[120]
Yu, H.; Lin, X.; Wang, D.; Zhang, Z.; Guo, Y.; Ren, X.; Xu, B.; Yuan, J.; Liu, J.; Spencer, P.S.; Wang, J.Z.; Yang, X. Mitochondrial molecular abnormalities revealed by proteomic analysis of hippocampal organelles of mice triple transgenic for Alzheimer disease. Front. Mol. Neurosci., 2018, 11, 74.
[http://dx.doi.org/10.3389/fnmol.2018.00074] [PMID: 29593495]
[121]
Tang, J.; Oliveros, A.; Jang, M.H. Dysfunctional mitochondrial bioenergetics and synaptic degeneration in Alzheimer disease. Int. Neurourol. J., 2019, 23(Suppl. 1), S5-S10.
[http://dx.doi.org/10.5213/inj.1938036.018] [PMID: 30832462]
[122]
Mastroeni, D.; McKee, A.; Grover, A.; Rogers, J.; Coleman, P.D. Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer’s disease. PLoS One, 2009, 4(8), e6617.
[http://dx.doi.org/10.1371/journal.pone.0006617] [PMID: 19672297]
[123]
Armand-Ugon, M.; Ansoleaga, B.; Berjaoui, S.; Ferrer, I. Reduced mitochondrial activity is early and steady in the entorhinal cortex but it is mainly unmodified in the frontal cortex in Alzheimer’s disease. Curr. Alzheimer Res., 2017, 14(12), 1327-1334.
[PMID: 28474567]
[124]
Bosetti, F.; Brizzi, F.; Barogi, S.; Mancuso, M.; Siciliano, G.; Tendi, E.A.; Murri, L.; Rapoport, S.I.; Solaini, G. Cytochrome c oxidase and mitochondrial F1F0-ATPase (ATP synthase) activities in platelets and brain from patients with Alzheimer’s disease. Neurobiol. Aging, 2002, 23(3), 371-376.
[http://dx.doi.org/10.1016/S0197-4580(01)00314-1] [PMID: 11959398]
[125]
Brown, A.M.; Gordon, D.; Lee, H.; Vrièze, F.W-D.; Cellini, E.; Bagnoli, S.; Nacmias, B.; Sorbi, S.; Hardy, J.; Blass, J.P. Testing for linkage and association across the dihydrolipoyl dehydrogenase gene region with Alzheimer’s disease in three sample populations. Neurochem. Res., 2007, 32(4-5), 857-869.
[http://dx.doi.org/10.1007/s11064-006-9235-3] [PMID: 17342416]
[126]
Ahmad, W.; Ebert, P.R. 5-Methoxyindole-2-carboxylic acid (MICA) suppresses Aβ-mediated pathology in C. elegans. Exp. Gerontol., 2018, 108, 215-225.
[http://dx.doi.org/10.1016/j.exger.2018.04.021] [PMID: 29709515]
[127]
Ahmad, W. Dihydrolipoamide dehydrogenase suppression induces human tau phosphorylation by increasing whole body glucose levels in a C. elegans model of Alzheimer’s Disease. Exp. Brain Res., 2018, 236(11), 2857-2866.
[http://dx.doi.org/10.1007/s00221-018-5341-0] [PMID: 30056470]
[128]
Butterfield, D.A.; Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci., 2019, 20(3), 148-160.
[http://dx.doi.org/10.1038/s41583-019-0132-6] [PMID: 30737462]
[129]
Ahmad, W.; Ijaz, B.; Shabbiri, K.; Ahmed, F.; Rehman, S. Oxidative toxicity in diabetes and Alzheimer’s disease: Mechanisms behind ROS/RNS generation. J. Biomed. Sci., 2017, 24(1), 76.
[http://dx.doi.org/10.1186/s12929-017-0379-z] [PMID: 28927401]
[130]
Fan, Y.G.; Guo, T.; Han, X.R.; Liu, J.L.; Cai, Y.T.; Xue, H.; Huang, X.S.; Li, Y.C.; Wang, Z.Y.; Guo, C. Paricalcitol accelerates BACE1 lysosomal degradation and inhibits calpain-1 dependent neuronal loss in APP/PS1 transgenic mice. EBioMedicine, 2019, 45, 393-407.
[http://dx.doi.org/10.1016/j.ebiom.2019.07.014] [PMID: 31303501]
[131]
Rashid, H.O.; Yadav, R.K.; Kim, H.R.; Chae, H.J. ER stress: Autophagy induction, inhibition and selection. Autophagy, 2015, 11(11), 1956-1977.
[http://dx.doi.org/10.1080/15548627.2015.1091141] [PMID: 26389781]
[132]
Poirier, Y.; Grimm, A.; Schmitt, K.; Eckert, A. Link between the unfolded protein response and dysregulation of mitochondrial bioenergetics in Alzheimer’s disease. Cell. Mol. Life Sci., 2019, 76(7), 1419-1431.
[http://dx.doi.org/10.1007/s00018-019-03009-4] [PMID: 30683981]
[133]
Coggan, J.S.; Keller, D.; Calì, C.; Lehväslaiho, H.; Markram, H.; Schürmann, F.; Magistretti, P.J. Norepinephrine stimulates glycogenolysis in astrocytes to fuel neurons with lactate. PLOS Comput. Biol., 2018, 14(8), e1006392.
[http://dx.doi.org/10.1371/journal.pcbi.1006392] [PMID: 30161133]
[134]
Vohra, R.; Kolko, M. Lactate: More Than merely a metabolic waste product in the inner retina. Mol. Neurobiol., 2020, 57(4), 2021-2037.
[http://dx.doi.org/10.1007/s12035-019-01863-8] [PMID: 31916030]
[135]
e, L.; Swerdlow, R.H. Lactate's effect on human neuroblastoma cell bioenergetic fluxes. Biochem. Pharmacol., 2016, 99, 88-100.
[http://dx.doi.org/10.1016/j.bcp.2015.11.002] [PMID: 26592660]
[136]
Muraleedharan, R.; Gawali, M.V.; Tiwari, D.; Sukumaran, A.; Oatman, N.; Anderson, J.; Nardini, D.; Bhuiyan, M.A.N.; Tkáč, I.; Ward, A.L.; Kundu, M.; Waclaw, R.; Chow, L.M.; Gross, C.; Rao, R.; Schirmeier, S.; Dasgupta, B. AMPK-regulated astrocytic lactate shuttle plays a non-cell-autonomous role in neuronal survival. Cell Rep., 2020, 32(9), 108092.
[http://dx.doi.org/10.1016/j.celrep.2020.108092] [PMID: 32877674]
[137]
Barone, E.; Di Domenico, F.; Perluigi, M.; Butterfield, D.A. The interplay among oxidative stress, brain insulin resistance and AMPK dysfunction contribute to neurodegeneration in type 2 diabetes and Alzheimer disease. Free Radic. Biol. Med., 2021, 176, 16-33.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.09.006] [PMID: 34530075]
[138]
Lu, W.; Huang, J.; Sun, S.; Huang, S.; Gan, S.; Xu, J.; Yang, M.; Xu, S.; Jiang, X. Changes in lactate content and monocarboxylate transporter 2 expression in Aβ25-35-treated rat model of Alzheimer’s disease. Neurol. Sci., 2015, 36(6), 871-876.
[http://dx.doi.org/10.1007/s10072-015-2087-3] [PMID: 25647291]
[139]
Liguori, C.; Stefani, A.; Sancesario, G.; Sancesario, G.M.; Marciani, M.G.; Pierantozzi, M. CSF lactate levels, τ proteins, cognitive decline: A dynamic relationship in Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry, 2015, 86(6), 655-659.
[http://dx.doi.org/10.1136/jnnp-2014-308577] [PMID: 25121572]
[140]
Liguori, C.; Chiaravalloti, A.; Sancesario, G.; Stefani, A.; Sancesario, G.M.; Mercuri, N.B.; Schillaci, O.; Pierantozzi, M. Cerebrospinal fluid lactate levels and brain [18F]FDG PET hypometabolism within the default mode network in Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging, 2016, 43(11), 2040-2049.
[http://dx.doi.org/10.1007/s00259-016-3417-2] [PMID: 27221635]
[141]
Wang, Y.; Li, J.; Wang, M.Y.; Pan, Z.Y.; Li, Z.Q.; Wang, Z.F. Chronic microglial inflammation promotes neuronal lactate supply but impairs its utilization in primary rat astrocyte-neuron co-cultures. Biochem. Biophys. Res. Commun., 2022, 607, 28-35.
[http://dx.doi.org/10.1016/j.bbrc.2022.03.122] [PMID: 35366540]
[142]
Chen, S.; Guo, D.; Lei, B.; Bi, J.; Yang, H. Biglycan protects human neuroblastoma cells from nitric oxide-induced death by inhibiting AMPK-mTOR mediated autophagy and intracellular ROS level. Biotechnol. Lett., 2020, 42(4), 657-668.
[http://dx.doi.org/10.1007/s10529-020-02818-z] [PMID: 31989342]
[143]
Pichiah, P.B.T.; Sankarganesh, D.; Arunachalam, S.; Achiraman, S. Adipose-derived molecules-untouched horizons in Alzheimer’s disease biology. Front. Aging Neurosci., 2020, 12, 17.
[http://dx.doi.org/10.3389/fnagi.2020.00017] [PMID: 32116650]
[144]
Chauhan, A.K.; Mallick, B.N. Association between autophagy and rapid eye movement sleep loss-associated neurodegenerative and patho-physio-behavioral changes. Sleep Med., 2019, 63, 29-37.
[http://dx.doi.org/10.1016/j.sleep.2019.04.019] [PMID: 31605901]
[145]
Saito, T.; Kuma, A.; Sugiura, Y.; Ichimura, Y.; Obata, M.; Kitamura, H.; Okuda, S.; Lee, H.C.; Ikeda, K.; Kanegae, Y.; Saito, I.; Auwerx, J.; Motohashi, H.; Suematsu, M.; Soga, T.; Yokomizo, T.; Waguri, S.; Mizushima, N.; Komatsu, M. Autophagy regulates lipid metabolism through selective turnover of NCoR1. Nat. Commun., 2019, 10(1), 1567.
[http://dx.doi.org/10.1038/s41467-019-08829-3] [PMID: 30952864]
[146]
Harris, M.; El Hindy, M.; Usmari-Moraes, M.; Hudd, F.; Shafei, M.; Dong, M.; Hezwani, M.; Clark, P.; House, M.; Forshaw, T.; Kehoe, P.; Conway, M.E. BCAT-induced autophagy regulates Aβ load through an interdependence of redox state and PKC phosphorylation-implications in Alzheimer’s disease. Free Radic. Biol. Med., 2020, 152, 755-766.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.01.019] [PMID: 31982508]
[147]
Füllgrabe, J.; Ghislat, G.; Cho, D.H.; Rubinsztein, D.C. Transcriptional regulation of mammalian autophagy at a glance. J. Cell Sci., 2016, 129(16), 3059-3066.
[http://dx.doi.org/10.1242/jcs.188920] [PMID: 27528206]
[148]
Schmukler, E.; Pinkas-Kramarski, R. Autophagy induction in the treatment of Alzheimer’s disease. Drug Dev. Res., 2020, 81(2), 184-193.
[http://dx.doi.org/10.1002/ddr.21605] [PMID: 31782539]
[149]
Hwang, J.Y.; Yan, J.; Zukin, R.S. Autophagy and synaptic plasticity: Epigenetic regulation. Curr. Opin. Neurobiol., 2019, 59, 207-212.
[http://dx.doi.org/10.1016/j.conb.2019.09.010] [PMID: 31634675]
[150]
Ruan, H.B.; Ma, Y.; Torres, S.; Zhang, B.; Feriod, C.; Heck, R.M.; Qian, K.; Fu, M.; Li, X.; Nathanson, M.H.; Bennett, A.M.; Nie, Y.; Ehrlich, B.E.; Yang, X. Calcium-dependent O-GlcNAc signaling drives liver autophagy in adaptation to starvation. Genes Dev., 2017, 31(16), 1655-1665.
[http://dx.doi.org/10.1101/gad.305441.117] [PMID: 28903979]
[151]
Yue, J.; Wang, X.; Feng, B.; Hu, L.; Yang, L.; Lu, L.; Zhang, K.; Wang, Y.; Liu, S. Activation of G-protein-coupled receptor 30 protects neurons against excitotoxicity through inhibiting excessive autophagy induced by glutamate. ACS Chem. Neurosci., 2019, 10(10), 4227-4236.
[http://dx.doi.org/10.1021/acschemneuro.9b00287] [PMID: 31545891]
[152]
Loos, B.; Klionsky, D.J.; Wong, E. Augmenting brain metabolism to increase macro- and chaperone-mediated autophagy for decreasing neuronal proteotoxicity and aging. Prog. Neurobiol., 2017, 156, 90-106.
[http://dx.doi.org/10.1016/j.pneurobio.2017.05.001] [PMID: 28502807]
[153]
Rojas-Morales, P.; Tapia, E.; Pedraza-Chaverri, J. β-Hydroxybutyrate: A signaling metabolite in starvation response? Cell. Signal., 2016, 28(8), 917-923.
[http://dx.doi.org/10.1016/j.cellsig.2016.04.005] [PMID: 27083590]
[154]
Onyango, A.N. Cellular stresses and stress responses in the pathogenesis of insulin resistance. Oxid. Med. Cell. Longev., 2018, 2018, 1-27.
[http://dx.doi.org/10.1155/2018/4321714] [PMID: 30116482]
[155]
Belgrad, J.; De Pace, R.; Fields, R.D. Autophagy in myelinating glia. J. Neurosci., 2020, 40(2), 256-266.
[http://dx.doi.org/10.1523/JNEUROSCI.1066-19.2019] [PMID: 31744863]
[156]
He, B.; Perez, S.E.; Lee, S.H.; Ginsberg, S.D.; Malek-Ahmadi, M.; Mufson, E.J. Expression profiling of precuneus layer III cathepsin D‐immunopositive pyramidal neurons in mild cognitive impairment and Alzheimer’s disease: Evidence for neuronal signaling vulnerability. J. Comp. Neurol., 2020, 528(16), 2748-2766.
[http://dx.doi.org/10.1002/cne.24929] [PMID: 32323319]
[157]
Lee, J.H.; Yu, W.H.; Kumar, A.; Lee, S.; Mohan, P.S.; Peterhoff, C.M.; Wolfe, D.M.; Martinez-Vicente, M.; Massey, A.C.; Sovak, G.; Uchiyama, Y.; Westaway, D.; Cuervo, A.M.; Nixon, R.A. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell, 2010, 141(7), 1146-1158.
[http://dx.doi.org/10.1016/j.cell.2010.05.008] [PMID: 20541250]
[158]
Barbero-Camps, E.; Roca-Agujetas, V.; Bartolessis, I.; de Dios, C.; Fernández-Checa, J.C.; Marí, M.; Morales, A.; Hartmann, T.; Colell, A. Cholesterol impairs autophagy-mediated clearance of amyloid beta while promoting its secretion. Autophagy, 2018, 14(7), 1129-1154.
[http://dx.doi.org/10.1080/15548627.2018.1438807] [PMID: 29862881]
[159]
Chan, H.H.; Koh, R.Y.; Lim, C.L.; Leong, C.O. Receptor-interacting protein kinase 1 (RIPK1) as a potential therapeutic target: An overview of its possible role in the pathogenesis of Alzheimer’s disease. Curr. Alzheimer Res., 2019, 16(10), 907-918.
[http://dx.doi.org/10.2174/1567205016666191023102422] [PMID: 31642777]
[160]
Dou, J.; Su, P.; Xu, C.; Wen, Z.; Mao, Z.; Li, W. Targeting Hsc70-based autophagy to eliminate amyloid β oligomers. Biochem. Biophys. Res. Commun., 2020, 524(4), 923-928.
[http://dx.doi.org/10.1016/j.bbrc.2020.02.016] [PMID: 32057360]
[161]
Caballero, B.; Wang, Y.; Diaz, A.; Tasset, I.; Juste, Y.R.; Stiller, B.; Mandelkow, E.M.; Mandelkow, E.; Cuervo, A.M. Interplay of pathogenic forms of human tau with different autophagic pathways. Aging Cell, 2018, 17(1), e12692.
[http://dx.doi.org/10.1111/acel.12692] [PMID: 29024336]
[162]
Silva, P.N.; Furuya, T.K.; Braga, I.L.; Rasmussen, L.T.; Labio, R.W.; Bertolucci, P.H.; Chen, E.S.; Turecki, G.; Mechawar, N.; Payão, S.L.; Mill, J.; Smith, M.C. Analysis of HSPA8 and HSPA9 mRNA expression and promoter methylation in the brain and blood of Alzheimer’s disease patients. J. Alzheimers Dis., 2013, 38(1), 165-170.
[http://dx.doi.org/10.3233/JAD-130428] [PMID: 23948933]
[163]
Yang, X.; Tohda, C. Heat shock cognate 70 inhibitor, VER-155008, reduces memory deficits and axonal degeneration in a mouse model of Alzheimer’s disease. Front. Pharmacol., 2018, 9, 48.
[http://dx.doi.org/10.3389/fphar.2018.00048] [PMID: 29441022]
[164]
Gorantla, N.V.; Chinnathambi, S. Tau protein squired by molecular chaperones during Alzheimer’s disease. J. Mol. Neurosci., 2018, 66(3), 356-368.
[http://dx.doi.org/10.1007/s12031-018-1174-3] [PMID: 30267382]
[165]
Shimura, H.; Schwartz, D.; Gygi, S.P.; Kosik, K.S. CHIP-Hsc70 complex ubiquitinates phosphorylated tau and enhances cell survival. J. Biol. Chem., 2004, 279(6), 4869-4876.
[http://dx.doi.org/10.1074/jbc.M305838200] [PMID: 14612456]
[166]
Woo, J.A.; Liu, T.; Zhao, X.; Trotter, C.; Yrigoin, K.; Cazzaro, S.; Narvaez, E.D.; Khan, H.; Witas, R.; Bukhari, A.; Makati, K.; Wang, X.; Dickey, C.; Kang, D.E. Enhanced tau pathology via RanBP9 and Hsp90/Hsc70 chaperone complexes. Hum. Mol. Genet., 2017, 26(20), 3973-3988.
[http://dx.doi.org/10.1093/hmg/ddx284] [PMID: 29016855]
[167]
Itoh, K.; Nakamura, K.; Iijima, M.; Sesaki, H. Mitochondrial dynamics in neurodegeneration. Trends Cell Biol., 2013, 23(2), 64-71.
[http://dx.doi.org/10.1016/j.tcb.2012.10.006] [PMID: 23159640]
[168]
Barnett, A.; Brewer, G.J. Autophagy in aging and Alzheimer’s disease: Pathologic or protective? J. Alzheimers Dis., 2011, 25(3), 385-394.
[http://dx.doi.org/10.3233/JAD-2011-101989] [PMID: 21422527]
[169]
Geisler, S.; Holmström, K.M.; Skujat, D.; Fiesel, F.C.; Rothfuss, O.C.; Kahle, P.J.; Springer, W. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol., 2010, 12(2), 119-131.
[http://dx.doi.org/10.1038/ncb2012] [PMID: 20098416]
[170]
Pankiv, S.; Clausen, T.H.; Lamark, T.; Brech, A.; Bruun, J.A.; Outzen, H.; Øvervatn, A.; Bjørkøy, G.; Johansen, T. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem., 2007, 282(33), 24131-24145.
[http://dx.doi.org/10.1074/jbc.M702824200] [PMID: 17580304]
[171]
Mary, A.; Eysert, F.; Checler, F.; Chami, M. Mitophagy in Alzheimer’s disease: Molecular defects and therapeutic approaches. Mol. Psychiatry, 2022.
[http://dx.doi.org/10.1038/s41380-022-01631-6] [PMID: 35665766]
[172]
Hu, Y.; Chen, H.; Zhang, L.; Lin, X.; Li, X.; Zhuang, H.; Fan, H.; Meng, T.; He, Z.; Huang, H.; Gong, Q.; Zhu, D.; Xu, Y.; He, P.; Li, L.; Feng, D. The AMPK-MFN2 axis regulates MAM dynamics and autophagy induced by energy stresses. Autophagy, 2021, 17(5), 1142-1156.
[http://dx.doi.org/10.1080/15548627.2020.1749490] [PMID: 32249716]
[173]
Manczak, M.; Kandimalla, R.; Yin, X.; Reddy, P.H. Hippocampal mutant APP and amyloid beta-induced cognitive decline, dendritic spine loss, defective autophagy, mitophagy and mitochondrial abnormalities in a mouse model of Alzheimer’s disease. Hum. Mol. Genet., 2018, 27(8), 1332-1342.
[http://dx.doi.org/10.1093/hmg/ddy042] [PMID: 29408999]
[174]
Brewer, G.J.; Herrera, R.A.; Philipp, S.; Sosna, J.; Reyes-Ruiz, J.M.; Glabe, C.G. Age-related intraneuronal aggregation of amyloid-beta in endosomes, mitochondria, autophagosomes, and lysosomes. J. Alzheimers Dis., 2020, 73(1), 229-246.
[http://dx.doi.org/10.3233/JAD-190835] [PMID: 31771065]
[175]
Nobili, A.; Krashia, P.; D’Amelio, M. Cisd2: A promising new target in Alzheimer’s disease †. J. Pathol., 2020, 251(2), 113-116.
[http://dx.doi.org/10.1002/path.5436] [PMID: 32207855]
[176]
Cummins, N.; Tweedie, A.; Zuryn, S.; Bertran-Gonzalez, J.; Götz, J. Disease‐associated tau impairs mitophagy by inhibiting Parkin translocation to mitochondria. EMBO J., 2019, 38(3), e99360.
[http://dx.doi.org/10.15252/embj.201899360] [PMID: 30538104]
[177]
Hu, Y.; Li, X.C.; Wang, Z.; Luo, Y.; Zhang, X.; Liu, X.P.; Feng, Q.; Wang, Q.; Yue, Z.; Chen, Z.; Ye, K.; Wang, J.Z.; Liu, G.P. Tau accumulation impairs mitophagy via increasing mitochondrial membrane potential and reducing mitochondrial Parkin. Oncotarget, 2016, 7(14), 17356-17368.
[http://dx.doi.org/10.18632/oncotarget.7861] [PMID: 26943044]
[178]
Kuang, H.; Tan, C.Y.; Tian, H.Z.; Liu, L.H.; Yang, M.W.; Hong, F.F.; Yang, S.L. Exploring the bi‐directional relationship between autophagy and Alzheimer’s disease. CNS Neurosci. Ther., 2020, 26(2), 155-166.
[http://dx.doi.org/10.1111/cns.13216] [PMID: 31503421]
[179]
Cavieres, V.A.; González, A.; Muñoz, V.C.; Yefi, C.P.; Bustamante, H.A.; Barraza, R.R.; Tapia-Rojas, C.; Otth, C.; Barrera, M.J.; González, C.; Mardones, G.A.; Inestrosa, N.C.; Burgos, P.V. Tetrahydrohyperforin inhibits the proteolytic processing of amyloid precursor protein and enhances its degradation by Atg5-dependent autophagy. PLoS One, 2015, 10(8), e0136313.
[http://dx.doi.org/10.1371/journal.pone.0136313] [PMID: 26308941]
[180]
Feng, T.; Tammineni, P.; Agrawal, C.; Jeong, Y.Y.; Cai, Q. Autophagy-mediated regulation of BACE1 protein trafficking and degradation. J. Biol. Chem., 2017, 292(5), 1679-1690.
[http://dx.doi.org/10.1074/jbc.M116.766584] [PMID: 28028177]
[181]
Wu, H.; Lu, M.H.; Wang, W.; Zhang, M.Y.; Zhu, Q.Q.; Xia, Y.Y.; Xu, R.X.; Yang, Y.; Chen, L.H.; Ma, Q.H. Lamotrigine reduces beta-site AbetaPP-cleaving enzyme 1 protein levels through induction of autophagy. J. Alzheimers Dis., 2015, 46(4), 863-876.
[http://dx.doi.org/10.3233/JAD-143162] [PMID: 25854934]
[182]
Nilsson, P.; Loganathan, K.; Sekiguchi, M.; Matsuba, Y.; Hui, K.; Tsubuki, S.; Tanaka, M.; Iwata, N.; Saito, T.; Saido, T.C. Aβ secretion and plaque formation depend on autophagy. Cell Rep., 2013, 5(1), 61-69.
[http://dx.doi.org/10.1016/j.celrep.2013.08.042] [PMID: 24095740]
[183]
Jiang, S.; Zhao, Y.; Zhang, T.; Lan, J.; Yang, J.; Yuan, L.; Zhang, Q.; Pan, K.; Zhang, K. Galantamine inhibits β-amyloid-induced cytostatic autophagy in PC12 cells through decreasing ROS production. Cell Prolif., 2018, 51(3), e12427.
[http://dx.doi.org/10.1111/cpr.12427] [PMID: 29292543]
[184]
Benito-Cuesta, I.; Ordonez-Gutierrez, L.; Wandosell, F. AMPK activation does not enhance autophagy in neurons in contrast to mTORc1 inhibition: Different impact on beta-amyloid clearance. Autophagy, 2020, •••, 1-16.
[PMID: 32075509]
[185]
Vartak, R.S.; Rodin, A.; Oddo, S. Differential activation of the mTOR/autophagy pathway predicts cognitive performance in APP/PS1 mice. Neurobiol. Aging, 2019, 83, 105-113.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.08.018] [PMID: 31585361]
[186]
Han, K.; Kim, S.H.; Choi, M. Computational modeling of the effects of autophagy on amyloid-β peptide levels. Theor. Biol. Med. Model., 2020, 17(1), 2.
[http://dx.doi.org/10.1186/s12976-020-00119-6] [PMID: 32102666]
[187]
Chen, J.L.; Luo, C.; Pu, D.; Zhang, G.Q.; Zhao, Y.X.; Sun, Y.; Zhao, K.X.; Liao, Z.Y.; Lv, A.K.; Zhu, S.Y.; Zhou, J.; Xiao, Q. Metformin attenuates diabetes-induced tau hyperphosphorylation in vitro and in vivo by enhancing autophagic clearance. Exp. Neurol., 2019, 311, 44-56.
[http://dx.doi.org/10.1016/j.expneurol.2018.09.008] [PMID: 30219731]
[188]
Li, X.; Lu, J.; Xu, Y.; Wang, J.; Qiu, X.; Fan, L.; Li, B.; Liu, W.; Mao, F.; Zhu, J.; Shen, X.; Li, J. Discovery of nitazoxanide-based derivatives as autophagy activators for the treatment of Alzheimer’s disease. Acta Pharm. Sin. B, 2020, 10(4), 646-666.
[http://dx.doi.org/10.1016/j.apsb.2019.07.006] [PMID: 32322468]
[189]
Ejlerskov, P.; Rubinsztein, D.C.; Pocock, R. IFNB/interferon-β regulates autophagy via a MIR1 -TBC1D15-RAB7 pathway. Autophagy, 2020, 16(4), 767-769.
[http://dx.doi.org/10.1080/15548627.2020.1718384] [PMID: 31958036]
[190]
Reddy, P.H.; Oliver, D.M.A. Amyloid beta and phosphorylated tau-induced defective autophagy and mitophagy in Alzheimer’s disease. Cells, 2019, 8(5), 488.
[http://dx.doi.org/10.3390/cells8050488] [PMID: 31121890]
[191]
Menzies, F.M.; Fleming, A.; Caricasole, A.; Bento, C.F.; Andrews, S.P.; Ashkenazi, A.; Füllgrabe, J.; Jackson, A.; Jimenez Sanchez, M.; Karabiyik, C.; Licitra, F.; Lopez Ramirez, A.; Pavel, M.; Puri, C.; Renna, M.; Ricketts, T.; Schlotawa, L.; Vicinanza, M.; Won, H.; Zhu, Y.; Skidmore, J.; Rubinsztein, D.C. Autophagy and neurodegeneration: Pathogenic mechanisms and therapeutic opportunities. Neuron, 2017, 93(5), 1015-1034.
[http://dx.doi.org/10.1016/j.neuron.2017.01.022] [PMID: 28279350]
[192]
Kang, S.; Son, S.M.; Baik, S.H.; Yang, J.; Mook-Jung, I. Autophagy-mediated secretory pathway is responsible for both normal and pathological tau in neurons. J. Alzheimers Dis., 2019, 70(3), 667-680.
[http://dx.doi.org/10.3233/JAD-190180] [PMID: 31256134]
[193]
Berger, Z.; Ravikumar, B.; Menzies, F.M.; Oroz, L.G.; Underwood, B.R.; Pangalos, M.N.; Schmitt, I.; Wullner, U.; Evert, B.O.; O’Kane, C.J.; Rubinsztein, D.C. Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum. Mol. Genet., 2006, 15(3), 433-442.
[http://dx.doi.org/10.1093/hmg/ddi458] [PMID: 16368705]
[194]
Wang, Y.; Martinez-Vicente, M.; Krüger, U.; Kaushik, S.; Wong, E.; Mandelkow, E.M.; Cuervo, A.M.; Mandelkow, E. Tau fragmentation, aggregation and clearance: The dual role of lysosomal processing. Hum. Mol. Genet., 2009, 18(21), 4153-4170.
[http://dx.doi.org/10.1093/hmg/ddp367] [PMID: 19654187]
[195]
Schaeffer, V.; Lavenir, I.; Ozcelik, S.; Tolnay, M.; Winkler, D.T.; Goedert, M. Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain, 2012, 135(7), 2169-2177.
[http://dx.doi.org/10.1093/brain/aws143] [PMID: 22689910]
[196]
Ferreon, J.; Jain, A.; Choi, K.J.; Tsoi, P.; MacKenzie, K.; Jung, S.; Ferreon, A. Acetylation disfavors tau phase separation. Int. J. Mol. Sci., 2018, 19(5), 1360.
[http://dx.doi.org/10.3390/ijms19051360] [PMID: 29734651]
[197]
Aubry, S.; Shin, W.; Crary, J.F.; Lefort, R.; Qureshi, Y.H.; Lefebvre, C.; Califano, A.; Shelanski, M.L. Assembly and interrogation of Alzheimer’s disease genetic networks reveal novel regulators of progression. PLoS One, 2015, 10(3), e0120352.
[http://dx.doi.org/10.1371/journal.pone.0120352] [PMID: 25781952]
[198]
Esteves, A.R.; Palma, A.M.; Gomes, R.; Santos, D.; Silva, D.F.; Cardoso, S.M. Acetylation as a major determinant to microtubule-dependent autophagy: Relevance to Alzheimer’s and Parkinson disease pathology. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(8), 2008-2023.
[http://dx.doi.org/10.1016/j.bbadis.2018.11.014] [PMID: 30572013]
[199]
Chen, X.; Li, Y.; Wang, C.; Tang, Y.; Mok, S.A.; Tsai, R.M.; Rojas, J.C.; Karydas, A.; Miller, B.L.; Boxer, A.L.; Gestwicki, J.E.; Arkin, M.; Cuervo, A.M.; Gan, L. Promoting tau secretion and propagation by hyperactive p300/CBP via autophagy-lysosomal pathway in tauopathy. Mol. Neurodegener., 2020, 15(1), 2.
[http://dx.doi.org/10.1186/s13024-019-0354-0] [PMID: 31906970]
[200]
Kirilyuk, A.; Shimoji, M.; Catania, J.; Sahu, G.; Pattabiraman, N.; Giordano, A.; Albanese, C.; Mocchetti, I.; Toretsky, J.A.; Uversky, V.N.; Avantaggiati, M.L. An intrinsically disordered region of the acetyltransferase p300 with similarity to prion-like domains plays a role in aggregation. PLoS One, 2012, 7(11), e48243.
[http://dx.doi.org/10.1371/journal.pone.0048243] [PMID: 23133622]
[201]
Wen, M.; Ding, L.; Zhang, L.; Zhang, T.; Teruyoshi, Y.; Wang, Y.; Xue, C. Eicosapentaenoic acid-enriched phosphatidylcholine mitigated abeta1-42-induced neurotoxicity via autophagy-inflammasome pathway. J. Agric. Food Chem., 2019, 67(49), 13767-13774.
[http://dx.doi.org/10.1021/acs.jafc.9b05947] [PMID: 31722531]
[202]
Gabbouj, S.; Ryhänen, S.; Marttinen, M.; Wittrahm, R.; Takalo, M.; Kemppainen, S.; Martiskainen, H.; Tanila, H.; Haapasalo, A.; Hiltunen, M.; Natunen, T. Altered insulin signaling in Alzheimer’s disease brain-special emphasis on PI3K-AKT Pathway. Front. Neurosci., 2019, 13, 629.
[http://dx.doi.org/10.3389/fnins.2019.00629] [PMID: 31275108]
[203]
Zhang, Y.; Dong, Z.; Song, W. NLRP3 inflammasome as a novel therapeutic target for Alzheimer’s disease. Signal Transduct. Target. Ther., 2020, 5(1), 37.
[http://dx.doi.org/10.1038/s41392-020-0145-7] [PMID: 32296063]
[204]
Ali, M.; Gupta, M.; Wani, A.; Sharma, A.; Abdullaha, M.; Kour, D.; Choudhary, S.; Bharate, S.B.; Singh, G.; Kumar, A. IIIM-941, a stilbene derivative inhibits NLRP3 inflammasome activation by inducing autophagy. Front. Pharmacol., 2021, 12, 695712.
[http://dx.doi.org/10.3389/fphar.2021.695712] [PMID: 34248643]
[205]
Zhou, W.; Xiao, D.; Zhao, Y.; Tan, B.; Long, Z.; Yu, L.; He, G. Enhanced autolysosomal function ameliorates the inflammatory response mediated by the NLRP3 Inflammasome in Alzheimer’s disease. Front. Aging Neurosci., 2021, 13, 629891.
[http://dx.doi.org/10.3389/fnagi.2021.629891] [PMID: 33708103]
[206]
Gali, C.C.; Fanaee-Danesh, E.; Zandl-Lang, M.; Albrecher, N.M.; Tam-Amersdorfer, C.; Stracke, A.; Sachdev, V.; Reichmann, F.; Sun, Y.; Avdili, A.; Reiter, M.; Kratky, D.; Holzer, P.; Lass, A.; Kandimalla, K.K.; Panzenboeck, U. Amyloid-beta impairs insulin signaling by accelerating autophagy-lysosomal degradation of LRP-1 and IR-β in blood-brain barrier endothelial cells in vitro and in 3XTg-AD mice. Mol. Cell. Neurosci., 2019, 99, 103390.
[http://dx.doi.org/10.1016/j.mcn.2019.103390] [PMID: 31276749]
[207]
Puigoriol-Illamola, D.; Griñán-Ferré, C.; Vasilopoulou, F.; Leiva, R.; Vázquez, S.; Pallàs, M. 11beta-HSD1 inhibition by RL-118 promotes autophagy and correlates with reduced oxidative stress and inflammation, enhancing cognitive performance in SAMP8 mouse model. Mol. Neurobiol., 2018, 55(12), 8904-8915.
[http://dx.doi.org/10.1007/s12035-018-1026-8] [PMID: 29611102]
[208]
Hsieh, C.F.; Liu, C.K.; Lee, C.T.; Yu, L.E.; Wang, J.Y. Acute glucose fluctuation impacts microglial activity, leading to inflammatory activation or self-degradation. Sci. Rep., 2019, 9(1), 840.
[http://dx.doi.org/10.1038/s41598-018-37215-0] [PMID: 30696869]
[209]
Lane, D.J.R.; Ayton, S.; Bush, A.I. Iron and Alzheimer’s disease: An update on emerging mechanisms. J. Alzheimers Dis., 2018, 64(s1), S379-S395.
[http://dx.doi.org/10.3233/JAD-179944] [PMID: 29865061]
[210]
Lee, Y.S.; Kalimuthu, K.; Seok Park, Y.; Makala, H.; Watkins, S.C.; Choudry, M.H.A.; Bartlett, D.L.; Tae Kwon, Y.; Lee, Y.J. Ferroptotic agent‐induced endoplasmic reticulum stress response plays a pivotal role in the autophagic process outcome. J. Cell. Physiol., 2020, 235(10), 6767-6778.
[http://dx.doi.org/10.1002/jcp.29571] [PMID: 31985039]
[211]
Wang, T.; Xu, S.F.; Fan, Y.G.; Li, L.B.; Guo, C. Iron pathophysiology in Alzheimer’s diseases. Adv. Exp. Med. Biol., 2019, 1173, 67-104.
[http://dx.doi.org/10.1007/978-981-13-9589-5_5] [PMID: 31456206]
[212]
Conway, O.; Akpinar, H.A.; Rogov, V.V.; Kirkin, V. Selective autophagy receptors in neuronal health and disease. J. Mol. Biol., 2020, 432(8), 2483-2509.
[PMID: 31654670]
[213]
Xian-hui, D.; Wei-juan, G.; Tie-mei, S.; Hong-lin, X.; Jiang-tao, B.; Jing-yi, Z.; Xi-qing, C. Age-related changes of brain iron load changes in the frontal cortex in APPswe/PS1ΔE9 transgenic mouse model of Alzheimer’s disease. J. Trace Elem. Med. Biol., 2015, 30, 118-123.
[http://dx.doi.org/10.1016/j.jtemb.2014.11.009] [PMID: 25575693]
[214]
Wu, J.; Tuo, Q.; Lei, P. Ferroptosis, a recent defined form of critical cell death in neurological disorders. J. Mol. Neurosci., 2018, 66(2), 197-206.
[http://dx.doi.org/10.1007/s12031-018-1155-6] [PMID: 30145632]
[215]
Quiles del Rey, M.; Mancias, J.D. NCOA4-mediated ferritinophagy: A potential link to neurodegeneration. Front. Neurosci., 2019, 13, 238.
[http://dx.doi.org/10.3389/fnins.2019.00238] [PMID: 30930742]
[216]
Fujii, J.; Homma, T.; Kobayashi, S. Ferroptosis caused by cysteine insufficiency and oxidative insult. Free Radic. Res., 2019, 1-12.
[PMID: 31505959]
[217]
Yan, N.; Zhang, J. Iron metabolism, ferroptosis, and the links with Alzheimer’s disease. Front. Neurosci., 2020, 13, 1443.
[http://dx.doi.org/10.3389/fnins.2019.01443] [PMID: 32063824]
[218]
Chen, Y.; Li, N.; Wang, H.; Wang, N.; Peng, H.; Wang, J.; Li, Y.; Liu, M.; Li, H.; Zhang, Y.; Wang, Z. Amentoflavone suppresses cell proliferation and induces cell death through triggering autophagy-dependent ferroptosis in human glioma. Life Sci., 2020, 247, 117425.
[http://dx.doi.org/10.1016/j.lfs.2020.117425] [PMID: 32057904]
[219]
Nirmala, J.G.; Lopus, M. Cell death mechanisms in eukaryotes. Cell Biol. Toxicol., 2020, 36(3), 145-640.
[PMID: 31820165]
[220]
Song, X.; Zhu, S.; Chen, P.; Hou, W.; Wen, Q.; Liu, J.; Xie, Y.; Liu, J.; Klionsky, D.J.; Kroemer, G.; Lotze, M.T.; Zeh, H.J.; Kang, R.; Tang, D. AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc(-) activity. Curr. Biol., 2018, 28(15), 2388-2399.e5.
[http://dx.doi.org/10.1016/j.cub.2018.05.094] [PMID: 30057310]
[221]
Kang, R.; Zhu, S.; Zeh, H.J.; Klionsky, D.J.; Tang, D. BECN1 is a new driver of ferroptosis. Autophagy, 2018, 14(12), 2173-2175.
[http://dx.doi.org/10.1080/15548627.2018.1513758] [PMID: 30145930]
[222]
Liu, J.; Yang, M.; Kang, R.; Klionsky, D.J.; Tang, D. Autophagic degradation of the circadian clock regulator promotes ferroptosis. Autophagy, 2019, 15(11), 2033-2035.
[http://dx.doi.org/10.1080/15548627.2019.1659623] [PMID: 31441366]
[223]
Wu, Z.; Geng, Y.; Lu, X.; Shi, Y.; Wu, G.; Zhang, M.; Shan, B.; Pan, H.; Yuan, J. Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc. Natl. Acad. Sci. USA, 2019, 116(8), 2996-3005.
[http://dx.doi.org/10.1073/pnas.1819728116] [PMID: 30718432]
[224]
Devos, D.; Cabantchik, Z.I.; Moreau, C.; Danel, V.; Mahoney-Sanchez, L.; Bouchaoui, H.; Gouel, F.; Rolland, A.S.; Duce, J.A.; Devedjian, J.C. Conservative iron chelation for neurodegenerative diseases such as Parkinson’s disease and amyotrophic lateral sclerosis. J. Neural Transm. (Vienna), 2020, 127(2), 189-203.
[http://dx.doi.org/10.1007/s00702-019-02138-1] [PMID: 31912279]
[225]
Yan, N.; Zhang, J.J. The emerging roles of ferroptosis in vascular cognitive impairment. Front. Neurosci., 2019, 13, 811.
[http://dx.doi.org/10.3389/fnins.2019.00811] [PMID: 31447633]
[226]
Ashraf, A.; Jeandriens, J.; Parkes, H.G.; So, P.W. Iron dyshomeostasis, lipid peroxidation and perturbed expression of cystine/glutamate antiporter in Alzheimer’s disease: Evidence of ferroptosis. Redox Biol., 2020, 32, 101494.
[http://dx.doi.org/10.1016/j.redox.2020.101494] [PMID: 32199332]
[227]
Li, L.B.; Chai, R.; Zhang, S.; Xu, S.F.; Zhang, Y.H.; Li, H.L.; Fan, Y.G.; Guo, C. Iron exposure and the cellular mechanisms linked to neuron degeneration in adult mice. Cells, 2019, 8(2), 198.
[http://dx.doi.org/10.3390/cells8020198] [PMID: 30813496]
[228]
Weiland, A.; Wang, Y.; Wu, W.; Lan, X.; Han, X.; Li, Q.; Wang, J. Ferroptosis and its role in diverse brain diseases. Mol. Neurobiol., 2019, 56(7), 4880-4893.
[http://dx.doi.org/10.1007/s12035-018-1403-3] [PMID: 30406908]
[229]
Peña-Bautista, C.; Vento, M.; Baquero, M.; Cháfer-Pericás, C. Lipid peroxidation in neurodegeneration. Clin. Chim. Acta, 2019, 497, 178-188.
[http://dx.doi.org/10.1016/j.cca.2019.07.037] [PMID: 31377127]
[230]
Li, C.; Zhang, Y.; Liu, J.; Kang, R.; Klionsky, D.J.; Tang, D. Mitochondrial DNA stress triggers autophagy-dependent ferroptotic death. Autophagy, 2020, 1-13.
[PMID: 32186434]
[231]
Croteau, E.; Castellano, C.A.; Richard, M.A.; Fortier, M.; Nugent, S.; Lepage, M.; Duchesne, S.; Whittingstall, K.; Turcotte, É.E.; Bocti, C.; Fülöp, T.; Cunnane, S.C. Ketogenic medium chain triglycerides increase brain energy metabolism in Alzheimer’s disease. J. Alzheimers Dis., 2018, 64(2), 551-561.
[http://dx.doi.org/10.3233/JAD-180202] [PMID: 29914035]
[232]
Fortier, M.; Castellano, C.A.; Croteau, E.; Langlois, F.; Bocti, C.; St-Pierre, V.; Vandenberghe, C.; Bernier, M.; Roy, M.; Descoteaux, M.; Whittingstall, K.; Lepage, M.; Turcotte, É.E.; Fulop, T.; Cunnane, S.C. A ketogenic drink improves brain energy and some measures of cognition in mild cognitive impairment. Alzheimers Dement., 2019, 15(5), 625-634.
[http://dx.doi.org/10.1016/j.jalz.2018.12.017] [PMID: 31027873]
[233]
Mujica-Parodi, L.R.; Amgalan, A.; Sultan, S.F.; Antal, B.; Sun, X.; Skiena, S.; Lithen, A.; Adra, N.; Ratai, E.M.; Weistuch, C.; Govindarajan, S.T.; Strey, H.H.; Dill, K.A.; Stufflebeam, S.M.; Veech, R.L.; Clarke, K. Diet modulates brain network stability, a biomarker for brain aging, in young adults. Proc. Natl. Acad. Sci. USA, 2020, 117(11), 6170-6177.
[http://dx.doi.org/10.1073/pnas.1913042117] [PMID: 32127481]
[234]
Kraeuter, A.K.; Mashavave, T.; Suvarna, A.; van den Buuse, M.; Sarnyai, Z. Effects of beta-hydroxybutyrate administration on MK-801-induced schizophrenia-like behaviour in mice. Psychopharmacology (Berl.), 2020, 237(5), 1397-1405.
[235]
Lee, D.C.; Vali, K.; Baldwin, S.R.; Divino, J.N.; Feliciano, J.L.; Fequiere, J.R.; Fernandez, M.A.; Frageau, J.C.; Longo, F.K.; Madhoun, S.S.; Mingione, V.P.; O’Toole, T.R.; Ruiz, M.G.; Tanner, G.R. Dietary supplementation with the ketogenic diet metabolite beta-hydroxybutyrate ameliorates post-TBI aggression in young-adult male drosophila. Front. Neurosci., 2019, 13, 1140.
[http://dx.doi.org/10.3389/fnins.2019.01140] [PMID: 31736687]
[236]
Bahr, L.S.; Bock, M.; Liebscher, D.; Bellmann-Strobl, J.; Franz, L.; Prüß, A.; Schumann, D.; Piper, S.K.; Kessler, C.S.; Steckhan, N.; Michalsen, A.; Paul, F.; Mähler, A. Ketogenic diet and fasting diet as Nutritional Approaches in Multiple Sclerosis (NAMS): Protocol of a randomized controlled study. Trials, 2020, 21(1), 3.
[http://dx.doi.org/10.1186/s13063-019-3928-9] [PMID: 31898518]
[237]
McCarty, M.F.; DiNicolantonio, J.J.; O’Keefe, J.H. Ketosis may promote brain macroautophagy by activating Sirt1 and hypoxia-inducible factor-1. Med. Hypotheses, 2015, 85(5), 631-639.
[http://dx.doi.org/10.1016/j.mehy.2015.08.002] [PMID: 26306884]
[238]
Miles, K.N.; Skelton, M.R. Male mice placed on a ketogenic diet from postnatal day (P) 21 through adulthood have reduced growth, are hypoactive, show increased freezing in a conditioned fear paradigm, and have spatial learning deficits. Brain Res., 2020, 1734, 146697.
[http://dx.doi.org/10.1016/j.brainres.2020.146697] [PMID: 32014530]
[239]
Vargas-Soria, M.; Carranza-Naval, M.J.; del Marco, A.; Garcia-Alloza, M. Role of liraglutide in Alzheimer’s disease pathology. Alzheimers Res. Ther., 2021, 13(1), 112.
[http://dx.doi.org/10.1186/s13195-021-00853-0] [PMID: 34118986]
[240]
Xie, Y.; Zheng, J.; Li, S.; Li, H.; Zhou, Y.; Zheng, W.; Zhang, M.; Liu, L.; Chen, Z. GLP-1 improves the neuronal supportive ability of astrocytes in Alzheimer’s disease by regulating mitochondrial dysfunction via the cAMP/PKA pathway. Biochem. Pharmacol., 2021, 188, 114578.
[http://dx.doi.org/10.1016/j.bcp.2021.114578] [PMID: 33895160]
[241]
Zheng, J.; Xie, Y.; Ren, L.; Qi, L.; Wu, L.; Pan, X.; Zhou, J.; Chen, Z.; Liu, L. GLP-1 improves the supportive ability of astrocytes to neurons by promoting aerobic glycolysis in Alzheimer’s disease. Mol. Metab., 2021, 47, 101180.
[http://dx.doi.org/10.1016/j.molmet.2021.101180] [PMID: 33556642]
[242]
Poor, S.R.; Ettcheto, M.; Cano, A.; Sanchez-Lopez, E.; Manzine, P.R.; Olloquequi, J.; Camins, A.; Javan, M. Metformin a potential pharmacological strategy in late onset Alzheimer’s disease treatment. Pharmaceuticals (Basel), 2021, 14(9), 890.
[http://dx.doi.org/10.3390/ph14090890] [PMID: 34577590]
[243]
Femminella, G.D.; Bencivenga, L.; Petraglia, L.; Visaggi, L.; Gioia, L.; Grieco, F.V.; de Lucia, C.; Komici, K.; Corbi, G.; Edison, P.; Rengo, G.; Ferrara, N. Antidiabetic drugs in Alzheimer’s disease: Mechanisms of action and future perspectives. J. Diabetes Res., 2017, 2017, 1-7.
[http://dx.doi.org/10.1155/2017/7420796] [PMID: 28656154]
[244]
Rosenbloom, M.; Barclay, T.; Johnsen, J.; Erickson, L.; Svitak, A.; Pyle, M.; Frey, W.; Hanson, L.R. Double-blind placebo-controlled pilot investigation of the safety of a single dose of rapid-acting intranasal insulin in Down Syndrome. Drugs R D., 2020, 20(1), 11-15.
[http://dx.doi.org/10.1007/s40268-020-00296-2] [PMID: 32077057]
[245]
Lv, H.; Tang, L.; Guo, C.; Jiang, Y.; Gao, C.; Wang, Y.; Jian, C. Intranasal insulin administration may be highly effective in improving cognitive function in mice with cognitive dysfunction by reversing brain insulin resistance. Cogn. Neurodynamics, 2020, 14(3), 323-338.
[http://dx.doi.org/10.1007/s11571-020-09571-z] [PMID: 32399074]
[246]
Yu, J-M.; Jiang, G-H.; Zhu, Y.; Huang, Y.; Yang, J.; Tu, R.; Zhang, X.; He, W-W.; Hou, C-Y.; Wang, X-M. Intranasal insulin ameliorates neurological impairment after intracerebral hemorrhage in mice. Neural Regen. Res., 2022, 17(1), 210-216.
[http://dx.doi.org/10.4103/1673-5374.314320] [PMID: 34100458]
[247]
Li, X.; Run, X.; Wei, Z.; Zeng, K.; Liang, Z.; Huang, F.; Ke, D.; Wang, Q.; Wang, J.Z.; Liu, R.; Zhang, B.; Wang, X. Intranasal insulin prevents anesthesia-induced cognitive impairments in aged mice. Curr. Alzheimer Res., 2018, 16(1), 8-18.
[http://dx.doi.org/10.2174/1567205015666181031145045] [PMID: 30381076]
[248]
Bazrgar, M.; Khodabakhsh, P.; Dargahi, L.; Mohagheghi, F.; Ahmadiani, A. MicroRNA modulation is a potential molecular mechanism for neuroprotective effects of intranasal insulin administration in amyloid βeta oligomer induced Alzheimer’s like rat model. Exp. Gerontol., 2022, 164, 111812.
[http://dx.doi.org/10.1016/j.exger.2022.111812] [PMID: 35476966]
[249]
Barone, E.; Tramutola, A.; Triani, F.; Calcagnini, S.; Di Domenico, F.; Ripoli, C.; Gaetani, S.; Grassi, C.; Butterfield, D.A.; Cassano, T.; Perluigi, M. Biliverdin reductase-a mediates the beneficial effects of intranasal insulin in Alzheimer disease. Mol. Neurobiol., 2019, 56(4), 2922-2943.
[http://dx.doi.org/10.1007/s12035-018-1231-5] [PMID: 30073505]
[250]
Kellar, D.; Lockhart, S.N.; Aisen, P.; Raman, R.; Rissman, R.A.; Brewer, J.; Craft, S. Intranasal insulin reduces white matter hyperintensity progression in association with improvements in cognition and CSF biomarker profiles in mild cognitive impairment and Alzheimer’s disease. J. Prev. Alzheimers Dis., 2021, 8(3), 240-248.
[PMID: 34101779]
[251]
Kellar, D.; Register, T.; Lockhart, S.N.; Aisen, P.; Raman, R.; Rissman, R.A.; Brewer, J.; Craft, S. Intranasal insulin modulates cerebrospinal fluid markers of neuroinflammation in mild cognitive impairment and Alzheimer’s disease: A randomized trial. Sci. Rep., 2022, 12(1), 1346.
[http://dx.doi.org/10.1038/s41598-022-05165-3] [PMID: 35079029]
[252]
Craft, S.; Baker, L.D.; Montine, T.J.; Minoshima, S.; Watson, G.S.; Claxton, A.; Arbuckle, M.; Callaghan, M.; Tsai, E.; Plymate, S.R.; Green, P.S.; Leverenz, J.; Cross, D.; Gerton, B. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: A pilot clinical trial. Arch. Neurol., 2012, 69(1), 29-38.
[http://dx.doi.org/10.1001/archneurol.2011.233] [PMID: 21911655]
[253]
Craft, S.; Raman, R.; Chow, T.W.; Rafii, M.S.; Sun, C.K.; Rissman, R.A.; Donohue, M.C.; Brewer, J.B.; Jenkins, C.; Harless, K.; Gessert, D.; Aisen, P.S. Safety, efficacy, and feasibility of intranasal insulin for the treatment of mild cognitive impairment and Alzheimer disease dementia: A randomized clinical trial. JAMA Neurol., 2020, 77(9), 1099-1109.
[http://dx.doi.org/10.1001/jamaneurol.2020.1840] [PMID: 32568367]
[254]
Lee, H.; Zandkarimi, F.; Zhang, Y.; Meena, J.K.; Kim, J.; Zhuang, L.; Tyagi, S.; Ma, L.; Westbrook, T.F.; Steinberg, G.R.; Nakada, D.; Stockwell, B.R.; Gan, B. Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat. Cell Biol., 2020, 22(2), 225-234.
[http://dx.doi.org/10.1038/s41556-020-0461-8] [PMID: 32029897]
[255]
Lee, H.; Zhuang, L.; Gan, B. Energy stress inhibits ferroptosis via AMPK. Mol. Cell. Oncol., 2020, 7(4), 1761242.
[http://dx.doi.org/10.1080/23723556.2020.1761242] [PMID: 32944623]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy