Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Isoproterenol-induced Upregulation of HPSE Accelerates Triple-negative Breast Cancer Cell Proliferation and Migration through Enhancing the Transcriptional Activity of HIF-1α

Author(s): Jian Qiu, Zhongyi Shen, Guoqin Jiang* and Qichao Ni*

Volume 23, Issue 4, 2023

Published on: 14 October, 2022

Page: [470 - 477] Pages: 8

DOI: 10.2174/1871520622666220817125817

Price: $65

Abstract

Background: Triple-negative breast cancer (TNBC) is considered to be the most malignant subtype of breast cancer (BC). Heparanase (HPSE) has been reported to contribute to tumor development, but its potential function in TNBC is not clear. The intention of this study was to investigate whether HPSE affects TNBC progression and to explore the possible mechanisms.

Methods: Bioinformatics analyses were applied to analyze the expression of HPSE in TNBC samples and normal breast samples. The mRNA and protein levels of HPSE in TNBC cells were detected by RT-qPCR and western blot. Function assays, including CCK-8 assay, colony formation assay, transwell assay and wound healing assay, were conducted to validate the effects of HPSE silencing on TNBC cell proliferation and migration. Mechanism experiments were performed to explore the upstream molecular mechanism of HPSE in TNBC cells.

Results: Silencing of HPSE suppressed the proliferation and migration of TNBC cells. Moreover, hypoxia-inducible factor-1 alpha (HIF-1α) interacted with the HPSE promoter and promoted the transcription of HPSE. Isoproterenol (ISO), a pharmacological substitute for chronic stress-induced sympathetic activation, was proven to induce HIF-1α upregulation, so as to transcriptionally activate HPSE in TNBC cells. Furthermore, it manifested that ISO facilitated TNBC cell proliferation and migration in an HPSE-dependent way.

Conclusion: HPSE activated by ISO-induced HIF-1α promoted TNBC cell proliferation and migration, which might offer a novel insight for TNBC treatment.

Keywords: HPSE, isoproterenol, HIF1A, triple-negative breast cancer

Graphical Abstract

[1]
Fahad Ullah, M. Breast cancer: Current perspectives on the disease status. Adv. Exp. Med. Biol., 2019, 1152, 51-64.
[http://dx.doi.org/10.1007/978-3-030-20301-6_4] [PMID: 31456179]
[2]
Yin, L.; Duan, J.J.; Bian, X.W.; Yu, S.C. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res., 2020, 22(1), 61.
[http://dx.doi.org/10.1186/s13058-020-01296-5] [PMID: 32517735]
[3]
Al-Mahmood, S.; Sapiezynski, J.; Garbuzenko, O.B.; Minko, T. Metastatic and triple-negative breast cancer: Challenges and treatment options. Drug Deliv. Transl. Res., 2018, 8(5), 1483-1507.
[http://dx.doi.org/10.1007/s13346-018-0551-3] [PMID: 29978332]
[4]
Akram, M.; Iqbal, M.; Daniyal, M.; Khan, A.U. Awareness and current knowledge of breast cancer. Biol. Res., 2017, 50(1), 33.
[http://dx.doi.org/10.1186/s40659-017-0140-9] [PMID: 28969709]
[5]
Lyons, T.G. Targeted therapies for triple-negative breast cancer. Curr. Treat. Options Oncol., 2019, 20(11), 82.
[http://dx.doi.org/10.1007/s11864-019-0682-x] [PMID: 31754897]
[6]
Yao, B.C.; Meng, L.B.; Hao, M.L.; Zhang, Y.M.; Gong, T.; Guo, Z.G. Chronic stress: A critical risk factor for atherosclerosis. J. Int. Med. Res., 2019, 47(4), 1429-1440.
[http://dx.doi.org/10.1177/0300060519826820] [PMID: 30799666]
[7]
Dai, S.; Mo, Y.; Wang, Y.; Xiang, B.; Liao, Q.; Zhou, M.; Li, X.; Li, Y.; Xiong, W.; Li, G.; Guo, C.; Zeng, Z. Chronic stress promotes can-cer development. Front. Oncol., 2020, 10, 1492.
[http://dx.doi.org/10.3389/fonc.2020.01492] [PMID: 32974180]
[8]
Wei, B.; Sun, X.; Geng, Z.; Shi, M.; Chen, Z.; Chen, L.; Wang, Y.; Fu, X. Isoproterenol regulates CD44 expression in gastric cancer cells through STAT3/MicroRNA373 cascade. Biomaterials, 2016, 105, 89-101.
[http://dx.doi.org/10.1016/j.biomaterials.2016.07.040] [PMID: 27512943]
[9]
Lim, J.A.; Juhnn, Y.S. Isoproterenol increases histone deacetylase 6 expression and cell migration by inhibiting ERK signaling via PKA and Epac pathways in human lung cancer cells. Exp. Mol. Med., 2016, 48(1), e204.
[http://dx.doi.org/10.1038/emm.2015.98] [PMID: 27534532]
[10]
Shan, M.; Qin, J.; Jin, F.; Han, X.; Guan, H.; Li, X.; Zhang, J.; Zhang, H.; Wang, Y. Autophagy suppresses isoprenaline-induced M2 mac-rophage polarization via the ROS/ERK and mTOR signaling pathway. Free Radic. Biol. Med., 2017, 110, 432-443.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.05.021] [PMID: 28647611]
[11]
Jayatilleke, K.M.; Hulett, M.D. Heparanase and the hallmarks of cancer. J. Transl. Med., 2020, 18(1), 453.
[http://dx.doi.org/10.1186/s12967-020-02624-1] [PMID: 33256730]
[12]
Jin, H.; Cui, M. New advances of heparanase in human diseases. Mini Rev. Med. Chem., 2020, 20(2), 90-95.
[http://dx.doi.org/10.2174/1389557519666190913150959] [PMID: 31518222]
[13]
Lin, M.C.; Lin, J.J.; Hsu, C.L.; Juan, H.F.; Lou, P.J.; Huang, M.C. GATA3 interacts with and stabilizes HIF-1α to enhance cancer cell inva-siveness. Oncogene, 2017, 36(30), 4243-4252.
[http://dx.doi.org/10.1038/onc.2017.8] [PMID: 28263977]
[14]
Jögi, A.; Ehinger, A.; Hartman, L.; Alkner, S. Expression of HIF-1α is related to a poor prognosis and tamoxifen resistance in contralateral breast cancer. PLoS One, 2019, 14(12), e0226150.
[http://dx.doi.org/10.1371/journal.pone.0226150] [PMID: 31821370]
[15]
Wu, X.; Xiao, Y.; Zhou, Y.; Zhou, Z.; Yan, W. LncRNA FOXP4-AS1 is activated by PAX5 and promotes the growth of prostate cancer by sequestering miR-3184-5p to upregulate FOXP4. Cell Death Dis., 2019, 10(7), 472.
[http://dx.doi.org/10.1038/s41419-019-1699-6] [PMID: 31209207]
[16]
Su, F.; Zhang, W.; Chen, Y.; Ma, L.; Zhang, H.; Wang, F. Significance of hypoxia-inducible factor-1α expression with atrial fibrosis in rats induced with isoproterenol. Exp. Ther. Med., 2014, 8(6), 1677-1682.
[http://dx.doi.org/10.3892/etm.2014.1989] [PMID: 25371714]
[17]
Tuglu, M.M.; Bostanabad, S.Y.; Ozyon, G.; Dalkiliç, B.; Gurdal, H. The role of dual specificity phosphatase 1 and protein phosphatase 1 in β2 adrenergic receptor mediated inhibition of extracellular signal regulated kinase 1/2 in triple negative breast cancer cell lines. Mol. Med. Rep., 2018, 17(1), 2033-2043.
[PMID: 29257221]
[18]
Denkert, C.; Liedtke, C.; Tutt, A.; von Minckwitz, G. Molecular alterations in triple-negative breast cancer-the road to new treatment strate-gies. Lancet, 2017, 389(10087), 2430-2442.
[http://dx.doi.org/10.1016/S0140-6736(16)32454-0] [PMID: 27939063]
[19]
Yang, C.; Zhang, S.; Chang, X.; Huang, Y.; Cui, D.; Liu, Z. MicroRNA-219a-2-3p modulates the proliferation of thyroid cancer cells via the HPSE/cyclin D1 pathway. Exp. Ther. Med., 2021, 21(6), 659.
[http://dx.doi.org/10.3892/etm.2021.10091] [PMID: 33968189]
[20]
Zheng, L.; Jiao, W.; Song, H.; Qu, H.; Li, D.; Mei, H.; Chen, Y.; Yang, F.; Li, H.; Huang, K.; Tong, Q. miRNA-558 promotes gastric cancer progression through attenuating Smad4-mediated repression of heparanase expression. Cell Death Dis., 2016, 7(9), e2382.
[http://dx.doi.org/10.1038/cddis.2016.293] [PMID: 27685626]
[21]
Zhang, W.; Chan, H.; Wei, L.; Pan, Z.; Zhang, J.; Li, L. Overexpression of heparanase in ovarian cancer and its clinical significance. Oncol. Rep., 2013, 30(5), 2279-2287.
[http://dx.doi.org/10.3892/or.2013.2701] [PMID: 23982701]
[22]
Yang, W.J.; Zhang, G.L.; Cao, K.X.; Liu, X.N.; Wang, X.M.; Yu, M.W.; Li, J.P.; Yang, G.W. Heparanase from triple negative breast cancer and platelets acts as an enhancer of metastasis. Int. J. Oncol., 2020, 57(4), 890-904.
[http://dx.doi.org/10.3892/ijo.2020.5115] [PMID: 32945393]
[23]
Zhang, Y.; Yan, J.; Wang, L.; Dai, H.; Li, N.; Hu, W.; Cai, H. HIF-1α promotes breast cancer cell MCF-7 proliferation and invasion through regulating miR-210. Cancer Biother. Radiopharm., 2017, 32(8), 297-301.
[http://dx.doi.org/10.1089/cbr.2017.2270] [PMID: 29053417]
[24]
Wang, Y.; Bibi, M.; Min, P.; Deng, W.; Zhang, Y.; Du, J. SOX2 promotes hypoxia-induced breast cancer cell migration by inducing NEDD9 expression and subsequent activation of Rac1/HIF-1α signaling. Cell. Mol. Biol. Lett., 2019, 24, 55.
[http://dx.doi.org/10.1186/s11658-019-0180-y] [PMID: 31462898]
[25]
Ferrer, C.M.; Lynch, T.P.; Sodi, V.L.; Falcone, J.N.; Schwab, L.P.; Peacock, D.L.; Vocadlo, D.J.; Seagroves, T.N.; Reginato, M.J. O-GlcNAcylation regulates cancer metabolism and survival stress signaling via regulation of the HIF-1 pathway. Mol. Cell, 2014, 54(5), 820-831.
[http://dx.doi.org/10.1016/j.molcel.2014.04.026] [PMID: 24857547]
[26]
Huang, Z.; Li, G.; Zhang, Z.; Gu, R.; Wang, W.; Lai, X.; Cui, Z.K.; Zeng, F.; Xu, S.; Deng, F. β2AR-HIF-1α-CXCL12 signaling of osteo-blasts activated by isoproterenol promotes migration and invasion of prostate cancer cells. BMC Cancer, 2019, 19(1), 1142.
[http://dx.doi.org/10.1186/s12885-019-6301-1] [PMID: 31771535]
[27]
Liao, X.; Chaudhary, P.; Qiu, G.; Che, X.; Fan, L. The role of propranolol as a radiosensitizer in gastric cancer treatment. Drug Des. Devel. Ther., 2018, 12, 639-645.
[http://dx.doi.org/10.2147/DDDT.S160865] [PMID: 29636598]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy