Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Iridoids as a Potential Hepatoprotective Class: A Review

Author(s): Raquel Bridi, Gilsane Lino von Poser and Gabriela de Carvalho Meirelles*

Volume 23, Issue 4, 2023

Published on: 22 September, 2022

Page: [452 - 479] Pages: 28

DOI: 10.2174/1389557522666220816130158

Price: $65

Abstract

Background: Liver disease rates are gradually increasing over the years, becoming a severe public health problem. The indiscriminate use of drugs associated with a rich fat diet, high consumption of alcoholic beverages, and exposure to viral infections and lipid peroxidative products are considered the chief factors for developing hepatic disorders. Owing to the absence of reliable hepatoprotective drugs in the therapeutic arsenal, since they present a high incidence of adverse reactions and/or lack of efficacy in some cases, liver diseases are widely treated with medicinal plants. Among them are the plants producing iridoids, which are believed to be good remedies for liver disease due to their bitter taste. The hepatoprotective effect of iridoids and extracts, rich in these compounds, has been demonstrated, both in vitro and in vivo.

Objective: This review aims to scrutinize the available literature related to the hepatoprotective activity of iridoids.

Methods: The information was obtained from scientific databases (Science Direct, PubMed, Web of Science, Scopus, ACS Publications, Wiley Online Library) until December, 2021.

Results and Conclusion: A total of 63 hepatoprotective iridoids were found, including aucubin, catalpol and picroliv, a mixture of two iridoids. They are the target of a high number of studies, which revealed their protective action against different hepatotoxic agents and detailed action mechanisms.

Keywords: Antioxidants, anti-inflammatory, iridoids, hepatotoxicity, oxidative stress, mechanisms.

[1]
Trefts, E.; Gannon, M.; Wasserman, D.H. The liver. Curr. Biol., 2017, 27(21), R1147-R1151.
[http://dx.doi.org/10.1016/j.cub.2017.09.019] [PMID: 29112863]
[2]
Udompap, P.; Kim, D.; Kim, W.R. Current and future burden of chronic nonmalignant liver disease. Clin. Gastroenterol. Hepatol., 2015, 13(12), 2031-2041.
[http://dx.doi.org/10.1016/j.cgh.2015.08.015] [PMID: 26291665]
[3]
Asrani, S.K.; Devarbhavi, H.; Eaton, J.; Kamath, P.S. Burden of liver diseases in the world. J. Hepatol., 2019, 70(1), 151-171.
[http://dx.doi.org/10.1016/j.jhep.2018.09.014] [PMID: 30266282]
[4]
Sepanlou, S.G.; Safiri, S.; Bisignano, C.; Ikuta, K.S.; Merat, S.; Saberifiroozi, M.; Poustchi, H.; Tsoi, D.; Colombara, D.V.; Abdoli, A.; Adedoyin, R.A.; Afarideh, M.; Agrawal, S.; Ahmad, S.; Ahmadian, E.; Ahmadpour, E.; Akinyemiju, T.; Akunna, C.J.; Alipour, V.; Almasi-Hashiani, A.; Almulhim, A.M.; Al-Raddadi, R.M.; Alvis-Guzman, N.; Anber, N.H.; Angus, C.; Anoushiravani, A.; Arabloo, J.; Araya, E.M.; Asmelash, D.; Ataeinia, B.; Ataro, Z.; Atout, M.M.D.W.; Ausloos, F.; Awasthi, A.; Badawi, A.; Banach, M.; Bejarano Ramirez, D.F.; Bhagavathula, A.S.; Bhala, N.; Bhattacharyya, K.; Biondi, A.; Bolla, S.R.; Boloor, A.; Borzì, A.M.; Butt, Z.A.; Cámera, L.L.A.; Campos-Nonato, I.R.; Carvalho, F.; Chu, D.T.; Chung, S.C.; Cortesi, P.A.; Costa, V.M.; Cowie, B.C.; Daryani, A.; de Courten, B.; Demoz, G.T.; Desai, R.; Dharmaratne, S.D.; Djalalinia, S.; Do, H.T.; Dorostkar, F.; Drake, T.M.; Dubey, M.; Duncan, B.B.; Effiong, A.; Eftekhari, A.; Elsharkawy, A.; Etemadi, A.; Farahmand, M.; Farzadfar, F.; Fernandes, E.; Filip, I.; Fischer, F.; Gebremedhin, K.B.B.; Geta, B.; Gilani, S.A.; Gill, P.S.; Gutirrez, R.A.; Haile, M.T.; Haj-Mirzaian, A.; Hamid, S.S.; Hasankhani, M.; Hasanzadeh, A.; Hashemian, M.; Hassen, H.Y.; Hay, S.I.; Hayat, K.; Heidari, B.; Henok, A.; Hoang, C.L.; Hostiuc, M.; Hostiuc, S.; Hsieh, V.C.; Igumbor, E.U.; Ilesanmi, O.S.; Irvani, S.S.N.; Jafari Balalami, N.; James, S.L.; Jeemon, P.; Jha, R.P.; Jonas, J.B.; Jozwiak, J.J.; Kabir, A.; Kasaeian, A.; Kassaye, H.G.; Kefale, A.T.; Khalilov, R.; Khan, M.A.; Khan, E.A.; Khater, A.; Kim, Y.J.; Koyanagi, A.; La Vecchia, C.; Lim, L-L.; Lopez, A.D.; Lorkowski, S.; Lotufo, P.A.; Lozano, R.; Magdy Abd El Razek, M.; Mai, H.T.; Manafi, N.; Manafi, A.; Mansournia, M.A.; Mantovani, L.G.; Mazzaglia, G.; Mehta, D.; Mendoza, W.; Menezes, R.G.; Mengesha, M.M.; Meretoja, T.J.; Mestrovic, T.; Miazgowski, B.; Miller, T.R.; Mirrakhimov, E.M.; Mithra, P.; Moazen, B.; Moghadaszadeh, M.; Mohammadian-Hafshejani, A.; Mohammed, S.; Mokdad, A.H.; Montero-Zamora, P.A.; Moradi, G.; Naimzada, M.D.; Nayak, V.; Negoi, I.; Nguyen, T.H.; Ofori-Asenso, R.; Oh, I-H.; Olagunju, T.O.; Padubidri, J.R.; Pakshir, K.; Pana, A.; Pathak, M.; Pourshams, A.; Rabiee, N.; Radfar, A.; Rafiei, A.; Ramezanzadeh, K.; Rana, S.M.M.; Rawaf, S.; Rawaf, D.L.; Reiner, R.C., Jr; Roever, L.; Room, R.; Roshandel, G.; Safari, S.; Samy, A.M.; Sanabria, J.; Sartorius, B.; Schmidt, M.I.; Senthilkumaran, S.; Shaikh, M.A.; Sharif, M.; Sharifi, A.; Shigematsu, M.; Singh, J.A.; Soheili, A.; Suleria, H.A.R.; Teklehaimanot, B.F.; Tesfay, B.E.; Vacante, M.; Vahedian-Azimi, A.; Valdez, P.R.; Vasankari, T.J.; Vu, G.T.; Waheed, Y.; Weldegwergs, K.G.; Werdecker, A.; Westerman, R.; Wondafrash, D.Z.; Wondmieneh, A.B.; Yeshitila, Y.G.; Yonemoto, N.; Yu, C.; Zaidi, Z.; Zarghi, A.; Zelber-Sagi, S.; Zewdie, K.A.; Zhang, Z-J.; Zhao, X-J.; Naghavi, M.; Malekzadeh, R. The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol., 2020, 5(3), 245-266.
[http://dx.doi.org/10.1016/S2468-1253(19)30349-8] [PMID: 31981519]
[5]
Farzaei, M.H.; Zobeiri, M.; Parvizi, F.; El-Senduny, F.F.; Marmouzi, I.; Coy-Barrera, E.; Naseri, R.; Nabavi, S.M.; Rahimi, R.; Abdollahi, M. Curcumin in liver diseases: A systematic review of the cellular mechanisms of oxidative stress and clinical perspective. Nutrients, 2018, 10(7), E855.
[http://dx.doi.org/10.3390/nu10070855] [PMID: 29966389]
[6]
Domitrović R.; Potočnjak, I. A comprehensive overview of hepatoprotective natural compounds: mechanism of action and clinical perspectives. Arch. Toxicol., 2016, 90(1), 39-79.
[http://dx.doi.org/10.1007/s00204-015-1580-z] [PMID: 26377694]
[7]
Arige, S.S.; Arige, S.D.; Rao, L. A review on hepatoprotective activity. Int. J. Curr. Res., 2017, 9(06), 51876-51881.
[8]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01285] [PMID: 32162523]
[9]
McMullen, M.K.; Whitehouse, J.M.; Towell, A. Bitters: time for a new paradigm. Evid. Based Complement. Alternat. Med., 2015, 2015, 670504.
[http://dx.doi.org/10.1155/2015/670504] [PMID: 26074998]
[10]
Vargas-Pozada, E.E.; Muriel, P. Herbal medicines for the liver: from bench to bedside. Eur. J. Gastroenterol. Hepatol., 2020, 32(2), 148-158.
[http://dx.doi.org/10.1097/MEG.0000000000001485] [PMID: 31895207]
[11]
Goorani, S.; Morovvati, H.; Seydi, N.; Almasi, M.; Amiri-Paryan, A.; Nazari, F.; Zangeneh, M.M.; Zangeneh, A. Hepatoprotective and cytotoxicity properties of aqueous extract of Glycyrrhiza glabra in wistar rats fed with high-fat diet. Comp. Clin. Pathol., 2019, 28(5), 1305-1312.
[http://dx.doi.org/10.1007/s00580-019-02939-6]
[12]
Shi, X.; Yu, L.; Zhang, Y.; Liu, Z.; Zhang, H.; Zhang, Y.; Liu, P.; Du, P. Glycyrrhetinic acid alleviates hepatic inflammation injury in viral hepatitis disease via a HMGB1-TLR4 signaling pathway. Int. Immunopharmacol., 2020, 84(April), 106578.
[http://dx.doi.org/10.1016/j.intimp.2020.106578] [PMID: 32416454]
[13]
Villasenor, I. Bioactivities of iridoids. Antiinflamm. Antiallergy Agents Med. Chem., 2007, 6(4), 307-314.
[http://dx.doi.org/10.2174/187152307783220040]
[14]
Chen, W.; Jia, Z.; Pan, M.; Anandh Babu, P.V. Natural products for the prevention of oxidative stress-related diseases: Mechanisms and strategies. Oxid. Med. Cell. Longev., 2016, 2016, 4628502.
[http://dx.doi.org/10.1155/2016/4628502] [PMID: 26925192]
[15]
Ghisalberti, E.L. Biological and pharmacological activity of naturally occurring iridoids and secoiridoids. Phytomedicine, 1998, 5(2), 147-163.
[http://dx.doi.org/10.1016/S0944-7113(98)80012-3] [PMID: 23195768]
[16]
Wong, I.Y.F.; He, Z.D.; Huang, Y.; Chen, Z.Y. Antioxidative activities of phenylethanoid glycosides from Ligustrum purpurascens. J. Agric. Food Chem., 2001, 49(6), 3113-3119.
[http://dx.doi.org/10.1021/jf0100604] [PMID: 11410017]
[17]
Jensen, S.R. Systematic implications of the distribution of iridoids and other chemical compounds in the Loganiaceae and other families of the Asteridae. Ann. Mo. Bot. Gard., 1992, 79(2), 284.
[http://dx.doi.org/10.2307/2399770]
[18]
Kroll-Møller, P.; Pedersen, K.D.; Gousiadou, C.; Kokubun, T.; Albach, D.; Taskova, R.; Garnock-Jones, P.J.; Gotfredsen, C.H.; Jensen, S.R. Iridoid glucosides in the genus Veronica (Plantaginaceae) from New Zealand. Phytochemistry, 2017, 140, 174-180.
[http://dx.doi.org/10.1016/j.phytochem.2017.04.025] [PMID: 28550715]
[19]
Gousiadou, C.; Kokubun, T.; Albach, D.C.; Gotfredsen, C.H.; Jensen, S.R. Iridoid glucosides in the genus Sutera (Scrophulariaceae) as chemotaxonomic markers in tribe Limoselleae. Phytochemistry, 2019, 158, 149-155.
[http://dx.doi.org/10.1016/j.phytochem.2018.10.021] [PMID: 30576968]
[20]
Delgado-Montemayor, C.; Cordero-Pérez, P.; Salazar-Aranda, R.; Waksman-Minsky, N. Models of hepatoprotective activity assessment. Med. Univ., 2015, 17(69), 222-228.
[http://dx.doi.org/10.1016/j.rmu.2015.10.002]
[21]
Ahmad, F.; Tabassum, N. Experimental models used for the study of antihepatotoxic agents. J. Acute Dis., 2012, 1(2), 85-89.
[http://dx.doi.org/10.1016/S2221-6189(13)60021-9]
[22]
Kumar, E.; Susmitha, K.; Swathy, B.; Ramu, E.; Venkatesh, B. A review on liver disorders and screening models of hepatoprotective agents. Int. J. Allied Med. Sci. Clin. Res., 2014, 2, 136-150.
[23]
González, L.T.; Minsky, N.W.; Espinosa, L.E.M.; Aranda, R.S.; Meseguer, J.P.; Pérez, P.C. In vitro assessment of hepatoprotective agents against damage induced by acetaminophen and CCl4. BMC Complement. Altern. Med., 2017, 17(1), 39.
[http://dx.doi.org/10.1186/s12906-016-1506-1] [PMID: 28086854]
[24]
Gandolfi, A.J.; Wijeweera, J.; Brendel, K. Use of precision-cut liver slices as an in vitro tool for evaluating liver function. Toxicol. Pathol., 1996, 24(1), 58-61.
[http://dx.doi.org/10.1177/019262339602400108] [PMID: 8839281]
[25]
Olinga, P.; Schuppan, D. Precision-cut liver slices: a tool to model the liver ex vivo. J. Hepatol., 2013, 58(6), 1252-1253.
[http://dx.doi.org/10.1016/j.jhep.2013.01.009] [PMID: 23336979]
[26]
Natanzi, A.E.; Ghahremani, M.H.; Monsef-Esfahani, H.R.; Minaei, B.; Nazarian, H.; Sabzevari, O. An experimental model for study of the hepatoprotective activity of Nasturtium officinale (Watercress) against acetaminophen toxicity using in situ rat liver system. Eur. J. Sci. Res., 2009, 38(4), 556-564.
[27]
Russmann, S.; Kullak-Ublick, G.A.; Grattagliano, I. Current concepts of mechanisms in drug-induced hepatotoxicity. Curr. Med. Chem., 2009, 16(23), 3041-3053.
[http://dx.doi.org/10.2174/092986709788803097] [PMID: 19689281]
[28]
Roth, R.A.; Ganey, P.E. Intrinsic versus idiosyncratic drug-induced hepatotoxicity--two villains or one? J. Pharmacol. Exp. Ther., 2010, 332(3), 692-697.
[http://dx.doi.org/10.1124/jpet.109.162651] [PMID: 20019161]
[29]
Cullen, J.M.; Stalker, M.J. Liver and biliary system. In: Jubb, Kennedy and Palmer’s Pathology of Domestic Animals, Sixth Edition; , 2016; 2, pp. 258-352.
[http://dx.doi.org/10.1016/B978-0-7020-5318-4.00008-5]
[30]
Yue, S.; Xue, N.; Li, H.; Huang, B.; Chen, Z.; Wang, X. Hepatoprotective effect of apigenin against liver injury via the non-canonical NF-KB pathway in vivo and in vitro. Inflammation, 2020, 43(5), 1634-1648.
[http://dx.doi.org/10.1007/s10753-020-01238-5] [PMID: 32458347]
[31]
Yoshioka, Y.; Li, X.; Zhang, T.; Mitani, T.; Yasuda, M.; Nanba, F.; Toda, T.; Yamashita, Y.; Ashida, H. Black soybean seed coat polyphenols prevent AAPH-induced oxidative DNA-damage in HepG2 cells. J. Clin. Biochem. Nutr., 2017, 60(2), 108-114.
[http://dx.doi.org/10.3164/jcbn.16-48] [PMID: 28366989]
[32]
Bridi, R.; Giordano, A.; Peñailillo, M.F.; Montenegro, G. Antioxidant effect of extracts from native Chilean Plants on the lipoperoxidation and protein oxidation of bovine Muscle. Molecules, 2019, 24(18), 1-12.
[http://dx.doi.org/10.3390/molecules24183264] [PMID: 31500282]
[33]
Stanley, S.L. Amoebiasis. Lancet, 2003, 361(9362), 1025-1034.
[http://dx.doi.org/10.1016/S0140-6736(03)12830-9] [PMID: 12660071]
[34]
Chang, I.M.; Ryu, J.C.; Park, Y.C.; Yun, H.S.; Yang, K.H. Protective activities of aucubin against carbon tetrachloride-induced liver damage in mice. Drug Chem. Toxicol., 1983, 6(5), 443-453.
[http://dx.doi.org/10.3109/01480548309014166] [PMID: 6194953]
[35]
Chang, L.M.; Yun, H.S.; Kim, Y.S.; Ahn, J.W. Aucubin: potential antidote for alpha-amanitin poisoning. J. Toxicol. Clin. Toxicol., 1984, 22(1), 77-85.
[http://dx.doi.org/10.3109/00099308409035083] [PMID: 6208374]
[36]
Chang, I.M. Liver-protective activities of aucubin derived from traditional oriental medicine. Res. Commun. Mol. Pathol. Pharmacol., 1998, 102(2), 189-204.
[PMID: 10100510]
[37]
Lee, D.H.; Cho, I.G.; Park, M.S.; Kim, K.N.; Chang, I.M.; Mar, W. Studies on the possible mechanisms of protective activity against α-amanitin poisoning by aucubin. Arch. Pharm. Res., 2001, 24(1), 55-63.
[http://dx.doi.org/10.1007/BF02976494] [PMID: 11235813]
[38]
Lee, H.Y.; Lee, G.H.; Lee, M.R.; Kim, H.K.; Kim, N.Y.; Kim, S.H.; Lee, Y.C.; Kim, H.R.; Chae, H.J. Eucommia ulmoides Oliver extract, aucubin, and geniposide enhance lysosomal activity to regulate ER stress and hepatic lipid accumulation. PLoS One, 2013, 8(12), e81349.
[http://dx.doi.org/10.1371/journal.pone.0081349] [PMID: 24349058]
[39]
Lee, G.H.; Lee, M.R.; Lee, H.Y.; Kim, S.H.; Kim, H.K.; Kim, H.R.; Chae, H.J. Eucommia ulmoides cortex, geniposide and aucubin regulate lipotoxicity through the inhibition of lysosomal BAX. PLoS One, 2014, 9(2), e88017.
[http://dx.doi.org/10.1371/journal.pone.0088017] [PMID: 24586300]
[40]
Shen, B.; Zhao, C.; Wang, Y.; Peng, Y.; Cheng, J.; Li, Z.; Wu, L.; Jin, M.; Feng, H. Aucubin inhibited lipid accumulation and oxidative stress via Nrf2/HO-1 and AMPK signalling pathways. J. Cell. Mol. Med., 2019, 23(6), 4063-4075.
[http://dx.doi.org/10.1111/jcmm.14293] [PMID: 30950217]
[41]
Lv, P.Y.; Feng, H.; Huang, W.H.; Tian, Y.Y.; Wang, Y.Q.; Qin, Y.H.; Li, X.H.; Hu, K.; Zhou, H.H.; Ouyang, D.S. Aucubin and its hydrolytic derivative attenuate activation of hepatic stellate cells via modulation of TGF-β stimulation. Environ. Toxicol. Pharmacol., 2017, 50, 234-239.
[http://dx.doi.org/10.1016/j.etap.2017.02.012] [PMID: 28199906]
[42]
Zhang, S.; Feng, Z.; Gao, W.; Duan, Y.; Fan, G.; Geng, X.; Wu, B.; Li, K.; Liu, K.; Peng, C. Aucubin attenuates liver ischemia-reperfusion injury by inhibiting the HMGB1/TLR-4/NF-KB signaling pathway, oxidative stress, and apoptosis. Front. Pharmacol., 2020, 11, 544124.
[http://dx.doi.org/10.3389/fphar.2020.544124] [PMID: 33013386]
[43]
Dwivedi, Y.; Rastogi, R.; Sharma, S.K.; Mehrotra, R.; Garg, N.K.; Dhawan, B.N. Picroliv protects against monocrotaline-induced hepatic damage in rats. Pharmacol. Res., 1991, 23(4), 399-407.
[http://dx.doi.org/10.1016/1043-6618(91)90054-2] [PMID: 1908581]
[44]
Dwivedi, Y.; Rastogi, R.; Mehrotra, R.; Garg, N.K.; Dhawan, B.N. Picroliv protects against aflatoxin B1 acute hepatotoxicity in rats. Pharmacol. Res., 1993, 27(2), 189-199.
[http://dx.doi.org/10.1006/phrs.1993.1018] [PMID: 8474962]
[45]
Rastogi, R.; Srivastava, A.K.; Srivastava, M.; Rastogi, A.K. Hepatocurative effect of picroliv and silymarin against aflatoxin B1 induced hepatotoxicity in rats. Planta Med., 2000, 66(8), 709-713.
[http://dx.doi.org/10.1055/s-2000-9907] [PMID: 11199126]
[46]
Rastogi, R.; Srivastava, A.K.; Rastogi, A.K. Long term effect of aflatoxin B(1) on lipid peroxidation in rat liver and kidney: effect of picroliv and silymarin. Phytother. Res., 2001, 15(4), 307-310.
[http://dx.doi.org/10.1002/ptr.722] [PMID: 11406853]
[47]
Visen, P.K.S.; Shukla, B.; Patnaik, G.K.; Kaul, S.; Kapoor, N.K.; Dhawan, B.N. Hepatoprotective activity of picroliv, the active principle of Picrorhiza kurroa, on rat hepatocytes against paracetamol toxicity. Drug Dev. Res., 1991, 22(3), 209-219.
[http://dx.doi.org/10.1002/ddr.430220303]
[48]
Visen, P.K.S.; Shukla, B.; Patnaik, G.K.; Chandra, R.; Singh, V.; Kapoor, N.K.; Dhawan, B.N. Hepatoprotective activity of picroliv isolated from Picrorhiza kurrooa against thioacetamide toxicity on rat hepatocytes. Phytother. Res., 1991, 5(5), 224-227.
[http://dx.doi.org/10.1002/ptr.2650050507]
[49]
Rastogi, R.; Saksena, S.; Garg, N.K.; Dhawan, B.N. Effect of picroliv on antioxidant-system in liver of rats, after partial hepatectomy. Phytother. Res., 1995, 9(5), 364-367.
[http://dx.doi.org/10.1002/ptr.2650090511]
[50]
Rastogi, R.; Srivastava, A.; Dhawan, B.N. Effect of picroliv on impaired hepatic mixed-function oxidase system in carbon tetrachloride-intoxicated rats. Drug Dev. Res., 1997, 41(1), 44-47.
[http://dx.doi.org/10.1002/(SICI)1098-2299(199705)41:1<44:AID-DDR5>3.0.CO;2-S]
[51]
Singh, M.; Tiwari, V.; Jain, A.; Ghoshal, S. Protective activity of picroliv on hepatic amoebiasis associated with carbon tetrachloride toxicity. Indian J. Med. Res., 2005, 121(5), 676-682.
[PMID: 15937372]
[52]
Boros, C.A.; Stermitz, F.R. Iridoids. An updated review. Part I. J. Nat. Prod., 1990, 53(5), 1055-1147.
[http://dx.doi.org/10.1021/np50071a001]
[53]
Boros, C.; Stermitz, F. Iridoids. An updated review. Part II. J. Nat. Prod., 1991, 54(5), 1173-1246.
[http://dx.doi.org/10.1021/np50077a001]
[54]
Garg, H.S.; Bhandari, S.P.S.; Tripathi, S.C.; Patnaik, G.K.; Puri, A.; Saxena, R.; Saxena, R.P. Antihepatotoxic and immunostimulant properties of iridoid glycosides of Scrophularia koelzii. Phytother. Res., 1994, 8(4), 224-228.
[http://dx.doi.org/10.1002/ptr.2650080407]
[55]
Wang, H.; Wu, F.H.; Xiong, F.; Wu, J.J.; Zhang, L.Y.; Ye, W.C.; Li, P.; Zhao, S.X. Iridoids from Neopicrorhiza scrophulariiflora and their hepatoprotective activities in vitro. Chem. Pharm. Bull. (Tokyo), 2006, 54(8), 1144-1149.
[http://dx.doi.org/10.1248/cpb.54.1144] [PMID: 16880659]
[56]
Gao, H.; Zhou, Y.W. Inhibitory effect of picroside II on hepatocyte apoptosis. Acta Pharmacol. Sin., 2005, 26(6), 729-736.
[http://dx.doi.org/10.1111/j.1745-7254.2005.00729.x] [PMID: 15916740]
[57]
Hikita, H.; Takehara, T.; Shimizu, S.; Kodama, T.; Li, W.; Miyagi, T.; Hosui, A.; Ishida, H.; Ohkawa, K.; Kanto, T.; Hiramatsu, N.; Yin, X.M.; Hennighausen, L.; Tatsumi, T.; Hayashi, N. Mcl-1 and Bcl-xL cooperatively maintain integrity of hepatocytes in developing and adult murine liver. Hepatology, 2009, 50(4), 1217-1226.
[http://dx.doi.org/10.1002/hep.23126] [PMID: 19676108]
[58]
Medina, J.; Moreno-Otero, R. Pathophysiological basis for antioxidant therapy in chronic liver disease. Drugs, 2005, 65(17), 2445-2461.
[http://dx.doi.org/10.2165/00003495-200565170-00003] [PMID: 16296871]
[59]
Danielewski, M.; Matuszewska, A.; Nowak, B.; Kucharska, A. Z.; Sozański, T The effects of natural iridoids and anthocyanins on selected parameters of liver and cardiovascular system functions. Oxid. Med. Cell. Longev, 2020, 2020
[http://dx.doi.org/10.1155/2020/2735790]
[60]
Li, T.; Xu, L.; Zheng, R.; Wang, X.; Li, L.; Ji, H.; Hu, Q. Picroside II protects against cholestatic liver injury possibly through activation of farnesoid X receptor. Phytomedicine, 2020, 68, 153153.
[http://dx.doi.org/10.1016/j.phymed.2019.153153] [PMID: 32018210]
[61]
Liu, Y.F.; Liang, D.; Luo, H.; Hao, Z.Y.; Wang, Y.; Zhang, C.L.; Zhang, Q.J.; Chen, R.Y.; Yu, D.Q. Hepatoprotective iridoid glycosides from the roots of Rehmannia glutinosa. J. Nat. Prod., 2012, 75(9), 1625-1631.
[http://dx.doi.org/10.1021/np300509z] [PMID: 22916954]
[62]
Liu, Y.F.; Shi, G.R.; Wang, X.; Zhang, C.L.; Wang, Y.; Chen, R.Y.; Yu, D.Q. Bioactive iridoid glycosides from the whole plants of Rehmannia chingii. J. Nat. Prod., 2016, 79(2), 428-433.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01126] [PMID: 26859776]
[63]
Feng, Z.; Zhou, C.; Dong, S.; Liu, Z.; Liu, T.; Zhou, L.; Zhou, X. Catalpol and panax notoginseng saponins synergistically alleviate triptolide-induced hepatotoxicity through Nrf2/ARE pathway. Toxicol. Vitr., 2019, 56, 141-149.
[http://dx.doi.org/10.1016/j.tiv.2019.01.016] [PMID: 30682494]
[64]
Zhang, H.; Jia, R.; Wang, F.; Qiu, G.; Qiao, P.; Xu, X.; Wu, D. Catalpol protects mice against lipopolysaccharide/D-galactosamine-induced acute liver injury through inhibiting inflammatory and oxidative response. Oncotarget, 2017, 9(3), 3887-3894.
[http://dx.doi.org/10.18632/oncotarget.23242] [PMID: 29423091]
[65]
Liu, Z.; Zhu, P.; Zhang, L.; Xiong, B.; Tao, J.; Guan, W.; Li, C.; Chen, C.; Gu, J.; Duanmu, J.; Zhang, W. Autophagy inhibition attenuates the induction of anti-inflammatory effect of catalpol in liver fibrosis. Biomed. Pharmacother., 2018, 103(April), 1262-1271.
[http://dx.doi.org/10.1016/j.biopha.2018.04.156] [PMID: 29864907]
[66]
Usmanov, D.; Rasulev, B.; Syrov, V.; Yusupova, U.; Ramazonov, N. Structure-hepatoprotective activity relationship study of iridoids. Int. J. Quant. Struct. Relationships, 2020, 5(3), 108-118.
[http://dx.doi.org/10.4018/IJQSPR.20200701.oa3]
[67]
Schon, H-T.; Weiskirchen, R. Immunomodulatory effects of transforming growth factor-β in the liver. Hepatobiliary Surg. Nutr., 2014, 3(6), 386-406.
[http://dx.doi.org/10.3978/j.issn.2304-3881.2014.11.06] [PMID: 25568862]
[68]
Fabregat, I.; Caballero-Díaz, D. Transforming growth factor-β-induced cell plasticity in liver fibrosis and hepatocarcinogenesis. Front. Oncol., 2018, 8, 357.
[http://dx.doi.org/10.3389/fonc.2018.00357] [PMID: 30250825]
[69]
Park, C.H.; Yamabe, N.; Noh, J.S.; Kang, K.S.; Tanaka, T.; Yokozawa, T. The beneficial effects of morroniside on the inflammatory response and lipid metabolism in the liver of db/db mice. Biol. Pharm. Bull., 2009, 32(10), 1734-1740.
[http://dx.doi.org/10.1248/bpb.32.1734] [PMID: 19801836]
[70]
Yamabe, N.; Noh, J.S.; Park, C.H.; Kang, K.S.; Shibahara, N.; Tanaka, T.; Yokozawa, T. Evaluation of loganin, iridoid glycoside from Corni Fructus, on hepatic and renal glucolipotoxicity and inflammation in type 2 diabetic db/db mice. Eur. J. Pharmacol., 2010, 648(1-3), 179-187.
[http://dx.doi.org/10.1016/j.ejphar.2010.08.044] [PMID: 20826139]
[71]
Gu, W.; Hao, X.J.; Liu, H.X.; Wang, Y.H.; Long, C.L. Acylated iridoid glycosides and acylated rhamnopyranoses from Gmelina arborea flowers. Phytochem. Lett., 2013, 6(4), 681-685.
[http://dx.doi.org/10.1016/j.phytol.2013.08.016]
[72]
Luo, Y.H.; Fu, H.Z.; Huang, B.; Chen, W.K.; Ma, S.C. Hepatoprotective iridoid glucosides from Callicarpa nudiflora. J. Asian Nat. Prod. Res., 2016, 18(3), 274-279.
[http://dx.doi.org/10.1080/10286020.2015.1074572] [PMID: 26507813]
[73]
Fu, H.Z.; Ma, Y.Y.; Ma, S.C.; Zhou, Z.Q.; Luo, Y.H. Two new iridoid glycosides from Callicarpa nudiflora. J. Asian Nat. Prod. Res., 2020, 22(3), 264-270.
[http://dx.doi.org/10.1080/10286020.2018.1557636] [PMID: 30590951]
[74]
Wang, J.; Fu, H.Z.; Luo, Y.H.; Ma, Y.Y.; Huang, B.; Ma, S.C. Two new iridoid glycosides from the leaves of Callicarpa nudiflora. J. Asian Nat. Prod. Res., 2018, 20(3), 242-248.
[http://dx.doi.org/10.1080/10286020.2017.1323884] [PMID: 28537085]
[75]
Abdel-Kader, M.S.; Alqasoumi, S.I. In vivo hepatoprotective and nephroprotective activity of acylated iridoid glycosides from Scrophularia hepericifolia. Biology (Basel), 2021, 10(2), 1-18.
[http://dx.doi.org/10.3390/biology10020145] [PMID: 33673028]
[76]
Tan, S.; Lu, Q.; Shu, Y.; Sun, Y.; Chen, F.; Tang, L. Iridoid glycosides fraction isolated from Veronica ciliata Fisch. protects against acetaminophen-induced liver injury in mice. Evid. Based Complement. Alternat. Med., 2017, 2017, 6106572.
[http://dx.doi.org/10.1155/2017/6106572] [PMID: 28293265]
[77]
Lu, Q.; Tan, S.; Gu, W.; Li, F.; Hua, W.; Zhang, S.; Chen, F.; Tang, L. Phytochemical composition, isolation and hepatoprotective activity of active fraction from Veronica ciliata against acetaminophen-induced acute liver injury via P62-Keap1-NRF-2 signaling pathway. J. Ethnopharmacol., 2019, 243, 112089.
[http://dx.doi.org/10.1016/j.jep.2019.112089] [PMID: 31310828]
[78]
Hua, W.; Zhang, S.; Lu, Q.; Sun, Y.; Tan, S.; Chen, F.; Tang, L. Protective effects of n-Butanol extract and iridoid glycosides of Veronica ciliata Fisch. Against ANIT-induced cholestatic liver injury in mice. J. Ethnopharmacol., 2021, 266, 113432.
[http://dx.doi.org/10.1016/j.jep.2020.113432] [PMID: 33011367]
[79]
Liang, H.; Zhang, L.; Wang, H.; Tang, J.; Yang, J.; Wu, C.; Chen, S. Inhibitory effect of gardenoside on free fatty acid-induced steatosis in HEP-g2 hepatocytes. Int. J. Mol. Sci., 2015, 16(11), 27749-27756.
[http://dx.doi.org/10.3390/ijms161126058] [PMID: 26610473]
[80]
Chen, P.; Chen, Y.; Wang, Y.; Cai, S.; Deng, L.; Liu, J.; Zhang, H. Comparative evaluation of hepatoprotective activities of geniposide, crocins and crocetin by CCl4-induced liver injury in mice. Biomol. Ther. (Seoul), 2016, 24(2), 156-162.
[http://dx.doi.org/10.4062/biomolther.2015.094] [PMID: 26902084]
[81]
Seo, M.J.; Hong, J.M.; Kim, S.J.; Lee, S.M. Genipin protects d-galactosamine and lipopolysaccharide-induced hepatic injury through suppression of the necroptosis-mediated inflammasome signaling. Eur. J. Pharmacol., 2017, 812, 128-137.
[http://dx.doi.org/10.1016/j.ejphar.2017.07.024] [PMID: 28709622]
[82]
Kim, B.C.; Kim, H.G.; Lee, S.A.; Lim, S.; Park, E.H.; Kim, S.J.; Lim, C.J. Genipin-induced apoptosis in hepatoma cells is mediated by reactive oxygen species/c-Jun NH2-terminal kinase-dependent activation of mitochondrial pathway. Biochem. Pharmacol., 2005, 70(9), 1398-1407.
[http://dx.doi.org/10.1016/j.bcp.2005.07.025] [PMID: 16143311]
[83]
Shin, J.K.; Lee, S.M. Genipin protects the liver from ischemia/reperfusion injury by modulating mitochondrial quality control. Toxicol. Appl. Pharmacol., 2017, 328, 25-33.
[http://dx.doi.org/10.1016/j.taap.2017.05.002] [PMID: 28477916]
[84]
Wang, Y.; Zhao, T.; Deng, Y.; Hou, L.; Fan, X.; Lin, L.; Zhao, W.; Jiang, K.; Sun, C. Genipin ameliorates carbon tetrachloride-induced liver injury in mice via the concomitant inhibition of inflammation and induction of autophagy. Oxid. Med. Cell. Longev., 2019, 2019, 3729051.
[http://dx.doi.org/10.1155/2019/3729051] [PMID: 31885784]
[85]
Zhong, H.; Liu, M.; Ji, Y.; Ma, M.; Chen, K.; Liang, T.; Liu, C. Genipin reverses HFD-induced liver damage and inhibits UCP2-mediated pyroptosis in mice. Cell. Physiol. Biochem., 2018, 49(5), 1885-1897.
[http://dx.doi.org/10.1159/000493651] [PMID: 30235442]
[86]
Jiang, M.; Cui, B.W.; Wu, Y.L.; Nan, J.X.; Lian, L.H. Genus Gentiana: A review on phytochemistry, pharmacology and molecular mechanism. J. Ethnopharmacol., 2021, 264, 113391.
[http://dx.doi.org/10.1016/j.jep.2020.113391] [PMID: 32931880]
[87]
Vidyalakshmi, K.S.; Nagarajan, S.; Vasanthi, H.R. Venkappaya; Rajamanickam, V. Hepatoprotective and antioxidant activity of two iridoids from Mussaenda ‘dona aurora’. Z. Naturforsch. C J. Biosci., 2009, 64(5-6), 329-334.
[http://dx.doi.org/10.1515/znc-2009-5-604] [PMID: 19678533]
[88]
Bridi, R.; Lino von Poser, G.; Gómez, M.; Andia, M.E.; Oyarzún, J.E.; Núñez, P.; Vasquez Arias, A.J.; Espinosa-Bustos, C. Hepatoprotective species from the Chilean medicinal flora: Junellia spathulata (Verbenaceae). J. Ethnopharmacol., 2021, 267, 113543.
[http://dx.doi.org/10.1016/j.jep.2020.113543] [PMID: 33152429]
[89]
Shao, S.Y.; Yang, Y.N.; Feng, Z.M.; Jiang, J.S.; Zhang, P.C. New iridoid glycosides from the fruits of Forsythia suspensa and their hepatoprotective activities. Bioorg. Chem., 2017, 75, 303-309.
[http://dx.doi.org/10.1016/j.bioorg.2017.10.006] [PMID: 29078206]
[90]
Vestena, A.; Piton, Y.; de Loretto Bordignon, S.A.; Garcia, S.; Arbo, M.D.; Zuanazzi, J.A.; von Poser, G. Hepatoprotective activity of Verbena litoralis, Verbena montevidensis and their main iridoid, brasoside. J. Ethnopharmacol., 2019, 239, 111906.
[http://dx.doi.org/10.1016/j.jep.2019.111906] [PMID: 31028856]
[91]
Hase, K.; Li, J.; Basnet, P.; Xiong, Q.; Takamura, S.; Namba, T.; Kadota, S. Hepatoprotective principles of Swertia japonica Makino on D-galactosamine/lipopolysaccharide-induced liver injury in mice. Chem. Pharm. Bull. (Tokyo), 1997, 45(11), 1823-1827.
[http://dx.doi.org/10.1248/cpb.45.1823] [PMID: 9396160]
[92]
Kondo, Y.; Takano, F.; Hojo, H. Suppression of chemically and immunologically induced hepatic injuries by gentiopicroside in mice. Planta Med., 1994, 60(5), 414-416.
[http://dx.doi.org/10.1055/s-2006-959521] [PMID: 7997467]
[93]
Han, H.; Xu, L.; Xiong, K.; Zhang, T.; Wang, Z. Exploration of hepatoprotective effect of gentiopicroside on alpha-naphthylisothiocyanate-induced cholestatic liver injury in rats by comprehensive proteomic and metabolomic signatures. Cell. Physiol. Biochem., 2018, 49(4), 1304-1319.
[http://dx.doi.org/10.1159/000493409] [PMID: 30223280]
[94]
Tang, X.; Yang, Q.; Yang, F.; Gong, J.; Han, H.; Yang, L.; Wang, Z. Target profiling analyses of bile acids in the evaluation of hepatoprotective effect of gentiopicroside on ANIT-induced cholestatic liver injury in mice. J. Ethnopharmacol., 2016, 194, 63-71.
[http://dx.doi.org/10.1016/j.jep.2016.08.049] [PMID: 27582267]
[95]
Lian, L.H.; Wu, Y.L.; Wan, Y.; Li, X.; Xie, W.X.; Nan, J.X. Anti-apoptotic activity of gentiopicroside in D-galactosamine/lipopolysaccharide-induced murine fulminant hepatic failure. Chem. Biol. Interact., 2010, 188(1), 127-133.
[http://dx.doi.org/10.1016/j.cbi.2010.06.004] [PMID: 20558151]
[96]
Wan, Z.; Li, H.; Wu, X.; Zhao, H.; Wang, R.; Li, M.; Liu, J.; Liu, Q.; Wang, R.; Li, X. Hepatoprotective effect of gentiopicroside in combination with leflunomide and/or methotrexate in arthritic rats. Life Sci., 2021, 265, 118689.
[http://dx.doi.org/10.1016/j.lfs.2020.118689] [PMID: 33130083]
[97]
Jaishree, V.; Badami, S. Antioxidant and hepatoprotective effect of swertiamarin from Enicostemma axillare against D-galactosamine induced acute liver damage in rats. J. Ethnopharmacol., 2010, 130(1), 103-106.
[http://dx.doi.org/10.1016/j.jep.2010.04.019] [PMID: 20420896]
[98]
Tian, C.; Zhang, T.; Wang, L.; Shan, Q.; Jiang, L. The hepatoprotective effect and chemical constituents of total iridoids and xanthones extracted from Swertia mussotii Franch. Franch. J. Ethnopharmacol., 2014, 154(1), 259-266.
[http://dx.doi.org/10.1016/j.jep.2014.04.018] [PMID: 24746481]
[99]
Li, S.; Wang, Q.; Tao, Y.; Liu, C. Swertiamarin attenuates experimental rat hepatic fibrosis by suppressing angiotensin II-Angiotensin type 1 receptor-extracellular signal-regulated kinase signaling. J. Pharmacol. Exp. Ther., 2016, 359(2), 247-255.
[http://dx.doi.org/10.1124/jpet.116.234179] [PMID: 27543328]
[100]
Wu, T.; Li, J.; Li, Y.; Song, H. Antioxidant and hepatoprotective effect of swertiamarin on carbon tetrachloride-induced hepatotoxicity via the Nrf2/HO-1 pathway. Cell. Physiol. Biochem., 2017, 41(6), 2242-2254.
[http://dx.doi.org/10.1159/000475639] [PMID: 28448964]
[101]
Dai, K.; Yi, X.J.; Huang, X.J.; Muhammad, A.; Li, M.; Li, J.; Yang, G.Z.; Gao, Y. Hepatoprotective activity of iridoids, seco-iridoids and analog glycosides from Gentianaceae on HepG2 cells via CYP3A4 induction and mitochondrial pathway. Food Funct., 2018, 9(5), 2673-2683.
[http://dx.doi.org/10.1039/C8FO00168E] [PMID: 29675530]
[102]
Zhang, Y.; Zhao, H.; Li, H.; Cao, W.; Wang, F.; Zhang, T.; Wang, S.W. Protective effects of amarogentin against carbon tetrachloride-induced liver fibrosis in mice. Molecules, 2017, 22(5), 1-13.
[http://dx.doi.org/10.3390/molecules22050754] [PMID: 28481234]
[103]
Zhang, Y.; Zhang, M.; Li, H.; Zhao, H.; Wang, F.; He, Q.; Zhang, T.; Wang, S. Serum metabonomics study of the hepatoprotective effect of amarogentin on CCl4-induced liver fibrosis in mice by GC-TOF-MS analysis. J. Pharm. Biomed. Anal., 2018, 149, 120-127.
[http://dx.doi.org/10.1016/j.jpba.2017.10.029] [PMID: 29112900]
[104]
Shi, J.; Li, C.J.; Yang, J.Z.; Ma, J.; Wang, C.; Tang, J.; Li, Y.; Chen, H.; Zhang, D.M. Hepatoprotective coumarins and secoiridoids from Hydrangea paniculata. Fitoterapia, 2014, 96, 138-145.
[http://dx.doi.org/10.1016/j.fitote.2014.04.015] [PMID: 24811324]
[105]
Domitrović R.; Jakovac, H.; Marchesi, V.V.; Šain, I.; Romić Ž.; Rahelić D. Preventive and therapeutic effects of oleuropein against carbon tetrachloride-induced liver damage in mice. Pharmacol. Res., 2012, 65(4), 451-464.
[http://dx.doi.org/10.1016/j.phrs.2011.12.005] [PMID: 22214867]
[106]
Mahmoudi, A.; Hadrich, F.; Feki, I.; Ghorbel, H.; Bouallagui, Z.; Marrekchi, R.; Fourati, H.; Sayadi, S. Oleuropein and hydroxytyrosol rich extracts from olive leaves attenuate liver injury and lipid metabolism disturbance in bisphenol A-treated rats. Food Funct., 2018, 9(6), 3220-3234.
[http://dx.doi.org/10.1039/C8FO00248G] [PMID: 29781491]
[107]
Yan, C.M.; Chai, E.Q.; Cai, H.Y.; Miao, G.Y.; Ma, W. Oleuropein induces apoptosis via activation of caspases and suppression of phosphatidylinositol 3-kinase/protein kinase B pathway in HepG2 human hepatoma cell line. Mol. Med. Rep., 2015, 11(6), 4617-4624.
[http://dx.doi.org/10.3892/mmr.2015.3266] [PMID: 25634350]
[108]
Lee, D.H.; Park, S.H.; Huh, Y.H.; Jung Kim, M.; Seo, H.D.; Ha, T.Y.; Ahn, J.; Jang, Y.J.; Jung, C.H. Iridoids of Valeriana fauriei contribute to alleviating hepatic steatosis in obese mice by lipophagy. Biomed. Pharmacother., 2020, 125, 109950.
[http://dx.doi.org/10.1016/j.biopha.2020.109950] [PMID: 32058217]
[109]
Shu, Y.; Liu, X.; Huang, H.; Wen, Q.; Shu, J. Research progress of natural compounds in anti-liver fibrosis by affecting autophagy of hepatic stellate cells. Mol. Biol. Rep., 2021, 48(2), 1915-1924.
[http://dx.doi.org/10.1007/s11033-021-06171-w] [PMID: 33609264]
[110]
Allaire, M.; Rautou, P.E.; Codogno, P.; Lotersztajn, S. Autophagy in liver diseases: Time for translation? J. Hepatol., 2019, 70(5), 985-998.
[http://dx.doi.org/10.1016/j.jhep.2019.01.026] [PMID: 30711404]
[111]
Lee, S.H.; Shin, H.P.; Lee, J.I. Real-world single-center experience with direct-acting antivirals for improvement of the liver fibrosis after chronic hepatitis C treatment. Antivir. Chem. Chemother., 2020, 28, 2040206620974835.
[http://dx.doi.org/10.1177/2040206620974835] [PMID: 33215505]
[112]
Zhang, M.; Kenny, S.J.; Ge, L.; Xu, K.; Schekman, R. Translocation of interleukin-1β into a vesicle intermediate in autophagy-mediated secretion. eLife, 2015, 4, 1-23.
[http://dx.doi.org/10.7554/eLife.11205] [PMID: 26523392]
[113]
Bai, F.; Huang, Q.; Nie, J.; Lu, S.; Lu, C.; Zhu, X.; Wang, Y.; Zhuo, L.; Lu, Z.; Lin, X. trolline ameliorates liver fibrosis by inhibiting the NF-KB pathway, promoting HSC apoptosis and suppressing autophagy. Cell. Physiol. Biochem., 2017, 44(2), 436-446.
[http://dx.doi.org/10.1159/000485009] [PMID: 29141243]
[114]
Ashrafizadeh, M.; Ahmadi, Z.; Farkhondeh, T.; Samarghandian, S. Modulatory effects of statins on the autophagy: A therapeutic perspective. J. Cell. Physiol., 2020, 235(4), 3157-3168.
[http://dx.doi.org/10.1002/jcp.29227] [PMID: 31578730]
[115]
Peng, M.; Zhang, Y.; Shi, S.; Peng, S. Simultaneous ligand fishing and identification of human serum albumin binders from Eucommia ulmoides bark using surface plasmon resonance-high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 940, 86-93.
[http://dx.doi.org/10.1016/j.jchromb.2013.09.032] [PMID: 24141043]
[116]
Oztürk, N.; Herekman-Demir, T.; Oztürk, Y.; Bozan, B. Başer, K.H.C. Choleretic activity of Gentiana lutea ssp. symphyandra in rats. Phytomedicine, 1998, 5(4), 283-288.
[http://dx.doi.org/10.1016/S0944-7113(98)80067-6] [PMID: 23195900]
[117]
Orhan, D.D.; Aslan, M.; Aktay, G.; Ergun, E.; Yesilada, E.; Ergun, F. Evaluation of hepatoprotective effect of Gentiana olivieri herbs on subacute administration and isolation of active principle. Life Sci., 2003, 72(20), 2273-2283.
[http://dx.doi.org/10.1016/S0024-3205(03)00117-6] [PMID: 12628447]
[118]
Lian, L.H.; Wu, Y.L.; Song, S.Z.; Wan, Y.; Xie, W.X.; Li, X.; Bai, T.; Ouyang, B.Q.; Nan, J.X. Gentiana manshurica Kitagawa reverses acute alcohol-induced liver steatosis through blocking sterol regulatory element-binding protein-1 maturation. J. Agric. Food Chem., 2010, 58(24), 13013-13019.
[http://dx.doi.org/10.1021/jf103976y] [PMID: 21105651]
[119]
Nagalekshmi, R.; Menon, A.; Chandrasekharan, D.K.; Nair, C.K.K. Hepatoprotective activity of Andrographis paniculata and Swertia chirayita. Food Chem. Toxicol., 2011, 49(12), 3367-3373.
[http://dx.doi.org/10.1016/j.fct.2011.09.026] [PMID: 21983487]
[120]
Mihailović V.; Mihailović M.; Uskoković A.; Arambašić J.; Mišić D.; Stanković V.; Katanić J.; Mladenović M.; Solujić S.; Matić S. Hepatoprotective effects of Gentiana asclepiadea L. extracts against carbon tetrachloride induced liver injury in rats. Food Chem. Toxicol., 2013, 52, 83-90.
[http://dx.doi.org/10.1016/j.fct.2012.10.034] [PMID: 23146698]
[121]
Mihailović V.; Katanić J.; Mišić D.; Stanković V.; Mihailović M.; Uskoković A.; Arambašić J.; Solujić S.; Mladenović M.; Stanković N. Hepatoprotective effects of secoiridoid-rich extracts from Gentiana cruciata L. against carbon tetrachloride induced liver damage in rats. Food Funct., 2014, 5(8), 1795-1803.
[http://dx.doi.org/10.1039/C4FO00088A] [PMID: 24912992]
[122]
Qu, Z.X.; Li, F.; Ma, C.D.; Liu, J.; Li, S.D.; Wang, W.L. Effects of Gentiana scabra bage on expression of hepatic type I, III collagen proteins in Paragonimus skrjabini rats with liver fibrosis. Asian Pac. J. Trop. Med., 2015, 8(1), 60-63.
[http://dx.doi.org/10.1016/S1995-7645(14)60188-7] [PMID: 25901926]
[123]
Cui, Y.; Jiang, L.; Shao, Y.; Mei, L.; Tao, Y. Anti-alcohol liver disease effect of Gentianae macrophyllae extract through MAPK/JNK/p38 pathway. J. Pharm. Pharmacol., 2019, 71(2), 240-250.
[http://dx.doi.org/10.1111/jphp.13027] [PMID: 30298517]
[124]
Xu, L.; Sheng, T.; Liu, X.; Zhang, T.; Wang, Z.; Han, H. Analyzing the hepatoprotective effect of the Swertia cincta Burkill extract against ANIT-induced cholestasis in rats by modulating the expression of transporters and metabolic enzymes. J. Ethnopharmacol., 2017, 209, 91-99.
[http://dx.doi.org/10.1016/j.jep.2017.07.031] [PMID: 28734962]
[125]
Chen, L.; Li, M.; Yang, Z.; Tao, W.; Wang, P.; Tian, X.; Li, X.; Wang, W. Gardenia jasminoides Ellis: Ethnopharmacology, phytochemistry, and pharmacological and industrial applications of an important traditional Chinese medicine. J. Ethnopharmacol., 2020, 257, 112829.
[http://dx.doi.org/10.1016/j.jep.2020.112829] [PMID: 32311486]
[126]
Gao, H.Y.; Huang, J.; Wang, H.Y.; Du, X.W.; Cheng, S.M.; Han, Y.; Wang, L.F.; Li, G.Y.; Wang, J.H. Protective effect of Zhuyeqing liquor, a Chinese traditional health liquor, on acute alcohol-induced liver injury in mice. J. Inflamm. (Lond.), 2013, 10(1), 30.
[http://dx.doi.org/10.1186/1476-9255-10-30] [PMID: 24090365]
[127]
Han, F.; Liu, T.; Yin, R.; Zhang, X.; Ma, L.; Xu, R.; Wu, Y. UHPLC-FT-ICR-MS combined with serum pharmacochemistry for bioactive compounds discovery of zhi-zi-da-huang-decoction against alcohol-induced hepatotoxicity in rats. RSC Advances, 2016, 6(110), 108917-108927.
[http://dx.doi.org/10.1039/C6RA19422B]
[128]
Wang, M.Y.; Nowicki, D.; Anderson, G.; Jensen, J.; West, B. Liver protective effects of Morinda citrifolia (Noni). Plant Foods Hum. Nutr., 2008, 63(2), 59-63.
[http://dx.doi.org/10.1007/s11130-008-0070-3] [PMID: 18317933]
[129]
Afroz, S.; Alamgir, M.; Khan, M.T.H.; Jabbar, S.; Nahar, N.; Choudhuri, M.S.K. Antidiarrhoeal activity of the ethanol extract of Paederia foetida Linn. (Rubiaceae). J. Ethnopharmacol., 2006, 105(1-2), 125-130.
[http://dx.doi.org/10.1016/j.jep.2005.10.004] [PMID: 16298094]
[130]
Peng, W.; Qiu, X.Q.; Shu, Z.H.; Liu, Q.C.; Hu, M.B.; Han, T.; Rahman, K.; Qin, L.P.; Zheng, C.J. Hepatoprotective activity of total iridoid glycosides isolated from Paederia scandens (lour.) Merr. var. tomentosa. J. Ethnopharmacol., 2015, 174, 317-321.
[http://dx.doi.org/10.1016/j.jep.2015.08.032] [PMID: 26320683]
[131]
Kirtikar, K.; Basu, B. Indian Medicinal Plants; Lalit Mohan Basu: Allahabad, 1984.
[132]
Khatri, A.; Garg, A.; Agrawal, S.S. Evaluation of hepatoprotective activity of aerial parts of Tephrosia purpurea L. and stem bark of Tecomella undulata. J. Ethnopharmacol., 2009, 122(1), 1-5.
[http://dx.doi.org/10.1016/j.jep.2008.10.043] [PMID: 19059328]
[133]
Sun, Y.; Lu, Q.; He, L.; Shu, Y.; Zhang, S.; Tan, S.; Tang, L. Active Fragment of Veronica ciliata Fisch. attenuates t-BHP-induced oxidative stress injury in HepG2 cells through antioxidant and antiapoptosis activities. Oxid. Med. Cell. Longev., 2017, 2017, 4727151.
[http://dx.doi.org/10.1155/2017/4727151] [PMID: 29362666]
[134]
Yin, L.; Wei, L.; Fu, R.; Ding, L.; Guo, Y.; Tang, L.; Chen, F. Antioxidant and hepatoprotective activity of Veronica ciliata Fisch. extracts against carbon tetrachloride-induced liver injury in mice. Molecules, 2014, 19(6), 7223-7236.
[http://dx.doi.org/10.3390/molecules19067223] [PMID: 24892270]
[135]
Rusu, M.A.; Tamas, M.; Puica, C.; Roman, I.; Sabadas, M. The hepatoprotective action of ten herbal extracts in CCl4 intoxicated liver. Phytother. Res., 2005, 19(9), 744-749.
[http://dx.doi.org/10.1002/ptr.1625] [PMID: 16220565]
[136]
Singh, B.; Chandan, B.K.; Prabhakar, A.; Taneja, S.C.; Singh, J.; Qazi, G.N. Chemistry and hepatoprotective activity of an active fraction from Barleria prionitis Linn. in experimental animals. Phytother. Res., 2005, 19(5), 391-404.
[http://dx.doi.org/10.1002/ptr.1509] [PMID: 16106393]
[137]
Singh, B.; Bani, S.; Gupta, D.K.; Chandan, B.K.; Kaul, A. Anti-inflammatory activity of ‘TAF’ an active fraction from the plant Barleria prionitis Linn. J. Ethnopharmacol., 2003, 85(2-3), 187-193.
[http://dx.doi.org/10.1016/S0378-8741(02)00358-6] [PMID: 12639739]
[138]
Pramyothin, P.; Chirdchupunsare, H.; Rungsipipat, A.; Chaichantipyuth, C. Hepatoprotective activity of Thunbergia laurifolia Linn extract in rats treated with ethanol: In vitro and in vivo studies. J. Ethnopharmacol., 2005, 102(3), 408-411.
[http://dx.doi.org/10.1016/j.jep.2005.06.036] [PMID: 16085378]
[139]
Lin, L.C.; Chen, K.T. New phenylpropanoid glycoside from Boschniakia rossica. J. Chin. Pharm. Sci., 2004, 56(2), 77-85.
[140]
Quan, J.; Yin, X.; Xu, H. Boschniakia rossica prevents the carbon tetrachloride-induced hepatotoxicity in rat. Exp. Toxicol. Pathol., 2011, 63(1-2), 53-59.
[http://dx.doi.org/10.1016/j.etp.2009.09.008] [PMID: 19836219]
[141]
Panovska, T.K.; Kulevanova, S.; Gjorgoski, I.; Bogdanova, M.; Petrushevska, G. Hepatoprotective effect of the ethyl acetate extract of Teucrium polium L. against carbontetrachloride-induced hepatic injury in rats. Acta Pharm., 2007, 57(2), 241-248.
[http://dx.doi.org/10.2478/v10007-007-0020-x] [PMID: 17507320]
[142]
Usmanov, D.; Yusupova, U.; Syrov, V.; Ramazonov, N.; Rasulev, B. Iridoid glucosides and triterpene acids from Phlomis linearifolia, growing in Uzbekistan and its hepatoprotective activity. Nat. Prod. Res., 2021, 35(14), 2449-2453.
[http://dx.doi.org/10.1080/14786419.2019.1677650]
[143]
Lee, N.H.; Seo, C.S.; Lee, H.Y.; Jung, D.Y.; Lee, J.K.; Lee, J.A.; Song, K.Y.; Shin, H.K.; Lee, M.Y.; Seo, Y.B.; Kim, H.; Ha, H. Hepatoprotective and antioxidative activities of Cornus Officinalis against acetaminophen-induced hepatotoxicity in mice. Evidence-based Complement. Evid. Based Complement. Alternat. Med., 2012, 2012, 804924.
[http://dx.doi.org/10.1155/2012/804924] [PMID: 21869901]
[144]
Han, X.; Liu, J.; Bai, Y.; Hang, A.; Lu, T.; Mao, C. An Iridoid glycoside from Cornus officinalis Balances intestinal microbiome disorder and alleviates alcohol-induced liver injury. J. Funct. Foods, 2021, 82, 104488.
[http://dx.doi.org/10.1016/j.jff.2021.104488]
[145]
Fki, I.; Sayadi, S.; Mahmoudi, A.; Daoued, I.; Marrekchi, R.; Ghorbel, H. Comparative Study on Beneficial effects of hydroxytyrosol- and oleuropein-rich olive leaf extracts on high-fat diet-induced lipid metabolism disturbance and liver injury in rats. BioMed Res. Int., 2020, 2020, 1315202.
[http://dx.doi.org/10.1155/2020/1315202] [PMID: 31998777]
[146]
Yamashita, H.; Ohbuchi, K.; Nagino, M.; Ebata, T.; Tsuchiya, K.; Kushida, H.; Yokoyama, Y. Comprehensive metabolome analysis for the pharmacological action of inchinkoto, a hepatoprotective herbal medicine. Metabolomics, 2021, 17(12), 106.
[http://dx.doi.org/10.1007/s11306-021-01824-0] [PMID: 34855010]
[147]
Mizutani, T.; Yokoyama, Y.; Kokuryo, T.; Ebata, T.; Igami, T.; Sugawara, G.; Nagino, M. Does inchinkoto, a herbal medicine, have hepatoprotective effects in major hepatectomy? A prospective randomized study. HPB (Oxford), 2015, 17(5), 461-469.
[http://dx.doi.org/10.1111/hpb.12384] [PMID: 25581163]
[148]
Wang, J.; Miao, M.; Qu, L.; Cui, Y.; Zhang, Y. Protective effects of geniposide against Tripterygium glycosides (TG)-induced liver injury and its mechanisms. J. Toxicol. Sci., 2016, 41(1), 165-173.
[http://dx.doi.org/10.2131/jts.41.165] [PMID: 26763404]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy