Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Sildenafil Inhibits the Growth and Epithelial-to-mesenchymal Transition of Cervical Cancer via the TGF-β1/Smad2/3 Pathway

Author(s): Ping Liu, Jing-Jing Pei, Li Li, Jing-Wei Li and Xiao-Ping Ke*

Volume 23, Issue 2, 2023

Published on: 07 September, 2022

Page: [145 - 158] Pages: 14

DOI: 10.2174/1568009622666220816114543

open access plus

conference banner
Abstract

Aims: The study aims to explore new potential treatments for cervical cancer.

Background: Cervical cancer is the second most common cancer in women, causing >250,000 deaths worldwide. Patients with cervical cancer are mainly treated with platinum compounds, which often cause severe toxic reactions. Furthermore, the long-term use of platinum compounds can reduce the sensitivity of cancer cells to chemotherapy and increase the drug resistance of cervical cancer. Therefore, exploring new treatment options is meaningful for cervical cancer.

Objective: The present study was to investigate the effect of sildenafil on the growth and epithelial-tomesenchymal transition (EMT) of cervical cancer.

Methods: HeLa and SiHa cells were treated with sildenafil for different durations. Cell viability, clonogenicity, wound healing, and Transwell assays were performed. The levels of transforming growth factor-β1 (TGF-β1), transforming growth factor-β type I receptor (TβRI), phosphorylated (p-) Smad2 and p-Smad3 in cervical cancer samples were measured. TGF-β1, Smad2 or Smad3 were overexpressed in HeLa cells, and we measured the expression of EMT marker proteins and the changes in cell viability, colony formation, etc. Finally, HeLa cells were used to establish a nude mouse xenograft model with sildenafil treatment. The survival rate of mice and the tumor size were recorded.

Results: High concentrations of sildenafil (1.0-2.0 μM) reduced cell viability, the number of HeLa and SiHa colonies, and the invasion/migration ability of HeLa and SiHa cells in a dose- and time-dependent manner. The expression of TGF-β1, TβRI, p-Smad2 and p-Smad3 was significantly enhanced in cervical cancer samples and cervical cancer cell lines. Sildenafil inhibited the expression of TGF-β1-induced EMT marker proteins (Snail, vimentin, Twist, E-cadherin and N-cadherin) and p-Smad2/3 in HeLa cells. Overexpression of TGF-β1, Smad2, and Smad3 reversed the effect of sildenafil on EMT, viability, colony formation, migration, and invasion ability of HeLa cells. In the in vivo study, sildenafil significantly increased mouse survival rates and suppressed xenograft growth.

Conclusion: Sildenafil inhibits the proliferation, invasion ability, and EMT of human cervical cancer cells by regulating the TGF-β1/Smad2/3 pathway.

Keywords: sildenafil, cervical cancer, epithelial-to-mesenchymal transition, invasion, migration

Graphical Abstract

[1]
Arbyn, M.; Weiderpass, E.; Bruni, L.; de Sanjosé, S.; Saraiya, M.; Ferlay, J.; Bray, F. Estimates of incidence and mortality of cervical cancer in 2018: A worldwide analysis. Lancet Glob. Health, 2020, 8(2), e191-e203.
[http://dx.doi.org/10.1016/S2214-109X(19)30482-6] [PMID: 31812369]
[2]
Zhang, S.; Xu, H.; Zhang, L.; Qiao, Y. Cervical cancer: Epidemiology, risk factors and screening. Chin. J. Cancer Res., 2020, 32(6), 720-728.
[http://dx.doi.org/10.21147/j.issn.1000-9604.2020.06.05] [PMID: 33446995]
[3]
Cutts, F.T.; Franceschi, S.; Goldie, S.; Castellsague, X.; de Sanjose, S.; Garnett, G.; Edmunds, W.J.; Claeys, P.; Goldenthal, K.L.; Harper, D.M.; Markowitz, L. Human papillomavirus and HPV vaccines: A review. Bull. World Health Organ., 2007, 85(9), 719-726.
[http://dx.doi.org/10.2471/BLT.06.038414] [PMID: 18026629]
[4]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[5]
Zhang, J.; Gao, Y. Long non-coding RNA MEG3 inhibits cervical cancer cell growth by promoting degradation of P-STAT3 protein via ubiquitination. Cancer Cell Int., 2019, 19, 19-0893.
[http://dx.doi.org/10.1186/s12935-019-0893-z]
[6]
Monie, A.; Hung, C.F.; Roden, R.; Wu, T.C. Cervarix: A vaccine for the prevention of HPV 16, 18-associated cervical cancer. Biologics, 2008, 2(1), 97-105.
[PMID: 19707432]
[7]
Li, H.; Wu, X.; Cheng, X. Advances in diagnosis and treatment of metastatic cervical cancer. J. Gynecol. Oncol., 2016, 27(4), e43.
[http://dx.doi.org/10.3802/jgo.2016.27.e43] [PMID: 27171673]
[8]
Chopra, D.; Rehan, H.S.; Sharma, V.; Mishra, R. Chemotherapy-induced adverse drug reactions in oncology patients: A prospective observational survey. Indian J. Med. Paediatr. Oncol., 2016, 37(1), 42-46.
[http://dx.doi.org/10.4103/0971-5851.177015] [PMID: 27051157]
[9]
Yu, H.; Wang, H.; Qie, A.; Wang, J.; Liu, Y.; Gu, G.; Yang, J.; Zhang, H.; Pan, W.; Tian, Z.; Wang, C. FGF13 enhances resistance to platinum drugs by regulating hCTR1 and ATP7A via a microtubule-stabilizing effect. Cancer Sci., 2021, 112(11), 4655-4668.
[http://dx.doi.org/10.1111/cas.15137] [PMID: 34533854]
[10]
Peak, T.C.; Richman, A.; Gur, S.; Yafi, F.A.; Hellstrom, W.J. The role of PDE5 inhibitors and the NO/cGMP pathway in cancer. Sex. Med. Rev., 2016, 4(1), 74-84.
[http://dx.doi.org/10.1016/j.sxmr.2015.10.004] [PMID: 27872007]
[11]
Das, A.; Durrant, D.; Salloum, F.N.; Xi, L.; Kukreja, R.C. PDE5 inhibitors as therapeutics for heart disease, diabetes and cancer. Pharmacol. Ther., 2015, 147, 12-21.
[http://dx.doi.org/10.1016/j.pharmthera.2014.10.003] [PMID: 25444755]
[12]
Iratni, R.; Ayoub, M.A. Sildenafil in combination therapy against cancer: A literature review. Curr. Med. Chem., 2021, 28(11), 2248-2259.
[http://dx.doi.org/10.2174/0929867327666200730165338] [PMID: 32744956]
[13]
Yi, X.; Li, X.; Zhou, Y.; Ren, S.; Wan, W.; Feng, G.; Jiang, X. Hepatocyte growth factor regulates the TGF-β1-induced proliferation, differentiation and secretory function of cardiac fibroblasts. Int. J. Mol. Med., 2014, 34(2), 381-390.
[http://dx.doi.org/10.3892/ijmm.2014.1782] [PMID: 24840640]
[14]
Wu, L; Zhang, Q; Mo, W; Feng, J; Li, S; Li, J Quercetin prevents hepatic fibrosis by inhibiting hepatic stellate cell activation and reducing autophagy via the TGF-β1/Smads and PI3K/Akt pathways Sci Rep, 2017, 7, 017-09673.
[15]
Chandra Jena, B.; Kanta Das, C.; Banerjee, I.; Das, S.; Bharadwaj, D.; Majumder, R.; Mandal, M. Paracrine TGF-β1 from breast cancer contributes to chemoresistance in cancer associated fibroblasts via upregulation of the p44/42 MAPK signaling pathway. Biochem. Pharmacol., 2021, 186, 114474.
[http://dx.doi.org/10.1016/j.bcp.2021.114474] [PMID: 33607074]
[16]
Zong, L; Chen, K; Jiang, Z; Chen, X; Sun, L; Ma, J Lipoxin A4 reverses mesenchymal phenotypes to attenuate invasion and metastasis via the inhibition of autocrine TGF-β1 signaling in pancreatic cancer. J Exp Clin Cancer Res, 2017, 36, 017-0655.
[http://dx.doi.org/10.1186/s13046-017-0655-5]
[17]
Cheng, Y; Guo, Y; Zhang, Y; You, K; Li, Z; Geng, L. MicroRNA- 106b is involved in transforming growth factor β1-induced cell migration by targeting disabled homolog 2 in cervical carcinoma. J Exp Clin Cancer Res, 2016, 35, 016-0290.
[http://dx.doi.org/10.1186/s13046-016-0290-6]
[18]
Cheng, K.Y.; Hao, M. Mammalian target of rapamycin (mTOR) regulates transforming growth factor-β1 (TGF-β1)-induced epithelial-mesenchymal transition via decreased pyruvate Kinase M2 (PKM2) expression in cervical cancer cells. Med. Sci. Monit., 2017, 23, 2017-2028.
[http://dx.doi.org/10.12659/MSM.901542] [PMID: 28446743]
[19]
Tjiong, M.Y.; van der Vange, N.; ter Schegget, J.S.; Burger, M.P.; ten Kate, F.W.; Out, T.A. Cytokines in cervicovaginal washing fluid from patients with cervical neoplasia. Cytokine, 2001, 14(6), 357-360.
[http://dx.doi.org/10.1006/cyto.2001.0909] [PMID: 11497498]
[20]
Ju, W.; Luo, X.; Zhang, N. LncRNA NEF inhibits migration and invasion of HPV-negative cervical squamous cell carcinoma by inhibiting TGF-β pathway. Biosci. Rep., 2019, 39(4), BSR20180878.
[http://dx.doi.org/10.1042/BSR20180878] [PMID: 30910843]
[21]
Li, Y.; Chen, D.; Gao, X.; Li, X.; Shi, G. LncRNA NEAT1 regulates cell viability and invasion in esophageal squamous cell carcinoma through the miR-129/CTBP2 axis. Dis. Markers, 2017, 2017, 5314649.
[http://dx.doi.org/10.1155/2017/5314649] [PMID: 29147064]
[22]
Ashinuma, H.; Takiguchi, Y.; Kitazono, S.; Kitazono-Saitoh, M.; Kitamura, A.; Chiba, T.; Tada, Y.; Kurosu, K.; Sakaida, E.; Sekine, I.; Tanabe, N.; Iwama, A.; Yokosuka, O.; Tatsumi, K. Antiproliferative action of metformin in human lung cancer cell lines. Oncol. Rep., 2012, 28(1), 8-14.
[PMID: 22576795]
[23]
Meng, Y.; Li, Q.; Li, L.; Ma, R. The long non-coding RNA CRNDE promotes cervical cancer cell growth and metastasis. Biol. Chem., 2017, 399(1), 93-100.
[http://dx.doi.org/10.1515/hsz-2017-0199] [PMID: 29194035]
[24]
Kim, Y.I.; Ryu, J.S.; Yeo, J.E.; Choi, Y.J.; Kim, Y.S.; Ko, K.; Koh, Y.G. Overexpression of TGF-β1 enhances chondrogenic differentiation and proliferation of human synovium-derived stem cells. Biochem. Biophys. Res. Commun., 2014, 450(4), 1593-1599.
[http://dx.doi.org/10.1016/j.bbrc.2014.07.045] [PMID: 25035928]
[25]
de Carvalho, M.A.J.; Chaves-Filho, A.; de Souza, A.G.; de Carvalho Lima, C.N.; de Lima, K.A.; Rios Vasconcelos, E.R.; Feitosa, M.L.; Souza Oliveira, J.V.; de Souza, D.A.A.; Macedo, D.S.; de Souza, F.C.F.; de França Fonteles, M.M. Proconvulsant effects of sildenafil citrate on pilocarpine-induced seizures: Involvement of cholinergic, nitrergic and pro-oxidant mechanisms. Brain Res. Bull., 2019, 149, 60-74.
[http://dx.doi.org/10.1016/j.brainresbull.2019.04.008] [PMID: 31004733]
[26]
Islam, B.N.; Sharman, S.K.; Hou, Y.; Bridges, A.E.; Singh, N.; Kim, S.; Kolhe, R.; Trillo-Tinoco, J.; Rodriguez, P.C.; Berger, F.G.; Sridhar, S.; Browning, D.D. Sildenafil suppresses inflammation-driven colorectal cancer in mice. Cancer Prev. Res. (Phila.), 2017, 10(7), 377-388.
[http://dx.doi.org/10.1158/1940-6207.CAPR-17-0015] [PMID: 28468928]
[27]
Booth, L.; Roberts, J.L.; Cruickshanks, N.; Tavallai, S.; Webb, T.; Samuel, P.; Conley, A.; Binion, B.; Young, H.F.; Poklepovic, A.; Spiegel, S.; Dent, P. PDE5 inhibitors enhance celecoxib killing in multiple tumor types. J. Cell. Physiol., 2015, 230(5), 1115-1127.
[http://dx.doi.org/10.1002/jcp.24843] [PMID: 25303541]
[28]
Chen, L.; Liu, Y.; Becher, A.; Diepold, K.; Schmid, E.; Fehn, A.; Brunner, C.; Rouhi, A.; Chiosis, G.; Cronauer, M.; Seufferlein, T.; Azoitei, N. Sildenafil triggers tumor lethality through altered expression of HSP90 and degradation of PKD2. Carcinogenesis, 2020, 41(10), 1421-1431.
[http://dx.doi.org/10.1093/carcin/bgaa001] [PMID: 31917403]
[29]
Booth, L.; Roberts, J.L.; Cruickshanks, N.; Conley, A.; Durrant, D.E.; Das, A.; Fisher, P.B.; Kukreja, R.C.; Grant, S.; Poklepovic, A.; Dent, P. Phosphodiesterase 5 inhibitors enhance chemotherapy killing in gastrointestinal/genitourinary cancer cells. Mol. Pharmacol., 2014, 85(3), 408-419.
[http://dx.doi.org/10.1124/mol.113.090043] [PMID: 24353313]
[30]
Guimarães, D.A.; Rizzi, E.; Ceron, C.S.; Martins-Oliveira, A.; Gerlach, R.F.; Shiva, S.; Tanus-Santos, J.E. Atorvastatin and sildenafil decrease vascular TGF-β levels and MMP-2 activity and ameliorate arterial remodeling in a model of renovascular hypertension. Redox Biol., 2015, 6, 386-395.
[http://dx.doi.org/10.1016/j.redox.2015.08.017] [PMID: 26343345]
[31]
Bae, E.H.; Kim, I.J.; Joo, S.Y.; Kim, E.Y.; Kim, C.S.; Choi, J.S.; Ma, S.K.; Kim, S.H.; Lee, J.U.; Kim, S.W. Renoprotective effects of sildenafil in DOCA-salt hypertensive rats. Kidney Blood Press. Res., 2012, 36(1), 248-257.
[http://dx.doi.org/10.1159/000343414] [PMID: 23171857]
[32]
Morikawa, M.; Derynck, R.; Miyazono, K. TGF-β and the TGF-β family: Context-dependent roles in cell and tissue Physiology. Cold Spring Harb. Perspect. Biol., 2016, 8(5), a021873.
[http://dx.doi.org/10.1101/cshperspect.a021873] [PMID: 27141051]
[33]
Gao, C.; Lin, X.; Fan, F.; Liu, X.; Wan, H.; Yuan, T.; Zhao, X.; Luo, Y. Status of higher TGF-β1 and TGF-β2 levels in the aqueous humour of patients with diabetes and cataracts. BMC Ophthalmol., 2022, 22(1), 156.
[http://dx.doi.org/10.1186/s12886-022-02317-x] [PMID: 35379202]
[34]
Huang, M.; Fu, M.; Wang, J.; Xia, C.; Zhang, H.; Xiong, Y.; He, J.; Liu, J.; Liu, B.; Pan, S.; Liu, F. TGF-β1-activated cancer-associated fibroblasts promote breast cancer invasion, metastasis and epithelial-mesenchymal transition by autophagy or overexpression of FAP-α. Biochem. Pharmacol., 2021, 188, 114527.
[http://dx.doi.org/10.1016/j.bcp.2021.114527] [PMID: 33741330]
[35]
Principe, D.R.; Doll, J.A.; Bauer, J.; Jung, B.; Munshi, H.G.; Bartholin, L.; Pasche, B.; Lee, C.; Grippo, P.J. TGF-β Duality of function between tumor prevention and carcinogenesis. J. Natl. Cancer Inst., 2014, 106(2), djt369.
[http://dx.doi.org/10.1093/jnci/djt369] [PMID: 24511106]
[36]
Bai, X.; Yi, M.; Jiao, Y.; Chu, Q.; Wu, K. Blocking TGF-β signaling to enhance the efficacy of immune checkpoint inhibitor. OncoTargets Ther., 2019, 12, 9527-9538.
[http://dx.doi.org/10.2147/OTT.S224013] [PMID: 31807028]
[37]
Yang, L.; Pang, Y.; Moses, H.L. TGF-beta and immune cells: An important regulatory axis in the tumor microenvironment and progression. Trends Immunol., 2010, 31(6), 220-227.
[http://dx.doi.org/10.1016/j.it.2010.04.002] [PMID: 20538542]
[38]
Sun, H.; Miao, C.; Liu, W.; Qiao, X.; Yang, W.; Li, L.; Li, C. TGF-β1/TβRII/Smad3 signaling pathway promotes VEGF expression in oral squamous cell carcinoma tumor-associated macrophages. Biochem. Biophys. Res. Commun., 2018, 497(2), 583-590.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.104] [PMID: 29462614]
[39]
Wang, G.X.; Xu, J.; Xie, R. The role of TGF-β in gastrointestinal cancers. J. Cancer Sci. Ther., 2018, 10(11), 345-350.
[http://dx.doi.org/10.4172/1948-5956.1000566]
[40]
Chen, L.; Yang, T.; Lu, D.W.; Zhao, H.; Feng, Y.L.; Chen, H.; Chen, D.Q.; Vaziri, N.D.; Zhao, Y.Y. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment. Biomed. Pharmacother., 2018, 101, 670-681.
[http://dx.doi.org/10.1016/j.biopha.2018.02.090] [PMID: 29518614]
[41]
Wang, B.; Ge, Z.; Wu, Y.; Zha, Y.; Zhang, X.; Yan, Y.; Xie, Y. MFGE8 is down-regulated in cardiac fibrosis and attenuates endothelial-mesenchymal transition through Smad2/3-Snail signalling pathway. J. Cell. Mol. Med., 2020, 24(21), 12799-12812.
[http://dx.doi.org/10.1111/jcmm.15871] [PMID: 32945126]
[42]
Chou, W.C.; Prokova, V.; Shiraishi, K.; Valcourt, U.; Moustakas, A.; Hadzopoulou-Cladaras, M.; Zannis, V.I.; Kardassis, D. Mechanism of a transcriptional cross talk between transforming growth factor-beta-regulated Smad3 and Smad4 proteins and orphan nuclear receptor hepatocyte nuclear factor-4. Mol. Biol. Cell, 2003, 14(3), 1279-1294.
[http://dx.doi.org/10.1091/mbc.e02-07-0375] [PMID: 12631740]
[43]
Zhang, L.; Li, Z.; Fan, Y.; Li, H.; Li, Z.; Li, Y. Overexpressed GRP78 affects EMT and cell-matrix adhesion via autocrine TGF-β/Smad2/3 signaling. Int. J. Biochem. Cell Biol., 2015, 64, 202-211.
[http://dx.doi.org/10.1016/j.biocel.2015.04.012] [PMID: 25934251]
[44]
Liu, L.; Wang, Y.; Yan, R.; Li, S.; Shi, M.; Xiao, Y.; Guo, B. Oxymatrine inhibits renal tubular emt induced by high glucose via upregulation of SnoN and inhibition of TGF-β1/smad signaling pathway. PLoS One, 2016, 11(3), e0151986.
[http://dx.doi.org/10.1371/journal.pone.0151986] [PMID: 27010330]
[45]
Kim, J.; Kong, J.; Chang, H.; Kim, H.; Kim, A. EGF induces epithelial-mesenchymal transition through phospho-Smad2/3-Snail signaling pathway in breast cancer cells. Oncotarget, 2016, 7(51), 85021-85032.
[http://dx.doi.org/10.18632/oncotarget.13116] [PMID: 27829223]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy