Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Virtual Screening of Native Variants of Focal Adhesion Kinase - A QSAR, Molecular Docking, and Dynamic Simulation Study

Author(s): Prashantha Karunakar*, Kiran K.S, Suchitra Krishna Prasad, Praneetha Prabhu and Vivek Chandramohan

Volume 21, Issue 2, 2024

Published on: 12 September, 2022

Page: [254 - 269] Pages: 16

DOI: 10.2174/1570180819666220815150525

Price: $65

conference banner
Abstract

Objective: Focal adhesion kinase (FAK) is a cytosolic tyrosine kinase that controls integrin and growth factor signaling pathways. FAK is a promising therapeutic target for cellular adhesion-related disorders, such as cancer.

Methods: In this study, in silico techniques like quantitative structure-activity relationship (QSAR), Molecular Docking, and Dynamic Simulation were used to study the interactions between small molecules and FAK.

Results: The constructed QSAR model showed good statistical parameters (Q2=0.8040 and R2=0.8499), indicating that it is stable and reliable. Based on this model, several new compounds were screened from small molecule databases and their inhibitory activities were validated by molecular docking and molecular dynamics simulation. Pharmacokinetic parameters were checked using in silico ADME testing.

Conclusion: Results show that the protein-ligand complexes are stable during the simulation and are considered potential inhibitors of Focal Adhesion Kinase.

Keywords: Focal adhesion kinase (FAK), QSAR, molecular docking, dynamic simulation, ADME, protein-ligand.

Graphical Abstract

[1]
André, E.; Beckerandré, M. Expression of an N-terminally truncated form of human focal adhesion kinase in brain. Biochem. Biophys. Res. Commun., 1993, 190(1), 140-147.
[http://dx.doi.org/10.1006/bbrc.1993.1022] [PMID: 8422239]
[2]
Sulzmaier, F.J.; Jean, C.; Schlaepfer, D.D. FAK in cancer: Mechanistic findings and clinical applications. Nat. Rev. Cancer, 2014, 14(9), 598-610.
[http://dx.doi.org/10.1038/nrc3792] [PMID: 25098269]
[3]
Lu, Y.; Sun, H. Progress in the development of small molecular inhibitors of focal adhesion kinase (FAK). J. Med. Chem., 2020, 63(23), 14382-14403.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01248] [PMID: 33058670]
[4]
Tremblay, L.; Hauck, W.; Aprikian, A.G.; Begin, L.R.; Chapdelaine, A.; Chevalier, S. Focal adhesion kinase (pp125FAK) expression, activation and association with paxillin and p50CSK in human metastatic prostate carcinoma. Int. J. Cancer, 1996, 68(2), 164-171.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19961009)68:2<169:AID-IJC4>3.0.CO;2-W] [PMID: 8900422]
[5]
Schaller, M.D. Cellular functions of FAK kinases: Insight into molecular mechanisms and novel functions. J. Cell Sci., 2010, 123(7), 1007-1013.
[http://dx.doi.org/10.1242/jcs.045112] [PMID: 20332118]
[6]
Chatzizacharias, N.A.; Kouraklis, G.P.; Theocharis, S.E. Clinical significance of FAK expression in human neoplasia. Histol. Histopathol., 2008, 23(5), 629-650.
[PMID: 18283648]
[7]
Calalb, M.B.; Polte, T.R.; Hanks, S.K. Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: A role for Src family kinases. Mol. Cell. Biol., 1995, 15(2), 954-963.
[http://dx.doi.org/10.1128/MCB.15.2.954] [PMID: 7529876]
[8]
Cho, J.H.; Muralidharan, V.; Vila-Perello, M.; Raleigh, D.P.; Muir, T.W.; Palmer, A.G., III Tuning protein autoinhibition by domain destabilization. Nat. Struct. Mol. Biol., 2011, 18(5), 550-555.
[http://dx.doi.org/10.1038/nsmb.2039] [PMID: 21532593]
[9]
Bullard Dunn, K.; Heffler, M. Evolving therapies and FAK inhibitors for the treatment of cancer. Anticancer. Agents Med. Chem., 2010, 10(10), 722-734.
[10]
Lietha, D.; Eck, M.J. Crystal structures of the FAK kinase in complex with TAE226 and related bis-anilino pyrimidine inhibitors reveal a helical DFG conformation. PLoS One, 2008, 3(11), e3800.
[http://dx.doi.org/10.1371/journal.pone.0003800] [PMID: 19030106]
[11]
Zhan, J.Y.; Zhang, J.L.; Wang, Y.; Li, Y.; Zhang, H.X.; Zheng, Q.C. Exploring the interaction between human focal adhesion kinase and inhibitors: A molecular dynamic simulation and free energy calculations. J. Biomol. Struct. Dyn., 2016, 34(11), 2351-2366.
[http://dx.doi.org/10.1080/07391102.2015.1115780] [PMID: 26549408]
[12]
Dao, P.; Jarray, R.; Le Coq, J.; Lietha, D.; Loukaci, A.; Lepelletier, Y.; Hadj-Slimane, R.; Garbay, C.; Raynaud, F.; Chen, H. Synthesis of novel diarylamino-1,3,5-triazine derivatives as FAK inhibitors with anti-angiogenic activity. Bioorg. Med. Chem. Lett., 2013, 23(16), 4552-4556.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.038] [PMID: 23845217]
[13]
Cheng, P.; Li, J.; Wang, J.; Zhang, X.; Zhai, H. Investigations of FAK inhibitors: A combination of 3D-QSAR, docking, and molecular dynamics simulations studies. J. Biomol. Struct. Dyn., 2018, 36(6), 1529-1549.
[http://dx.doi.org/10.1080/07391102.2017.1329095] [PMID: 28490269]
[14]
Yap, C.W. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem., 2011, 32(7), 1466-1474.
[http://dx.doi.org/10.1002/jcc.21707] [PMID: 21425294]
[15]
Gramatica, P.; Chirico, N.; Papa, E.; Cassani, S.; Kovarich, S. QSARINS: A new software for the development, analysis, and validation of QSAR MLR models. J. Comput. Chem., 2013, 34(24), 2121-2132.
[http://dx.doi.org/10.1002/jcc.23361]
[16]
Gramatica, P.; Cassani, S.; Chirico, N. QSARINS‐chem: Insubria datasets and new QSAR/QSPR models for environmental pollutants in QSARINS. J. Comput. Chem., 2014, 35(13), 1036-1044.
[17]
Gramatica, P.; Cassani, S.; Roy, P.P.; Kovarich, S.; Yap, C.W.; Papa, E. QSAR modeling is not “push a button and find a correlation”: A case study of toxicity of (benzo‐) triazoles on algae. Mol. Inform., 2012, 31(11-12), 817-835.
[http://dx.doi.org/10.1002/minf.201200075] [PMID: 27476736]
[18]
Gramatica, P. Principles of QSAR modeling. Int. J. Quant. Struct. Prop. Relationships, 2020, 5(3), 61-97.
[http://dx.doi.org/10.4018/IJQSPR.20200701.oa1]
[19]
Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; Overington, J.P. ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Res., 2012, 40(D1), D1100-D1107.
[http://dx.doi.org/10.1093/nar/gkr777] [PMID: 21948594]
[20]
Trott, O.; Olson, A.J. AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[21]
Quiroga, R.; Villarreal, M.A. Vinardo: A scoring function based on autodock vina improves scoring, docking, and virtual screening. PLoS One, 2016, 11(5), e0155183.
[http://dx.doi.org/10.1371/journal.pone.0155183] [PMID: 27171006]
[22]
Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res., 2019, 47(D1), D1102-D1109.
[http://dx.doi.org/10.1093/nar/gky1033] [PMID: 30371825]
[23]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[24]
DeLano, W.L. The PyMOL molecular graphics system., 2002. Available from: http://www. pymol. org
[25]
Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple ligand–protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 2011, 51(10), 2778-2786.
[26]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy