Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Graft Copolymers of Polysaccharide: Synthesis Methodology and Biomedical Applications in Tissue Engineering

Author(s): Arun Kumar Singh and Rishabha Malviya*

Volume 24, Issue 4, 2023

Published on: 13 September, 2022

Page: [510 - 531] Pages: 22

DOI: 10.2174/1389201023666220815091806

Price: $65

conference banner
Abstract

A polymer is a macromolecule that has a significant number of repeating units. It is possible to modify the architecture of a polymer via grafting, bridging, mixing, or generating composites. There are several uses for using natural polymers in culinary and medicinal applications. Polymeric materials became appealing because of their low density and ability to incorporate properties of their constituent constituents. High-energy accelerated electrons from the plasma induce chemical bond breaking in the polymeric structure, resulting in the generation of macromolecule radicals and graft copolymerization. Polymer grafting has become an important aspect of the formulation development process. When polymer functional groups are changed, a wide variety of desirable and unwanted properties can be added or removed. It can be concluded from the findings of the literature survey that graft copolymers of polysaccharides have significant biomedical applications including drug delivery and tissue engineering applications.

Keywords: Polysaccharide, tissue engineering, natural polymer, grafting, polymer modification, biomedical application.

Graphical Abstract

[1]
Feng, C.; Li, Y.; Yang, D.; Hu, J.; Zhang, X.; Huang, X.; Xiaoyu, H. Well-defined graft copolymers: From controlled synthesis to multipurpose applications. Chem. Soc. Rev., 2011, 40(3), 1282-1295.
[http://dx.doi.org/10.1039/B921358A] [PMID: 21107479]
[2]
Pau, P.C.; Michael, C.M. Fundamentals of polymer science: An introductory text, 2nd ed.; Taylor & Francis Group: New York, 1997, p. 496.
[3]
Ahuja, M.; Singh, S.; Kumar, A. Evaluation of carboxymethyl gellan gum as a mucoadhesive polymer. I.J. Biomac., 2013, 53, 114-121.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.10.033] [PMID: 23178342]
[4]
Ahuja, M.; Kumar, A.; Singh, K. Synthesis, characterization and in vitro release behavior of carboxymethyl xanthan. I.J. Biomac., 2012, 51(5), 1086-1090.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.08.023] [PMID: 22947448]
[5]
Thakur, K.; Ahuja, M.; Kumar, A. Carboxymethyl functionalization of amylopectin and itsevaluation as a nanometric drug carrier. I.J. Biomac., 2013, 62, 25-29.
[6]
Kagimura, F.Y.; Cunha, Theis, T.V.; Malfatti, C.R.M.; Dekker, R.; Barbosa, A.; Teixeira, S.; Salome, K. Carboxymethylation of (16)-β-glucan (lasiodiplodan): Preparation, characterization and antioxidant evaluation. Carb. Pol., 2015, 127, 390-399.
[http://dx.doi.org/10.1016/j.carbpol.2015.03.045]
[7]
Priya James, H.; John, R.; Alex, A.; Anoop, K.R. Smart polymers for the controlled delivery of drugs - a concise overview. Acta Pharm. Sin. B, 2014, 4(2), 120-127.
[http://dx.doi.org/10.1016/j.apsb.2014.02.005] [PMID: 26579373]
[8]
Bashir, A.; Warsi, M.H.; Sharma, P.K. An overview of natural gums as pharmaceutical excipient: Their chemical modification. World J. Pharm. Pharm. Sci., 2016, 5(4), 2025-2039.
[9]
Lin, T.P.; Chang, A.B.; Chen, H.Y.; Liberman, A.L.; Bates, C.M.; Voegtle, M.J.; Bauer, C.A.; Grubbs, R.H. Control of grafting density and distribution in graft polymers by living ring-opening metathesis copolymerization. J. Am. Chem. Soc., 2017, 139(10), 3896-3903.
[http://dx.doi.org/10.1021/jacs.7b00791] [PMID: 28221030]
[10]
Sing, C.E.; Zwanikken, J.W.; Olvera, M. Theory of melt polyelectrolyte blends and block copolymers: Phase behavior, surface tension, and microphase periodicity. J. Chem. Phys., 2015, 142(3), 034902.
[http://dx.doi.org/10.1063/1.4905830] [PMID: 25612728]
[11]
Semenov, A.N. Contribution to the theory of microphase layering in blockcopolymer melts. J. Exp. Theor. Phys., 1985, 61, 733-742.
[12]
Matsen, M.W.; Bates, F.S. Unifying weak- and strong-segregation block copolymer theories. Macromolecules, 1996, 29, 1091-1098.
[http://dx.doi.org/10.1021/ma951138i]
[13]
Hadjichristidis, N.; Pitsikalis, M.; Iatrou, H.; Pispas, S. The strength of the macromonomer strategy for complex macromolecular architecture: Molecular characterization, properties and applications of polymacromonomers. Macromol. Rapid Commun., 2003, 24, 979-1013.
[http://dx.doi.org/10.1002/marc.200300050]
[14]
Sheiko, S.S.; Sumerlin, B.S.; Matyjaszewski, K. Cylindrical molecular brushes: Synthesis, characterization, and properties. Prog. Polym. Sci., 2008, 33, 759-785.
[http://dx.doi.org/10.1016/j.progpolymsci.2008.05.001]
[15]
Peng, S.; Bhushan, B. Smart polymer brushes and their emerging applications. RSC Advances, 2012, 2, 8557-8578.
[http://dx.doi.org/10.1039/c2ra20451g]
[16]
Daniels, D.R.; McLeish, T.C.B.; Crosby, B.J.; Young, R.N.; Fernyhough, C.M. Molecular rheology of comb polymer melts. 1. linear viscoelastic response. Macromolecules, 2001, 34, 7025-7033.
[http://dx.doi.org/10.1021/ma010712p]
[17]
McLeish, T.C.B. Tube theory of entangled polymer dynamics. Adv. Phys., 2002, 51, 1379-1527.
[http://dx.doi.org/10.1080/00018730210153216]
[18]
Kapnistos, M.; Vlassopoulos, D.; Roovers, J.; Leal, L.G. Linear rheology of architecturally complex macromolecules: Comb polymers with linear backbones. Macromolecules, 2005, 38, 7852-7862.
[http://dx.doi.org/10.1021/ma050644x]
[19]
Chambon, P.; Fernyhough, C.M.; Im, K.; Chang, T.; Das, C.; Embery, J.; McLeish, T.C.B.; Read, D.J. Synthesis, temperature gradient interaction chromatography, and rheology of entangled styrene comb polymers. Macromolecules, 2008, 41, 5869-5875.
[http://dx.doi.org/10.1021/ma800599m]
[20]
Kapnistos, M.; Kirkwood, K.M.; Ramirez, J.; Vlassopoulos, D.; Leal, L.G. Nonlinear rheology of model comb polymers. J. Rheol., 2009, 53, 1133-1153.
[http://dx.doi.org/10.1122/1.3191781]
[21]
Larson, R.G. Materials science. Predicting the flow of real polymers. Science, 2011, 333(6051), 1834-1835.
[http://dx.doi.org/10.1126/science.1211863] [PMID: 21960619]
[22]
Van, R.E.; Lee, H.; Chang, T.; Nikopoulou, A.; Hadjichristidis, N.; Snijkers, F.; Vlassopoulos, D. Molecular rheology of branched polymers: Decoding and exploring the role of architectural dispersity through a synergy of anionic synthesis, interaction chromatography, rheometry and modeling. Soft Matter, 2014, 10(27), 4762-4777.
[http://dx.doi.org/10.1039/c4sm00105b] [PMID: 24705637]
[23]
Mai, D.J.; Marciel, A.B.; Sing, C.E.; Schroeder, C.M. Topology-controlled relaxation dynamics of single branched polymers. ACS Macro Lett., 2015, 4(4), 446-452.
[http://dx.doi.org/10.1021/acsmacrolett.5b00140] [PMID: 35596311]
[24]
Jeong, S.H.; Kim, J.M.; Baig, C. Rheological influence of short-chain branching for polymeric materials under shear with variable branch density and branching architecture. Macromolecules, 2017, 50, 4491-4500.
[http://dx.doi.org/10.1021/acs.macromol.7b00544]
[25]
Olvera, M.; Sanchez, I.C. Theory of microphase separation in graft and star copolymers. Macromolecules, 1986, 19, 2501-2508.
[http://dx.doi.org/10.1021/ma00164a008]
[26]
Grayer, V.; Dormidontova, E.E.; Hadziioannou, G.; Tsitsilianis, C. A comparative experimental and theoretical study between heteroarm star and diblock copolymers in the microphase separated state. Macromolecules, 2000, 33, 6330-6339.
[http://dx.doi.org/10.1021/ma000311u]
[27]
Zhang, J.; Schneiderman, D.K.; Li, T.; Hillmyer, M.A.; Bates, F.S. Design of graft block polymer thermoplastics. Macromolecules, 2016, 49, 9108-9118.
[http://dx.doi.org/10.1021/acs.macromol.6b02033]
[28]
Gai, Y.; Song, D.P.; Yavitt, B.M.; Watkins, J.J. Polystyrene-blockpoly(ethylene oxide) bottlebrush block copolymer morphology transitions: Influence of side chain length and volume fraction. Macromolecules, 2017, 50, 1503-1511.
[http://dx.doi.org/10.1021/acs.macromol.6b01415]
[29]
Salhi, F.; Collard, D.M. π-stacked conjugated polymers: The influence of paracyclophane π-stacks on the redox and optical properties of a new class of broken conjugated polythiophenes. Adv. Mater., 2003, 8, 81-85.
[http://dx.doi.org/10.1002/adma.200390018]
[30]
Xie, G.; Martinez, M.R.; Olszewski, M.; Sheiko, S.S.; Matyjaszewski, K. Molecular bottlebrushes as novel materials. Biomacromolecules, 2019, 20(1), 27-54.
[http://dx.doi.org/10.1021/acs.biomac.8b01171] [PMID: 30296828]
[31]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl., 2001, 40(11), 2004-2021.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5] [PMID: 11433435]
[32]
Kolb, H.C.; Sharpless, K.B. The growing impact of click chemistry on drug discovery. Drug Discov. Today, 2003, 8(24), 1128-1137.
[http://dx.doi.org/10.1016/S1359-6446(03)02933-7] [PMID: 14678739]
[33]
Wang, X.; Huang, B.; Liu, X.; Zhan, P. Discovery of bioactive molecules from CuAAC click-chemistry-based combinatorial libraries. Drug Discov. Today, 2016, 21(1), 118-132.
[http://dx.doi.org/10.1016/j.drudis.2015.08.004] [PMID: 26315392]
[34]
Wu, G.; Zalloum, W.A.; Meuser, M.E.; Jing, L.; Kang, D.; Chen, C.H.; Tian, Y.; Zhang, F.; Cocklin, S.; Lee, K.H.; Liu, X.; Zhan, P. Discovery of phenylalanine derivatives as potent HIV-1 capsid inhibitors from click chemistry-based compound library. Eur. J. Med. Chem., 2018, 158, 478-492.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.029] [PMID: 30243152]
[35]
Kang, D.; Zhang, H.; Zhou, Z.; Huang, B.; Naesens, L.; Zhan, P.; Liu, X. First discovery of novel 3-hydroxy-quinazoline-2,4(1H,3H)-diones as specific anti-vaccinia and adenovirus agents via ‘privileged scaffold’ refining approach. Bioorg. Med. Chem. Lett., 2016, 26(21), 5182-5186.
[http://dx.doi.org/10.1016/j.bmcl.2016.09.071] [PMID: 27742238]
[36]
Gao, P.; Sun, L.; Zhou, J.; Li, X.; Zhan, P.; Liu, X. Discovery of novel anti-HIV agents via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry-based approach. Expert Opin. Drug Discov., 2016, 11(9), 857-871.
[http://dx.doi.org/10.1080/17460441.2016.1210125] [PMID: 27400283]
[37]
Fang, Z.; Kang, D.; Zhang, L.; Huang, B.; Liu, H.; Pannecouque, C.; De Clercq, E.; Zhan, P.; Liu, X. Synthesis and biological evaluation of a series of 2-((1-substituted-1H-1,2,3-triazol-4-yl)methylthio)-6-(naphthalen-1-ylmethyl)pyrimidin-4(3H)-one as potential HIV-1 inhibitors. Chem. Biol. Drug Des., 2015, 86(4), 614-618.
[http://dx.doi.org/10.1111/cbdd.12524] [PMID: 25626467]
[38]
Huisgen, R. 1,3-dipolar cycloadditions. Past and future. Angew. Chem. Int. Ed. Engl., 1963, 2(10), 565-598.
[http://dx.doi.org/10.1002/anie.196305651]
[39]
Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Click chemistry for drug development and diverse chemical-biology applications. Chem. Rev., 2013, 113(7), 4905-4979.
[http://dx.doi.org/10.1021/cr200409f] [PMID: 23531040]
[40]
Stamm, M. Polymer surfaces and interfaces: Characterization, modification and applications, 1st ed.; Springer: Berlin, Heidelberg, 2008, pp. 324.
[http://dx.doi.org/10.1007/978-3-540-73865-7]
[41]
Chen, W.L.; Cordero, R.; Tran, H.; Ober, C.K. 50th anniversary perspective: Polymer brushes: Novel surfaces for future materials. Macromolecules, 2017, 50, 4089-4411. https://pubs.acs.org/doi/abs/10.1021/acs.macromol.7b00450
[http://dx.doi.org/10.1021/acs.macromol.7b00450]
[42]
Ruckenstein, E.; Li, Z.F. Surface modification and functionalization through the self-assembled monolayer and graft polymerization. Adv. Colloid Interface Sci., 2005, 113(1), 43-63.
[http://dx.doi.org/10.1016/j.cis.2004.07.009] [PMID: 15763238]
[43]
Haloi, D.J.; Naskar, K.; Singha, N.K. Modification of chlorinated poly (propylene) via atom transfer radical graft copolymerization of 2‐ethylhexyl acrylate: A brush‐like graft copolymer. Macromol. Chem. Phys., 2011, 212(5), 478-484.
[http://dx.doi.org/10.1002/macp.201000506]
[44]
Levy, M. The impact of the concept of “Living Polymers” on material science. Polym. Adv. Technol., 2007, 18(9), 681-684.
[http://dx.doi.org/10.1002/pat.963]
[45]
Mori, H.; Seng, D.C.; Lechner, H.; Zhang, M.; Müller, A.H. Synthesis and characterization of branched polyelectrolytes. 1. Preparation of hyperbranched poly (acrylic acid) via self-condensing atom transfer radical copolymerization. Macromolecules, 2002, 35(25), 9270-9281.
[http://dx.doi.org/10.1021/ma021159u]
[46]
Brzezińska, K.; Chwiałkowska, W.; Kubisa, P.; Matyjaszewski, K.; Penczek, S. Ion‐trapping in cationic polymerization. Die Makromolekulare Chemie. Macromol. Chem. Phys., 1977, 178(8), 2491-2494.
[http://dx.doi.org/10.1002/macp.1977.021780836]
[47]
Cornille, A.; Froidevaux, V.; Negrell, C.; Caillol, S.; Boutevin, B. Thiol-ene coupling: An efficient tool for the synthesis of new biobased aliphatic amines for epoxy curing. Polymer, 2014, 55(22), 5561-5570.
[http://dx.doi.org/10.1016/j.polymer.2014.07.004]
[48]
Jagur, G.J. Living and controlled polymerization: Synthesis, characterization and properties of the respective polymers and copolymers; Nova Science Publishers Inc.: New York, 2006, pp. 1-120.
[49]
Matyjaszewski, K.; Mueller, A.H.E. 50 years of living polymerization. Prog. Polym. Soc., 2007, 32, 1-282.
[50]
Kennedy, J.P.; Ivan, B. Designed polymers by carbocationic macromolecular engineering, theory and practice; Hanser: Munich, 1992, vol. 37, pp:, 2285-2293.
[51]
Hsieh, H.L.; Quirk, R.P. Anionic polymerization, principles and practical applications; Marcel Dekker Inc.: New York, 1996, pp. 744.
[http://dx.doi.org/10.1201/9780585139401]
[52]
Matyjaszewski, K. Macromolecular engineering: From rational design through precise macromolecular synthesis and processing to targeted macroscopic properties. Prog. Polym. Sci., 2005, 30, 858-875.
[http://dx.doi.org/10.1016/j.progpolymsci.2005.06.004]
[53]
Matyjaszewski, K.; Xia, J. Atom transfer radical polymerization. Chem. Rev., 2001, 101(9), 2921-2990.
[http://dx.doi.org/10.1021/cr940534g] [PMID: 11749397]
[54]
Cateto, C.A.; Barreiro, M.F.; Rodrigues, A.E. Monitoring of lignin-based polyurethane synthesis by FTIRATR. Ind. Crops Prod., 2008, 27, 168-174.
[http://dx.doi.org/10.1016/j.indcrop.2007.07.018]
[55]
Moad, G.; Solomon, D.H. The Chemistry of Radical Polymerization:, 2nd ed.; Elsevier: Amsterdam, 2006, pp. 1-591.
[56]
Greszta, D.; Mardare, D.; Matyjaszewski, K. Living” radical polymerization. 1. Possibilities and limitations. Macromolecules, 1994, 27(3), 638-644.
[http://dx.doi.org/10.1021/ma00081a002]
[57]
Bagheri, A.; Chris, W.A.B.; Engel, K.E.; Qiao, G.G.; Xu, J.; Boyer, C.; Jin, J. Oxygen tolerant PET-RAFT facilitated 3D printing of polymeric materials under visible LEDs. ACS Appl. Polym. Mater., 2020, 2(2), 782-790.
[http://dx.doi.org/10.1021/acsapm.9b01076]
[58]
Goto, A.; Fukuda, T. Kinetics of living radical polymerization. Prog. Polym. Sci., 2004, 29(4), 329-385.
[http://dx.doi.org/10.1016/j.progpolymsci.2004.01.002]
[59]
Bachmann, W.E.; Wiselogle, F.Y. The relative stability of pentaarylethanes. III. 1 The reversible dissociation of pentaarylethanes. J. Org. Chem., 1936, 1(4), 354-382.
[http://dx.doi.org/10.1021/jo01233a006]
[60]
Chalfont, G.R.; Perkins, M.J.; Horsfield, A. Probe for homolytic reactions in solution. II. Polymerization of styrene. J. Am. Chem. Soc., 1968, 90(25), 7141-7142.
[http://dx.doi.org/10.1021/ja01027a056]
[61]
Milner, S.T. Polymer brushes. Science, 1991, 251(4996), 905-914.
[http://dx.doi.org/10.1126/science.251.4996.905] [PMID: 17847384]
[62]
Barbey, R.; Lavanant, L.; Paripovic, D.; Schüwer, N.; Sugnaux, C.; Tugulu, S.; Klok, H.A. Polymer brushes via surface-initiated controlled radical polymerization: Synthesis, characterization, properties, and applications. Chem. Rev., 2009, 109(11), 5437-5527.
[http://dx.doi.org/10.1021/cr900045a] [PMID: 19845393]
[63]
Ayres, N. Polymer brushes: Applications in biomaterials and nanotechnology. Polym. Chem., 2010, 1, 769-777.
[64]
Sui, X.; Zapotoczny, S.; Benetti, E.M.; Schö, P.; Vancso, G.J. Characterization and molecular engineering of surface-grafted polymer brushes across the length scales by atomic force microscopy. J. Mater. Chem., 2010, 20, 4981-4993.
[http://dx.doi.org/10.1039/b924392e]
[65]
Klein, J.; Kumacheva, E.; Mahalu, D.; Perahla, D.; Fetters, L.J. Reduction of frictional forces between solid surfaces bearing polymer brushes. Nature, 1994, 370, 634-636.
[http://dx.doi.org/10.1038/370634a0]
[66]
Zappone, B.; Ruths, M.; Greene, G.W.; Jay, G.D.; Israelachvili, J.N. Adsorption, lubrication, and wear of lubricin on model surfaces: Polymer brush-like behavior of a glycoprotein. Biophys. J., 2007, 92(5), 1693-1708.
[http://dx.doi.org/10.1529/biophysj.106.088799] [PMID: 17142292]
[67]
Seror, J.; Merkher, Y.; Kampf, N.; Collinson, L.; Day, A.J.; Maroudas, A.; Klein, J. Articular cartilage proteoglycans as boundary lubricants: Structure and frictional interaction of surface-attached hyaluronan and hyaluronan-aggrecan complexes. Biomacromolecules, 2011, 12(10), 3432-3443.
[http://dx.doi.org/10.1021/bm2004912] [PMID: 21823600]
[68]
Dumindika, A.; Kulikov, S.O.; Rokhlenko, Y.; Perananthan, S.; Novak, B.M. Stereocomplexation of helical polycarbodiimides synthesized from achiral monomers bearing isopropyl pendants. Macromolecules, 2017, 50(23), 9162-9172.
[http://dx.doi.org/10.1021/acs.macromol.7b01633]
[69]
Jordan, R.; Ulman, A. Surface initiated living cationic polymerization of 2-oxazolines. J. Am. Chem. Soc., 1998, 120, 243-247.
[http://dx.doi.org/10.1021/ja973392r]
[70]
Kim, J.; Bruening, M.L.; Baker, G.L. Surface-initiated atom transfer radical polymerization on gold at ambient temperature. J. Am. Chem. Soc., 2000, 122, 7616-7617.
[http://dx.doi.org/10.1021/ja001652q]
[71]
Jordan, R.; Ulman, A.; Kang, J.F.; Rafailovich, M.H.; Sokolov, J. Surface-initiated anionic polymerization of styrene by means of styrene by means of self-assembled monolayers. J. Am. Chem. Soc., 1999, 121, 1016-1022.
[http://dx.doi.org/10.1021/ja981348l]
[72]
Zhao, B.; Brittain, W.J. Synthesis of tethered polystyreneblock-poly(methyl methacrylate) monolayer on a silicate substrate by sequential carbocationic polymerization and atom transfer radical polymerization. J. Am. Chem. Soc., 1999, 121, 3557-3558.
[http://dx.doi.org/10.1021/ja984428y]
[73]
Buchmeiser, M.R.; Sinner, F.; Mupa, M.; Wurst, K. Ring opening metathesis polymerization for the preparation of surface grafted polymer supports. Macromolecules, 2000, 33, 32-39.
[http://dx.doi.org/10.1021/ma9913966]
[74]
Yamamoto, S.; Ejaz, M.; Tsujii, Y.; Matsumoto, M.; Fukuda, T. Surface interaction forces of well-defined, high-density polymer brushes studied by atomic force microscopy. 1. effect of chain length. Macromolecules, 2000, 33, 5602-5607.
[http://dx.doi.org/10.1021/ma991733a]
[75]
Turgman, C.S.; Genzer, J. Simultaneous bulk and surface-initiated controlled radical polymerization from planar substrates. J. Am. Chem. Soc., 2011, 133(44), 17567-17569.
[http://dx.doi.org/10.1021/ja2081636] [PMID: 21978360]
[76]
Wittmer, J.P.; Cates, M.E.; Johner, A.; Turner, M.S. Diffusive growth of a polymer layer by in situ polymerization. Europhys. Lett., 1996, 33, 397-402.
[http://dx.doi.org/10.1209/epl/i1996-00347-0]
[77]
Milchev, A.; Wittmer, J.P.; Landau, D.P. Formation and equilibrium properties of living polymer brushes. J. Chem. Phys., 2000, 112, 1606-1615.
[http://dx.doi.org/10.1063/1.480600]
[78]
Matyjaszewski, K.; Miller, P.J.; Shukla, N.; Immaraporn, B.; Gelman, A.; Luokala, B.B.; Siclovan, T.M.; Kickelbick, G.; Vallant, T.; Hoffmann, H. Polymers at Interfaces: Using atom transfer radical polymerization in the controlled growth of homopolymers and block copolymers from silicon surfaces in the absence of untethered sacrificial initiator. Macromolecules, 1999, 32(26), 8716-8724.
[79]
Matyjaszewski, K.; Tsarevsky, N.V. Nanostructured functional materials prepared by atom transfer radical polymerization. Nat. Chem., 2009, 1(4), 276-288.
[http://dx.doi.org/10.1038/nchem.257] [PMID: 21378870]
[80]
(a) Bhattacharya. Polymer nanocomposites—a comparison between carbon nanotubes, graphene, and clay as nanofillers. Prog, B. Polym. Sci., 2000, 25, 371.;
(b) Clough, R.L. High-energy radiation and polymers: a review of commercial processes and emerging applications. Nuclear instruments and methods in physics research section B. Sci. Res., 2001, 185, 8.
[81]
Currie, E.P.K.; Norde, W.; Stuart, M.A.C. Reduction of protein adsorption to a solid surface by a coating composed of polymeric micelles with a glass-like core. Journal of colloid and interface science. Collect. Int. Sci., 2008, 325, 309-315.
[http://dx.doi.org/10.1016/S0001-8686(02)00061-1]
[82]
Schmelmer, U.; Jordan, R.; Geyer, W.; Eck, W.; Go¨lzha¨, A.; Grunze, M.; Ulman, A. Surface‐initiated polymerization on self‐assembled monolayers: amplification of patterns on the micrometer and nanometer scale. Angew. Chem. Int. Ed., 2003, 42, 559.
[http://dx.doi.org/10.1002/anie.200390161]
[83]
Pyun, J.; Matyjsazewski, K. Synthesis of nanocomposite organic/inorganic hybrid materials using controlled/“living. Radical Polym. Chem. Mater., 2001, 13, 3436-3448.
[http://dx.doi.org/10.1021/cm011065j]
[84]
Zhao, B.; Zhu, L. Mixed polymer brush-grafted particles: A new class of environmentally responsive nanostructured materials. Macromolecules, 2009, 42, 9369-9383.
[http://dx.doi.org/10.1021/ma902042x]
[85]
Wu, L.; Glebe, U.; Böker, A. Surface-initiated controlled radical polymerizations from silica nanoparticles, Gold nanocrystal. bionanoparticles. Polym. Chem., 2015, 6, 5143-5184.
[http://dx.doi.org/10.1039/C5PY00525F]
[86]
Hui, C.M.; Pietrasik, J.; Schmitt, M.; Mahnoey, C.; Choi, J.; Bockstaller, M.R.; Matyjsazewski, K. Surface-initiated polymerization as an enabling tool for multifunctional (Nano-)engineered hybrid materials. Chem. Mater., 2014, 26, 745-762.
[http://dx.doi.org/10.1021/cm4023634]
[87]
Kumar, S.K.; Jouault, N.; Benicewicz, B.; Neely, T. Nanocomposites with polymer grafted nanoparticles. Macromolecules, 2013, 46, 3199-3214.
[http://dx.doi.org/10.1021/ma4001385]
[88]
Kumar, S.K.; Benicewicz, B.C.; Vaia, R.A.; Winey, K.I. 50th anniversary perspective: Are polymer nanocomposites practical for applications? Macromolecules, 2017, 50, 714-731.
[http://dx.doi.org/10.1021/acs.macromol.6b02330]
[89]
Fernandes, N.J.; Koerner, H.; Giannelis, E.P.; Vaia, R.A. Hairy nanoparticle assemblies as one-component functional polymer nanocomposites: Opportunities and challenges. MRS Commun., 2013, 3, 13-29.
[http://dx.doi.org/10.1557/mrc.2013.9]
[90]
Zhang, L.; Bei, H.P.; Piao, Y.; Wang, Y.; Yang, M.; Zhao, X. Polymer-brush-grafted mesoporous silica nanoparticles for triggered drug delivery. ChemPhysChem, 2018, 19(16), 1956-1964.
[http://dx.doi.org/10.1002/cphc.201800018] [PMID: 29575338]
[91]
He, J.; Huang, X.; Li, Y.C.; Liu, Y.; Babu, T.; Aronova, M.A.; Wang, S.; Lu, Z.; Chen, X.; Nie, Z. Self-assembly of amphiphilic plasmonic micelle-like nanoparticles in selective solvents. J. Am. Chem. Soc., 2013, 135(21), 7974-7984.
[http://dx.doi.org/10.1021/ja402015s] [PMID: 23642094]
[92]
Liu, G.; Liu, Z.; Li, N.; Wang, X.; Zhou, F.; Liu, W. Hairy polyelectrolyte brushes-grafted thermosensitive microgels as artificial synovial fluid for simultaneous biomimetic lubrication and arthritis treatment. ACS Appl. Mater. Interfaces, 2014, 6(22), 20452-20463.
[http://dx.doi.org/10.1021/am506026e] [PMID: 25347384]
[93]
Wright, R.A.E.; Wang, K.; Qu, J.; Zhao, B. Oil-soluble polymer brush grafted nanoparticles as effective lubricant additives for friction and wear reduction. Angew. Chem. Int. Ed. Engl., 2016, 55(30), 8656-8660.
[http://dx.doi.org/10.1002/anie.201603663] [PMID: 27265613]
[94]
Tian, C.; Bao, C.; Binder, A.; Zhu, Z.; Hu, B.; Guo, Y.; Zhao, B.; Dai, S. An efficient and reusable “hairy” particle acid catalyst for the synthesis of 5-hydroxymethylfurfural from dehydration of fructose in water. Chem. Commun., 2013, 49(77), 8668-8670.
[http://dx.doi.org/10.1039/c3cc43127d] [PMID: 23948765]
[95]
Ohno, K.; Morinaga, T.; Koh, K.; Tsujii, Y.; Fukuda, T. Synthesis of monodisperse silica particles coated with well-defined, high-density polymer brushes by surface-initiated Atom transfer radical polymerization. Macromolecules, 2005, 38, 2137-2142.
[http://dx.doi.org/10.1021/ma048011q]
[96]
Li, C.; Han, J.; Ryu, C.Y.; Benicewicz, B.C. A versatile method to prepare RAFT agent anchored substrates and the preparation of PMMA grafted nanoparticles. Macromolecules, 2006, 39, 3175-3183.
[http://dx.doi.org/10.1021/ma051983t]
[97]
You, Y-Z.; Kalebaila, K.K.; Brock, S.L.; Oupický, D. Temperature-controlled uptake and release in PNIPAM-modified porous silica nanoparticles. Chem. Mater., 2008, 20, 3354-3359.
[http://dx.doi.org/10.1021/cm703363w]
[98]
Yavuz, M.S.; Cheng, Y.; Chen, J.; Cobley, C.M.; Zhang, Q.; Rycenga, M.; Xie, J.; Kim, C.; Song, K.H.; Schwartz, A.G.; Wang, L.V.; Xia, Y. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater., 2009, 8(12), 935-939.
[http://dx.doi.org/10.1038/nmat2564] [PMID: 19881498]
[99]
Frischknecht, A.L.; Hore, M.J.A.; Ford, J.; Composto, R.J. Dispersion of polymer-grafted nanorods in homopolymer films: Theory and experiment. Macromolecules, 2013, 46, 2856-2869.
[http://dx.doi.org/10.1021/ma302461h]
[100]
Hotchkiss, J.W.; Lowe, A.B.; Boyes, S.G. Surface modification of gold nanorods with polymers synthesized by reversible addition−fragmentation chain transfer polymerization. Chem. Mater., 2007, 19(1), 6-13.
[101]
Zhu, M.Q.; Wang, L.Q.; Exarhos, G.J.; Li, A.D.Q. Thermosensitive gold nanoparticles. J. Am. Chem. Soc., 2004, 126(9), 2656-2657.
[http://dx.doi.org/10.1021/ja038544z] [PMID: 14995155]
[102]
Kizhakkedathu, J.N.; Norris, J.R.; Brooks, D.E. Synthesis of well-defined environmentally responsive polymer brushes by aqueous ATRP. Macromolecules, 2004, 37, 734-743.
[http://dx.doi.org/10.1021/ma034934u]
[103]
Zhao, B.; Jiang, X.M.; Li, D.J.; Jiang, X.G.; O’Lenick, T.G.; Li, B.; Li, C.Y. Hairy particle-supported 4-N,N-dialkylaminopyridine: An efficient and recyclable nucleophilic organocatalyst. J. Polym. Sci. A Polym. Chem., 2008, 46, 3438-3446.
[http://dx.doi.org/10.1002/pola.22681]
[104]
Yang, J.S.; Xie, Y.J.; He, W. Research progress on chemical modification of alginate a review. Carbohydr. Polym., 2015, 84(1), 33-39.
[http://dx.doi.org/10.1016/j.carbpol.2010.11.048]
[105]
Mittal, H.; Ray, S.S.; Okamoto, M. Recent progress on the design and applications of polysaccharide-based graft copolymer hydrogels as adsorbents for wastewater purification – review. Macromol. Mater. Eng., 2017, 301, 496-522.
[http://dx.doi.org/10.1002/mame.201500399]
[106]
Pawar, S.N.; Edgar, K.J. Alginate derivatization - a review of chemistry, properties and applications. Biomaterials, 2016, 33(11), 3279-3305.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.007]
[107]
Sun, J.Y.; Zhao, X.; Illeperuma, W.R.K.; Chaudhuri, O.; Oh, K.H.; Mooney, D.J.; Vlassak, J.J.; Suo, Z. Highly stretchable and tough hydrogels. Nature, 2012, 489(7414), 133-136.
[http://dx.doi.org/10.1038/nature11409] [PMID: 22955625]
[108]
Gupta, S.; Sharma, P.; Soni, P.L. Carboxymethylation of Cassia gum. J. Appl. Polym. Sci., 2019, 94(4), 1606-1611.
[http://dx.doi.org/10.1002/app.20958]
[109]
Marques, N.N.; Maia, A.M.S.; Balaban, R.C. Development of dual-sensitive smart polymers by grafting chitosan with poly (N – isopropylacrylamyde): An overview. Polímeros, 2012, 25(3), 237-246.
[http://dx.doi.org/10.1590/0104-1428.1744]
[110]
Sand, A.; Yadav, M.; Mishra, D.K.; Behari, K. Modification of alginate by grafting of N-vinyl-2-pyrrolidone and studies of physicochemical properties in terms of swelling capacity, metal-ion uptake and flocculation. Carbohydr. Polym., 2010, 80(4), 1147-1154.
[http://dx.doi.org/10.1016/j.carbpol.2010.01.036]
[111]
Crescenzi, V.; Dentini, M.; Risica, D.; Spadoni, S.; Skjåk, B.G.; Capitani, D.; Mannina, L.; Viel, S. C(6)-oxidation followed by C(5)-epimerization of guar gum studied by high field NMR. Biomacromolecules, 2004, 5(2), 537-546.
[http://dx.doi.org/10.1021/bm034387k] [PMID: 15003018]
[112]
Galanos, C.; Lüderitz, O.; Himmelspach, K. The partial acid hydrolysis of polysaccharides: A new method for obtaining oligosaccharides in high yield. Eur. J. Biochem., 1969, 8(3), 332-336.
[http://dx.doi.org/10.1111/j.1432-1033.1969.tb00532.x] [PMID: 5802875]
[113]
Matricardi, P.; Di Meo, C.; Coviello, T.; Hennink, W.E.; Alhaique, F. Interpenetrating Polymer Networks polysaccharide hydrogels for drug delivery and tissue engineering. Adv. Drug Deliv. Rev., 2013, 65(9), 1172-1187.
[http://dx.doi.org/10.1016/j.addr.2013.04.002] [PMID: 23603210]
[114]
Thakur, V.K.; Thakur, M.K.; Gupta, R.K. Rapid synthesis of graft copolymers from natural cellulose fibers. Carbohydr. Polym., 2013, 98(1), 820-828.
[http://dx.doi.org/10.1016/j.carbpol.2013.06.072] [PMID: 23987417]
[115]
Al-Kahtani, A.A.; Sherigara, B.S. Semi-interpenetrating network of acrylamide-grafted-sodium alginate microspheres for controlled release of diclofenac sodium, preparation and characterization. Colloids Surf. B Biointerfaces, 2014, 115, 132-138.
[http://dx.doi.org/10.1016/j.colsurfb.2013.11.040] [PMID: 24333910]
[116]
Tripathi, R.; Mishra, B. Development and evaluation of sodium alginate-polyacrylamide graft-co-polymer based stomach targeted hydrogels of famotidine. American Assoc. Pharm. Sci., 2013, 13(4), 1091-1102.
[117]
Tripathy, T.; Pandey, S.R.; Karmakar, N.C.; Bhagat, R.P.; Singh, R.P. Novel flocculating agent based on sodium alginate and acrylamide. Euro. Polymer J., 2014, 35(11), 2057-2072.
[http://dx.doi.org/10.1016/S0014-3057(98)00284-5]
[118]
Tripathy, T.; Singh, R.P. High performance flocculating agent based on partially hydrolysed sodium alginate-g-polyacrylamide. Eur. Polym. J., 2000, 36(7), 1471-1476.
[http://dx.doi.org/10.1016/S0014-3057(99)00201-3]
[119]
Xu, K.; Xu, X.; Ding, Z.; Zhou, M. Synthesis and flocculability of sodium alginate grafted with acrylamide. China Particuol., 2006, 4(2), 60-64.
[http://dx.doi.org/10.1016/S1672-2515(07)60235-8]
[120]
Gad, Y.H.; Aly, R.O.; Abdel, S.E. Synthesis and characterization of Na-Alginate/Acrylamide hydrogel and its application in dye removal. J. Appl. Polym. Sci., 2011, 120(4), 1899-1906.
[http://dx.doi.org/10.1002/app.33269]
[121]
Klein, J.M.; Lima, V.S.; Feira, J.M.C.; Brandalise, R.N.; Forte, M.M.C. Chemical modification of cashew gum with acrylamide using an ultrasound-assisted method. J. Appl. Polym. Sci., 2016, 133(31), 43634.
[http://dx.doi.org/10.1002/app.43634]
[122]
Hu, A.; Jiao, S.; Zheng, J.; Li, L.; Fan, Y.; Chen, L.; Zhang, Z. Ultrasonic frequency effect on corn starch and its cavitation. Lebensm. Wiss. Technol., 2015, 60(2), 941-947.
[http://dx.doi.org/10.1016/j.lwt.2014.10.048]
[123]
Bashari, M.; Abbas, S.; Xu, X.; Jin, Z. Combined of ultrasound irradiation with high hydrostatic pressure (US/HHP) as a new method to improve immobilization of dextranase onto alginate gel. Ultrason. Sonochem., 2014, 21(4), 1325-1334.
[http://dx.doi.org/10.1016/j.ultsonch.2014.02.004] [PMID: 24582659]
[124]
Erriu, M.; Blus, C.; Szmukler-Moncler, S.; Buogo, S.; Levi, R.; Barbato, G.; Madonnaripa, D.; Denotti, G.; Piras, V.; Orrù, G. Microbial biofilm modulation by ultrasound: Current concepts and controversies. Ultrason. Sonochem., 2014, 21(1), 15-22.
[http://dx.doi.org/10.1016/j.ultsonch.2013.05.011] [PMID: 23751458]
[125]
Gao, W.; Lin, X.; Lin, X.; Ding, J.; Huang, X.; Wu, H. Preparation of nano-sized flake carboxymethyl cassava starch under ultrasonic irradiation. Carbohydr. Polym., 2011, 84(4), 1413-1418.
[http://dx.doi.org/10.1016/j.carbpol.2011.01.056]
[126]
Yin, N.; Chen, K. Ultrasonically initiated emulsifier-free emulsion copolymerization of n-butyl acrylate and acrylamide. Part I: Polymerization mechanism. Polymer, 2001, 45(11), 3587-3594.
[http://dx.doi.org/10.1016/j.polymer.2004.03.087]
[127]
Suslick, K.S. Sonochemistry. Science, 1990, 247(4949), 1439-1445.
[http://dx.doi.org/10.1126/science.247.4949.1439] [PMID: 17791211]
[128]
Camino, N.A.; Pérez, O.E.; Pilosof, A.M.R. Molecular and functional modification of hydroxypropylmethylcellulose by high-intensity ultrasound. Food Hydrocoll., 2009, 23(4), 1089-1095.
[http://dx.doi.org/10.1016/j.foodhyd.2008.08.015]
[129]
Hessel, C.; Allegre, C.; Maisseu, M.; Charbit, F.; Moulin, P. Guidelines and legislation for dye house effluents. J. Environ. Manage., 2007, 83(2), 171-180.
[http://dx.doi.org/10.1016/j.jenvman.2006.02.012] [PMID: 16701938]
[130]
Charumathi, D.; Das, N. Packed bed column studies for the removal of synthetic dyes from textile wastewater using immobilized dead C. tropicalis. Desalination, 2012, 285, 22-30.
[http://dx.doi.org/10.1016/j.desal.2011.09.023]
[131]
Ibanez, J.G.; Rincón, M.E.; Gutierrez, S.; Chahma, M.; Jaramillo-Quintero, O.A.; Frontana, B.A. Conducting polymers in the fields of energy, environmental remediation, and chemical–chiral sensors. Chem. Rev., 2018, 118(9), 4731-4816.
[http://dx.doi.org/10.1021/acs.chemrev.7b00482] [PMID: 29630346]
[132]
Swager, T.M. 50th anniversary perspective: Conducting/semiconducting conjugated polymers. A personal perspective on the past and the future. Macromolecules, 2017, 50, 4867-4886.
[http://dx.doi.org/10.1021/acs.macromol.7b00582]
[133]
Liu, J.; Sue, H.J.; Thompson, Z.J.; Bates, F.S.; Dettloff, M.; Jacob, G.; Verghese, N.; Pham, H. Effect of crosslink density on fracture behavior of model epoxies containing block copolymer nanoparticles. Polymer, 2009, 50, 4683-4689.
[http://dx.doi.org/10.1016/j.polymer.2009.05.006]
[134]
Abdelnaby, M.M.; Saleh, T.A.; Zeama, M.; Abdalla, M.A.; Ahmed, H.M.; Habib, M.A. Azo-linked porous organic polymers for selective carbon dioxide capture and metal ion removal. ACS Omega, 2022, 7(17), 14535-14543.
[http://dx.doi.org/10.1021/acsomega.1c05905] [PMID: 35557682]
[135]
Le, T.-H.; Kim, Y.; Yoon, H. Electrical and electrochemical properties of conducting polymers. Polymers, 2017, 9(4), 150.
[http://dx.doi.org/10.3390/polym9040150] [PMID: 30970829]
[136]
Ghosh, S.; Maiyalagan, T.; Basu, R.N. Nanostructured conducting polymers for energy applications: Towards a sustainable platform. Nanoscale, 2016, 8(13), 6921-6947.
[http://dx.doi.org/10.1039/C5NR08803H] [PMID: 26980404]
[137]
Nezakati, T.; Seifalian, A.; Tan, A.; Seifalian, A.M. Conductive polymers: Opportunities and challenges in biomedical applications. Chem. Rev., 2018, 118(14), 6766-6843.
[http://dx.doi.org/10.1021/acs.chemrev.6b00275] [PMID: 29969244]
[138]
Guo, B.; Glavas, L.; Albertsson, A.C. Biodegradable and electrically conducting polymers for biomedical applications. Prog. Polym. Sci., 2013, 38, 1263-1286.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.06.003]
[139]
Guo, B.; Ma, P.X. Conducting polymers for tissue engineering. Biomacromolecules, 2018, 19(6), 1764-1782.
[http://dx.doi.org/10.1021/acs.biomac.8b00276] [PMID: 29684268]
[140]
Moon, J.M.; Thapliyal, N.; Hussain, K.K.; Goyal, R.N.; Shim, Y.B. Conducting polymer-based electrochemical biosensors for neurotransmitters: A review. Biosens. Bioelectron., 2018, 102, 540-552.
[http://dx.doi.org/10.1016/j.bios.2017.11.069] [PMID: 29220802]
[141]
Green, R.; Abidian, M.R. Conducting polymers for neural prosthetic and neural interface applications. Adv. Mater., 2015, 27(46), 7620-7637.
[http://dx.doi.org/10.1002/adma.201501810] [PMID: 26414302]
[142]
Heatley, F.; Pratsitsilp, Y.; McHugh, N.; Watts, D.C.; Devlin, H. Determination of extent of reaction in dimethacrylate-based dental composites using solidstate 13C M.A.S. N.M.R. spectroscopy and comparison with FTIR spectroscopy. Polymer, 1995, 36, 1859-1867.
[http://dx.doi.org/10.1016/0032-3861(95)90932-R]
[143]
Khadem, F.; Pishvaei, M.; Salami, M.; Najafi, F. Morphology control of conducting polypyrrole nanostructures via operational conditions in the emulsion polymerization. J. Appl. Polym. Sci., 2017, 44697.
[http://dx.doi.org/10.1002/app.44697]
[144]
Han, Y.; Dai, L. Conducting polymers for flexible supercapacitors. Macromol. Chem. Phys., 2019, 220, 1800355.
[http://dx.doi.org/10.1002/macp.201800355]
[145]
Meng, Q.; Cai, K.; Chen, Y.; Chen, L. Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy, 2017, 36, 268-285.
[http://dx.doi.org/10.1016/j.nanoen.2017.04.040]
[146]
Hackett, A.J.; Strover, L.T.; Baek, P. Malmström, J.; Travas-Sejdic, J. Polymer grafted conjugated polymers as functional biointerfaces. In: Conjugated Polymers for Biological and Biomedical Applications; Wiley-VCH: Weinheim, Germany, 2018, pp. 1-409.
[http://dx.doi.org/10.1002/9783527342747.ch13]
[147]
Zdyrko, B.; Luzinov, I. Polymer brushes by the “grafting to” method. Macromol. Rapid Commun., 2011, 32(12), 859-869.
[http://dx.doi.org/10.1002/marc.201100162] [PMID: 21509848]
[148]
Malmström, J.; Nieuwoudt, M.K.; Strover, L.T.; Hackett, A.; Laita, O.; Brimble, M.A.; Williams, D.E.; Jadranka, T.S. Grafting from poly(3,4-ethylenedioxythiophene): A simple route to versatile electrically addressable surfaces. Macromolecules, 2013, 46, 4955-4965.
[http://dx.doi.org/10.1021/ma400803j]
[149]
Maione, S.; Fabregat, G.; del Valle, L.J.; Bendrea, A-D.; Cianga, L.; Cianga, I.; Estrany, F.; Aleman, C. Effect of the graft ratio on the properties of polythiophene-g-poly(ethylene glycol). J. Polym. Sci., B, Polym. Phys., 2015, 53, 239-252.
[http://dx.doi.org/10.1002/polb.23617]
[150]
Ohkawa, H.; Ligthart, G.B.W.L.; Sijbesma, R.P.; Meijer, E.W. Supramolecular graft copolymers based on 2,7-Diamido-1,8-naphthyridines. Macromolecules, 2007, 40, 1453-1459.
[http://dx.doi.org/10.1021/ma062317a]
[151]
Moers, C.; Nuhn, L.; Wissel, M.; Stangenberg, R.; Mondeshki, M.; Berger-Nicoletti, E.; Thomas, A.; Schaeffel, D.; Koynov, K.; Klapper, M. Supramolecular linear-g-hyperbranched graft polymers: Topology and binding strength of hyperbranched side chains. Macromolecules, 2013, 46, 9544-9553.
[http://dx.doi.org/10.1021/ma402081h]
[152]
Szillat, F.; Schmidt, B.V.K.J.; Hubert, A.; Barner-Kowollik, C.; Ritter, H. Redox-switchable supramolecular graft polymer formation via ferrocene-cyclodextrin assembly. Macromol. Rapid Commun., 2014, 35(14), 1293-1300.
[http://dx.doi.org/10.1002/marc.201400122] [PMID: 24753002]
[153]
Schwieger, W.; Machoke, A.G.; Weissenberger, T.; Inayat, A.; Selvam, T.; Klumpp, M.; Inayat, A. Hierarchy concepts: Classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chem. Soc. Rev., 2016, 45(12), 3353-3376.
[http://dx.doi.org/10.1039/C5CS00599J] [PMID: 26477329]
[154]
Bhatia, S.K.; Myers, A.L. Optimum conditions for adsorptive storage. Langmuir, 2006, 22(4), 1688-1700.
[http://dx.doi.org/10.1021/la0523816] [PMID: 16460092]
[155]
Furukawa, H.; Yaghi, O.M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc., 2009, 131(25), 8875-8883.
[http://dx.doi.org/10.1021/ja9015765] [PMID: 19496589]
[156]
Mukaddam, M.; Litwiller, E.; Pinnau, I. Gas sorption, diffusion, and permeation in nafion. Macromolecules, 2016, 49, 280-286.
[http://dx.doi.org/10.1021/acs.macromol.5b02578]
[157]
Vu, A.; Qian, Y.; Stein, A. Porous electrode materials for lithium-ion batteries – how to prepare them and what makes them special. Adv. Energy Mater., 2012, 2, 1056-1085.
[http://dx.doi.org/10.1002/aenm.201200320]
[158]
Mike, J.F.; Lutkenhaus, J.L. Electrochemically active polymers for electrochemical energy storage: Opportunities and challenges. ACS Macro Lett., 2013, 2(9), 839-844.
[http://dx.doi.org/10.1021/mz400329j] [PMID: 35606976]
[159]
Chung, T.C. Functional polyolefins for energy applications. Macromolecules, 2013, 46, 6671-6698.
[http://dx.doi.org/10.1021/ma401244t]
[160]
Sudheendran, M.; Buchmeiser, M.R. A Continuous bioreactor prepared via the immobilization of trypsin on aldehyde-functionalized, ring-opening metathesis polymerization-derived monoliths. Macromolecules, 2010, 43, 9601-9607.
[http://dx.doi.org/10.1021/ma101922s]
[161]
Kaur, P.; Hupp, J.T.; Nguyen, S.T. Porous organic polymers in catalysis: Opportunities and challenges. ACS Catal., 2011, 1, 819-835.
[http://dx.doi.org/10.1021/cs200131g]
[162]
Moulijn, J.A.; Kreutzer, M.T.; Nijhuis, T.A.; Kapteijn, F. Monolithic catalysts and reactors. High precision with low energy consumption. Adv. Catal., 2011, 54, 249-327.
[http://dx.doi.org/10.1016/B978-0-12-387772-7.00005-8]
[163]
Guiochon, G. Monolithic columns in high-performance liquid chromatography. J. Chromatogr. A, 2007, 1168(1-2), 101-168.
[http://dx.doi.org/10.1016/j.chroma.2007.05.090] [PMID: 17640660]
[164]
Baker, R.W.; Low, B.T. Gas separation membrane materials: A perspective. Macromolecules, 2014, 47, 6999-7013.
[http://dx.doi.org/10.1021/ma501488s]
[165]
Li, Y.; Fu, Z.Y.; Su, B.L. Hierarchically structured porous materials for energy conversion and storage. Adv. Funct. Mater., 2012, 22, 4634-4667.
[http://dx.doi.org/10.1002/adfm.201200591]
[166]
Liang, Y.L.; Pearson, R.A. Toughening mechanisms in epoxy–silica nanocomposites (ESNs). Polymer, 2009, 50, 4895-4905.
[http://dx.doi.org/10.1016/j.polymer.2009.08.014]
[167]
Saba, S.A.; Mousavi, M.P.S.; Bühlmann, P.; Hillmyer, M.A. Hierarchically porous polymer monoliths by combining controlled macro- and microphase separation. J. Am. Chem. Soc., 2015, 137(28), 8896-8899.
[http://dx.doi.org/10.1021/jacs.5b04992] [PMID: 26161727]
[168]
Galarneau, A.; Sachse, A.; Said, B.; Pelisson, C.-H.; Boscaro, P.; Brun, N.; Courtheoux, L.; Olivi-Tran, N.; Coasne, B.; Fajula, F. Hierarchical porous silica monoliths: A novel class of microreactors for process intensification in catalysis and adsorption. Compt. Rend. Chim., 2016, 19(1-2), 231-247.
[169]
Pfeifer, C.S.; Silva, L.R.; Kawano, Y.; Braga, R.R. Bis-GMA co-polymerizations: Influence on conversion, flexural properties, fracture toughness and susceptibility to ethanol degradation of experimental composites. Dent. Mater., 2009, 25(9), 1136-1141.
[http://dx.doi.org/10.1016/j.dental.2009.03.010] [PMID: 19395016]
[170]
Mulliken, A.D.; Boyce, M.C. Mechanics of the ratedependent elastic–plastic deformation of glassy polymers from low to high strain rates. Int. J. Solids Struct., 2006, 43, 1331-1356.
[http://dx.doi.org/10.1016/j.ijsolstr.2005.04.016]
[171]
Panapitiya, N.P.; Wijenayake, S.N.; Huang, Y.; Bushdi, D.; Nguyen, D.; Ratanawanate, C.; Kalaw, G.J.; Gilpin, C.J.; Musselman, I.H.; Balkus, K.J.; Ferraris, J.P. Stabilization of immiscible polymer blends using structure directing metal organic frameworks (MOFs). Polymer, 2014, 55, 2028-2034.
[http://dx.doi.org/10.1016/j.polymer.2014.03.008]
[172]
Sperling, L.H. Polymeric multicomponent materials: An introduction:, 4th ed.; Wiley: New York, 1997, pp. 1-827.
[173]
Mignard, N.; Okhay, N.; Jegat, C.; Taha, M. Facile elaboration of polymethylmethacrylate/polyurethane interpenetrating networks using Diels-Alder reactions. J. Polym. Res., 2013, 20, 233.
[http://dx.doi.org/10.1007/s10965-013-0233-2]
[174]
Knauss, K.G.; Dibley, M.J.; Bourcier, W.L.; Shaw, H.F. Ti (IV) hydrolysis constants 841 derived from rutile solubility measurements made from 100 to 300 degrees C. Appl. Geochem., 2001, 16, 1115.
[http://dx.doi.org/10.1016/S0883-2927(00)00081-0]
[175]
Fan, L.H.; Hu, C.P.; Ying, S.K. Thermal analysis during the formation of polyurethane and vinyl ester resin interpenetrating polymer networks. Polymer, 1996, 37, 975-981.
[http://dx.doi.org/10.1016/0032-3861(96)87280-6]
[176]
Ziemniak, S.E.; Jones, M.E.; Combs, K.E. Solubility behavior of titanium (IV) oxide in alkaline media at elevated temperatures. J. Solut. Chem., 1993, 22(7), 601-623.
[http://dx.doi.org/10.1007/BF00646781]
[177]
Ziemniak, S.E.; Opalka, E.P. Titanium (IV) oxide phase stability in alkaline sodium phosphate solutions at elevated temperatures. Chem. Mater., 1993, 5(5), 690-694.
[http://dx.doi.org/10.1021/cm00029a019]
[178]
Kumar, N.; Dorfman, A.; Hahm, J.I. Ultrasensitive DNA sequence detection using nanoscale ZnO sensor arrays. Nanotechnology, 2006, 17(12), 2875.
[http://dx.doi.org/10.1088/0957-4484/17/12/009]
[179]
Dorfman, A.; Kumar, N.; Hahm, J.I. Highly sensitive biomolecular fluorescence detection using nanoscale ZnO platforms. Langmuir, 2006, 22(11), 4890-4895.
[http://dx.doi.org/10.1021/la053270+] [PMID: 16700567]
[180]
Taratula, O.; Galoppini, E.; Mendelsohn, R.; Reyes, P.I.; Zhang, Z.; Duan, Z.; Zhong, J.; Lu, Y. Stepwise functionalization of ZnO nanotips with DNA. Langmuir, 2009, 25(4), 2107-2113.
[http://dx.doi.org/10.1021/la8026946] [PMID: 19199718]
[181]
Zhao, J.; Wu, L.; Zhi, J. Fabrication of micropatterned ZnO/SiO2 core/shell nanorod arrays on a nanocrystalline diamond film and their application to DNA hybridization detection. J. Mater. Chem., 2008, 18(21), 2459-2465.
[http://dx.doi.org/10.1039/b800029h]
[182]
Sirbuly, D.J.; Law, M.; Yan, H.; Yang, P. Semiconductor nanowires for subwavelength photonics integration. J. Phys. Chem. B, 2005, 109(32), 15190-15213.
[http://dx.doi.org/10.1021/jp051813i] [PMID: 16852925]
[183]
Doong, R.A.; Shih, H.M. Glutamate optical biosensor based on the immobilization of glutamate dehydrogenase in titanium dioxide sol-gel matrix. Biosens. Bioelectron., 2006, 22(2), 185-191.
[http://dx.doi.org/10.1016/j.bios.2005.12.020] [PMID: 16458499]
[184]
Lu, W.; Wang, G.; Jin, Y.; Yao, X.; Hu, J.; Li, J. Label-free photoelectrochemical strategy for hairpin DNA hybridization detection on titanium dioxide electrode. Appl. Phys. Lett., 2006, 89(26), 263902.
[http://dx.doi.org/10.1063/1.2420786]
[185]
Liu, J.; Roussel, C.; Lagger, G.; Tacchini, P.; Girault, H.H. Antioxidant sensors based on DNA-modified electrodes. Anal. Chem., 2005, 77(23), 7687-7694.
[http://dx.doi.org/10.1021/ac0509298] [PMID: 16316177]
[186]
Tokudome, H.; Yamada, Y.; Sonezaki, S.; Ishikawa, H.; Bekki, M.; Kanehira, K.; Miyauchi, M. Photoelectrochemical deoxyribonucleic acid sensing on a nanostructured TiO2 electrode. Appl. Phys. Lett., 2005, 87(21), 213901.
[http://dx.doi.org/10.1063/1.2135392]
[187]
Galoppini, E. Linkers for anchoring sensitizers to semiconductor nanoparticles. Coord. Chem. Rev., 2004, 248(13-14), 1283-1297.
[http://dx.doi.org/10.1016/j.ccr.2004.03.016]
[188]
Tordera, D.; Pertegás, A.; Shavaleev, N.M.; Scopelliti, R.; Ortí, E.; Bolink, H.J.; Baranoff, E.; Grätzel, M.; Nazeeruddin, M.K. Efficient orange light-emitting electrochemical cells. J. Mater. Chem., 2012, 22(36), 19264-19268.
[http://dx.doi.org/10.1039/c2jm33969b]
[189]
Adden, N.; Gamble, L.J.; Castner, D.G.; Hoffmann, A.; Gross, G.; Menzel, H. Phosphonic acid monolayers for binding of bioactive molecules to titanium surfaces. Langmuir, 2006, 22(19), 8197-8204.
[http://dx.doi.org/10.1021/la060754c] [PMID: 16952262]
[190]
Viornery, C.; Chevolot, Y.; Léonard, D.; Aronsson, B.O.; Péchy, P.; Mathieu, H.J.; Descouts, P.; Grätzel, M. Surface modification of titanium with phosphonic acid to improve bone bonding: Characterization by XPS and ToF-SIMS. Langmuir, 2002, 18(7), 2582-2589.
[http://dx.doi.org/10.1021/la010908i]
[191]
Huang, N.P.; Michel, R.; Voros, J.; Textor, M.; Hofer, R.; Rossi, A.; Elbert, D.L.; Hubbell, J.A.; Spencer, N.D. Poly (L-lysine)-g-poly (ethylene glycol) layers on metal oxide surfaces: Surface-analytical characterization and resistance to serum and fibrinogen adsorption. Langmuir, 2001, 17(2), 489-498.
[http://dx.doi.org/10.1021/la000736+]
[192]
Beutner, R.; Michael, J.; Schwenzer, B.; Scharnweber, D. Biological nano-functionalization of titanium-based biomaterial surfaces: A flexible toolbox. J. R. Soc. Interface, 2010, 7(Suppl. 1), S93-S105.
[http://dx.doi.org/10.1098/rsif.2009.0418.focus] [PMID: 19889692]
[193]
Gawalt, E.S.; Avaltroni, M.J.; Danahy, M.P.; Silverman, B.M.; Hanson, E.L.; Midwood, K.S.; Schwarzbauer, J.E.; Schwartz, J. Bonding organics to Ti alloys: Facilitating human osteoblast attachment and spreading on surgical implant materials. Langmuir, 2003, 19(1), 200-204.
[http://dx.doi.org/10.1021/la0203436]
[194]
Yang, W.; Auciello, O.; Butler, J.E.; Cai, W.; Carlisle, J.A.; Gerbi, J.E.; Gruen, D.M.; Knickerbocker, T.; Lasseter, T.L.; Russell, J.N., Jr; Smith, L.M.; Hamers, R.J. DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nat. Mater., 2002, 1(4), 253-257.
[http://dx.doi.org/10.1038/nmat779] [PMID: 12618788]
[195]
Kozhukharov, V.; Trapalis, C.; Samuneva, B. Sol-gel processing of titanium-containing thin coatings. J. Mater. Sci., 1993, 28(5), 1283-1288.
[http://dx.doi.org/10.1007/BF01191965]
[196]
Hagfeldt, A.; Graetzel, M. Light-induced redox reactions in nanocrystalline systems. Chem. Rev., 1995, 95(1), 49-68.
[http://dx.doi.org/10.1021/cr00033a003]
[197]
Werner, A.; Roos, A. Condensation tests on glass samples for energy efficient windows. Sol. Energy Mater. Sol. Cells, 2007, 91(7), 609-615.
[http://dx.doi.org/10.1016/j.solmat.2006.11.015]
[198]
Liechty, W.B.; Kryscio, D.R.; Slaughter, B.V.; Peppas, N.A. Polymers for drug delivery systems. Annu. Rev. Chem. Biomol. Eng., 2010, 1, 149-173.
[http://dx.doi.org/10.1146/annurev-chembioeng-073009-100847] [PMID: 22432577]
[199]
Pallerlaand, S.; Prabhakar, B. Review on polymers in drug delivery. Am. J. Pharmtech. Res., 2015, 3, 901-917.
[200]
Saito, N.; Usui, Y.; Aoki, K.; Narita, N.; Shimizu, M.; Hara, K.; Ogiwara, N.; Nakamura, K.; Ishigaki, N.; Kato, H.; Taruta, S.; Endo, M. Carbon nanotubes: Biomaterial applications. Chem. Soc. Rev., 2009, 38(7), 1897-1903.
[http://dx.doi.org/10.1039/b804822n] [PMID: 19551170]
[201]
Guan, B.; Ciampi, S.; Luais, E.; James, M.; Reece, P.J.; Gooding, J.J. Depth-resolved chemical modification of porous silicon by wavelength-tuned irradiation. Langmuir, 2012, 28(44), 15444-15449.
[http://dx.doi.org/10.1021/la303649u] [PMID: 23078244]
[202]
Srikanth, P.; Narayana, R.; Wasim Raja, S.; Brito Raj, S. A review on oral controlled drug delivery. Adv. Pharmaceut., 2013, 3, 51-58.
[203]
Pino, V.H.; Meléndez, H.I.; Ramos, A.; Bucio, E. Radiation Grafting of Biopolymers and Synthetic Polymers; Elsevier Inc.: Amsterdam, Netherlands, 2018, pp. 205-250.
[http://dx.doi.org/10.1016/B978-0-12-810462-0.00006-5]
[204]
Zuñiga, I.; Meléndez, H.I.; Costoya, A.; Alvarez, C.; Concheiro, A.; Bucio, E. Poly(vinyl chloride) catheters modified with pH-responsive poly(methacrylic acid) with affinity for antimicrobial agents. Radiat. Phys. Chem., 2018, 142, 107-114.
[http://dx.doi.org/10.1016/j.radphyschem.2017.02.008]
[205]
Hiriart, E.; Contreras, A.; Garcia, M.J.; Concheiro, A.; Alvarez, C.; Bucio, E. Radiation grafting of glycidyl methacrylate onto cotton gauzes for functionalization with cyclodextrins and elution of antimicrobial agents. Cellulose, 2012, 19, 2165-2177.
[http://dx.doi.org/10.1007/s10570-012-9782-5]
[206]
García. M.; González, C.; Magariños, B.; Concheiro, A.; Alvarez, C.; Bucio, E. Acrylic polymer-grafted polypropylene sutures for covalent immobilization or reversible adsorption of vancomycin. Int. J. Pharm., 2014, 461(1-2), 286-295.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.060] [PMID: 24333904]
[207]
Agrawal, N.; Agrawal, N. Polymeric prodrugs: Recent achievements and general strategies. J. Antivir. Antiretrovir., 2015, 1, S15-S007.
[208]
Madan, R.K.; Levitt, J. A review of toxicity from topical salicylic acid preparations. J. Am. Acad. Dermatol., 2014, 70(4), 788-792.
[http://dx.doi.org/10.1016/j.jaad.2013.12.005] [PMID: 24472429]
[209]
Cao, Y.; Uhrich, K.E. Salicylic Acid-Based Poly (anhydride-esters): Synthesis, Properties, and Applications; American Chemical Society: Washington, DC, USA, 2018, vol. 1310, pp. 149-162.
[210]
Nowatzki, P.J.; Koepsel, R.R.; Stoodley, P.; Min, K.; Harper, A.; Murata, H.; Donfack, J.; Hortelano, E.R.; Ehrlich, G.D.; Russell, A.J. Salicylic acid-releasing polyurethane acrylate polymers as anti-biofilm urological catheter coatings. Acta Biomater., 2012, 8(5), 1869-1880.
[http://dx.doi.org/10.1016/j.actbio.2012.01.032] [PMID: 22342353]
[211]
Yilmaz, G.; Yagci, Y. Light-induced step-growth polymerization. Prog. Polym. Sci., 2020, 100, 101178.
[http://dx.doi.org/10.1016/j.progpolymsci.2019.101178]
[212]
Kaya, K.; Kreutzer, J.; Yagci, Y. A charge‐transfer complex of thioxanthonephenacyl sulfonium salt as a visible‐light photoinitiator for free radical and cationic polymerizations. ChemPhotoChem, 2019, 3(11), 1187-1192.
[http://dx.doi.org/10.1002/cptc.201800217]
[213]
Bener, S.; Aydogan, C.; Yagci, Y. Hydrophilicity tunable hyperbranched polymers by visible light induced self‐condensing vinyl polymerization. Macromol. Chem. Phys., 2019, 220(20), 1900055.
[http://dx.doi.org/10.1002/macp.201900055]
[214]
Aydogan, C.; Ciftci, M.; Yagci, Y. Controlled synthesis of block copolymers by mechanistic transformation from atom transfer radical polymerization to iniferter process. Macromol. Rapid Commun., 2019, 40(14), e1900109.
[http://dx.doi.org/10.1002/marc.201900109] [PMID: 31087732]
[215]
Ciftci, M. Synthesis of graft copolymers by combination of radical photopolymerization and iniferter process. J. Polym. Sci. A Polym. Chem., 2019, 57(12), 1344-1348.
[http://dx.doi.org/10.1002/pola.29395]
[216]
Zhou, H.; Christopher, M.; Li, P.H.; Huang, H.H.; Ma, P.; Li, L.; Liu, L.; Chen, Y. Regioselective post-functionalization of isotactic polypropylene by amination in the presence of N -hydroxyphthalimide. Polym. Chem., 2019, 10(5), 619-626.
[http://dx.doi.org/10.1039/C8PY01344F]
[217]
Aydogan, C.; Ciftci, M.; Asiri, A.M.; Yagci, Y. Visible light induced one-pot synthesis of amphiphilic hyperbranched copolymers. Polymer, 2018, 158, 90-95.
[http://dx.doi.org/10.1016/j.polymer.2018.10.058]
[218]
Ciftci, M.; Yagci, Y. Block copolymers by mechanistic transformation from PROAD to iniferter process. Macromol. Rapid Commun., 2018, 39(18), e1800464.
[http://dx.doi.org/10.1002/marc.201800464] [PMID: 30091815]
[219]
Aykac, F.S.; Yagci, Y. Simple photochemical route to block copolymers via two-step sequential type II photoinitiation. Macromol. Chem. Phys., 2018, 219(7), 1700589.
[http://dx.doi.org/10.1002/macp.201700589]
[220]
Zhou, H.; Christopher, M.; Li, P.H.; Huang, H.H.; Ma, P.; Li, L.; Liu, L.; Chen, Y. Mild halogenation of polyolefins using an N -haloamide reagent. Polym. Chem., 2018, 9(11), 1309-1317.
[http://dx.doi.org/10.1039/C8PY00013A]
[221]
Ciftci, M.; Wang, D.; Buchmeiser, M.; Yagci, Y. Modification of polyolefins by click chemistry. Macromol. Chem. Phys., 2017, 218(19), 1700279.
[http://dx.doi.org/10.1002/macp.201700279]
[222]
Michael, R. Tandem ring-opening metathesis - vinyl insertion polymerization: Fundamentals and application to functional polyolefins. Macromol. Rapid Commun., 2017, 38(6), 1600672.
[http://dx.doi.org/10.1002/marc.201600672]
[223]
Ciftci, M.; Yoshikawa, Y.; Yagci, Y. Living cationic polymerization of vinyl ethers through a photoinduced radical oxidation/addition/deactivation sequence. Angew. Chem. Int. Ed. Engl., 2017, 56(2), 519-523.
[http://dx.doi.org/10.1002/anie.201609357] [PMID: 27874241]
[224]
Dunstan, D.E.; Cheng, Y.; Liao, M.L.; Salvatore, R.; Boger, D.V.; Prica, M. Structure and rheology of the κ-carrageenan/locust bean gum gels. Food Hydrocoll., 2001, 15, 475-484.
[http://dx.doi.org/10.1016/S0268-005X(01)00054-6]
[225]
Brunauer, S.; Deming, L.S.; Deming, W.E.; Teller, E. On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc., 1940, 62, 1723-1732.
[http://dx.doi.org/10.1021/ja01864a025]
[226]
Torres, M.D.; Moreira, R.; Chenlo, F.; Vázquez, M.J. Water adsorption isotherms of carboxymethyl cellulose, guar, locust bean, tragacanth and xanthan gums. Carbohydr. Polym., 2012, 89(2), 592-598.
[http://dx.doi.org/10.1016/j.carbpol.2012.03.055] [PMID: 24750763]
[227]
Vargas, M.; Pastor, C.; Chiralt, A.; McClements, D.J.; González, C. Recent advances in edible coatings for fresh and minimally processed fruits. Crit. Rev. Food Sci. Nutr., 2008, 48(6), 496-511.
[http://dx.doi.org/10.1080/10408390701537344] [PMID: 18568856]
[228]
Guilbert, S. Food Packaging and Preservation Theory and Practice; Elsevier Applied Science Publishers: London, 1994.
[229]
Martins, J.T.; Cerqueira, M.A.; Bourbon, A.I.; Pinheiro, A.C.; Souza, B.W.S.; Vicente, A.A. Food Hydrocoll., 2012, 29, 280-289.
[http://dx.doi.org/10.1016/j.foodhyd.2012.03.004]
[230]
Logeart, D.; Anagnostou, F.; Bizios, R.; Petite, H. Engineering bone: Challenges and obstacles. J. Cell. Mol. Med., 2005, 9(1), 72-84.
[http://dx.doi.org/10.1111/j.1582-4934.2005.tb00338.x] [PMID: 15784166]
[231]
Stevens, M.M. Biomaterials for bone tissue engineering. Mater. Today, 2008, 11, 18-25.
[http://dx.doi.org/10.1016/S1369-7021(08)70086-5]
[232]
Farokhi, M.; Mottaghitalab, F.; Shokrgozar, M.A.; Ou, K-L.; Mao, C.; Hosseinkhani, H. Importance of dual delivery systems for bone tissue engineering. J. Control. Release, 2016, 225, 152-169.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.033] [PMID: 26805518]
[233]
O’Brien, F.J. Biomaterials & Scaffolds for tissue engineering. Mater. Today, 2011, 14, 88-95.
[http://dx.doi.org/10.1016/S1369-7021(11)70058-X]
[234]
Lee, E.J.; Kasper, F.K.; Mikos, A.G. Biomaterials for tissue engineering. Ann. Biomed. Eng., 2014, 42(2), 323-337.
[http://dx.doi.org/10.1007/s10439-013-0859-6] [PMID: 23820768]
[235]
LogithKumar. R.; KeshavNarayan, A.; Dhivya, S.; Chawla, A.; Saravanan, S.; Selvamurugan, N. A review of chitosan and its derivatives in bone tissue engineering. Carbohydr. Polym., 2016, 151, 172-188.
[http://dx.doi.org/10.1016/j.carbpol.2016.05.049]
[236]
Levengood, S.L.; Zhang, M. Chitosan-based scaffolds for bone tissue engineering. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(21), 3161-3184.
[http://dx.doi.org/10.1039/c4tb00027g] [PMID: 24999429]
[237]
Di Martino, A.; Sittinger, M.; Risbud, M.V. Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials, 2005, 26(30), 5983-5990.
[http://dx.doi.org/10.1016/j.biomaterials.2005.03.016] [PMID: 15894370]
[238]
Pillai, C.K.S.; Paul, W.; Sharma, C.P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci., 2009, 34, 641-678.
[http://dx.doi.org/10.1016/j.progpolymsci.2009.04.001]
[239]
Saravanan, S.; Leena, R.S.; Selvamurugan, N. Chitosan based biocomposite scaffolds for bone tissue engineering. Int. J. Biol. Macromol., 2016, 93(Pt B), 1354-1365.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.112] [PMID: 26845481]
[240]
Kim, I.Y.; Seo, S.J.; Moon, H.S.; Yoo, M.K.; Park, I.Y.; Kim, B.C.; Cho, C.S. Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv., 2008, 26(1), 1-21.
[http://dx.doi.org/10.1016/j.biotechadv.2007.07.009] [PMID: 17884325]
[241]
Ricotta, J.J. Vascular conduits: An overview. Vascular Surgery; Rutherford, R.B., Ed.; Elsevier-Saunders: Philadelphia, PA, USA, 2005, pp. 688-695.
[242]
Begovac, P.C.; Thomson, R.C.; Fisher, J.L.; Hughson, A.; G¨allhagen, A. Improvements inGORE-TEX vascular graft performance by carmeda bioactive surface heparin immobilization. Eur. J. Vasc. Endovasc. Surg., 2003, 25(5), 203-437.
[243]
Akers, D.L.; Du, Y.H.; Kempczinski, R.F. The effect of carbon coating and porosity on early patency of expanded polytetrafluoroethylene grafts: An experimental study. J. Vascul. Sur., 1993, 18(1), 10-15.
[http://dx.doi.org/10.1067/mva.1993.41708]
[244]
Gosselin, C.; Ren, D.; Ellinger, J. Greisler HP in vivo platelet deposition on polytetra fluoroethylene coated with glue containing fibroblast growth factor 1 and heparin in a canine model. American J. Surg., 1995, 170(2), 126-130.
[245]
Zarge, J.I.; Husak, V.; Huang, P.; Greisler, HP Fibrin glue fibroblast growth factor type 1 and heparin decreases platelet deposition. Am. J. Surg., 1997, 174(2), 188-192.
[246]
Abbott, W.M.; Megerman, J.; Hasson, J.E.; L’Italien, G.; Warnock, D.F. Effect of compliance mismatch on vascular graft patency. J. Vascul. Surg., 1982, 5(2), 376-382.
[247]
Wise, S.G.; Byrom, M.J.; Waterhouse, A.; Bannon, P.G.; Ng, M.K.C.; Weiss, A.S. A multilayered synthetic human elastin/polycaprolactone hybrid vascular graft with tailored mechanical properties. Acta Biomater., 2011, 7(1), 295-303.
[http://dx.doi.org/10.1016/j.actbio.2010.07.022]
[248]
McKenna, K.A.; Hinds, M.T.; Sarao, R.C. Mechanical property characterization of electrospun recombinant human tropoelastin for vascular graft biomaterials. Acta Biomater., 2012, 8(1), 225-233.
[http://dx.doi.org/10.1016/j.actbio.2011.08.001]
[249]
Klinkert, P.; Post, P.N.; Breslau, P.J.; van Bockel, J.H. Saphenous vein versus PTFE for above-knee femoropopliteal bypass. A review of the literature. Eur. J. Vascul. Endovascul. Surg., 2004, 27(4), 357-362.
[http://dx.doi.org/10.1016/j.ejvs.2003.12.027]
[250]
Hasan, A.; Memic, A.; Annabi, N. Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater., 2014, 10(1), 11-25.
[http://dx.doi.org/10.1016/j.actbio.2013.08.022]
[251]
Haruguchi, H.; Teraoka, S. Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: A review. J. Artif. Organs, 2003, 6(4), 227-235.
[http://dx.doi.org/10.1007/s10047-003-0232-x]
[252]
Clowes, A.W.; Kirkman, T.R.; Reidy, M.A. Mechanisms of arterial graft healing. Rapid transmural capillary ingrowth provides a source of intimal endothelium and smooth muscle in porous PTFE prostheses. Am. J. Patho., 1986, 123(2), 220-230.
[253]
Herring, M.; Gardner, A.; Glover, J. A single staged technique for seeding vascular grafts with autogenous endothelium. Surgery, 1978, 84(4), 498-504.
[254]
Cleary, M.A.; Geiger, E.; Grady, C.; Best, C.; Naito, Y.; Breuer, C. Vascular tissue engineering: The next generation. Trends Mol. Med., 2012, 18(7), 394-404.
[http://dx.doi.org/10.1016/j.molmed.2012.04.013]
[255]
Poh, M.; Boyer, M.; Solan, A.; Dahl, S.L.; Pedrotty, D.; Banik, S.S.; McKee, J.A.; Klinger, R.Y.; Counter, C.M.; Niklason, L.E. Blood vessels engineered from human cells. Lancet, 2005, 365(9477), 2122-2124.
[http://dx.doi.org/10.1016/S0140-6736(05)66735-9] [PMID: 15964449]
[256]
Kelm, J.M.; Lorber, V.; Snedeker, J.G.; Schmidt, D.; Broggini-Tenzer, A.; Weisstanner, M.; Odermatt, B.; Mol, A.; Zünd, G.; Hoerstrup, S.P. A novel concept for scaffold-free vessel tissue engineering: Self-assembly of microtissue building blocks. J. Biotechnol., 2010, 148(1), 46-55.
[http://dx.doi.org/10.1016/j.jbiotec.2010.03.002] [PMID: 20223267]
[257]
Niklason, L.E.; Gao, J.; Abbott, W.M.; Hirschi, K.K.; Houser, S.; Marini, R.; Langer, R. Functional arteries grown in vitro. Science, 1999, 284(5413), 489-493.
[http://dx.doi.org/10.1126/science.284.5413.489] [PMID: 10205057]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy