Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Recent Advances in the Chemistry and Biology of Bakuchiol and its Derivatives: An Updated Review

Author(s): Nidhi Gupta*, Payare L. Sangwan, Ravi Shankar and Sumeet Gupta

Volume 23, Issue 7, 2023

Published on: 13 September, 2022

Page: [747 - 764] Pages: 18

DOI: 10.2174/1871520622666220812113057

Price: $65

Abstract

Bakuchiol is a meroterpene natural product distributed in various plants. It possesses several biological activities particularly anticancer. A large number of analogs have been prepared by various researchers by targeting several positions such as phenolic –OH, ethenyl and isopropylidene groups present in the bakuchiol to develop potent therapeutic agents with improved pharmaceutical properties. The present review describes the isolation, organic synthetic schemes, chromatographic study, and biological activities of bakuchiol reported till date. Further, the review also provides an insight into the skin care effects of bakuchiol and structure-activity relationship studies of reported derivatives. Moreover, the biosynthetic pathway of bakuchiol has also been described. All the articles published on bakuchiol revealed that bakuchiol and its analogs possess a remarkable potential for the development of potent anticancer and several other therapeutic agents. The reported synthetic schemes can be utilized for the industrial production of bakuchiol. Finally, we believe that this review will provide important information to the researchers interested in the chemistry and biology of Bakuchiol.

Keywords: Bakuchiol, biological activity, biosynthesis, chromatography, derivatives, synthetic route, structure-activity relationship studies.

Graphical Abstract

[1]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod., 2012, 75(3), 311-335.
[http://dx.doi.org/10.1021/np200906s] [PMID: 22316239]
[2]
Newman, D.J.; Cragg, G.M. Natural Products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01285] [PMID: 32162523]
[3]
[4]
Kharwar, R.N.; Mishra, A.; Gond, S.K.; Stierle, A.; Stierle, D. Anticancer compounds derived from fungal endophytes: Their importance and future challenges. Nat. Prod. Rep., 2011, 28(7), 1208-1228.
[http://dx.doi.org/10.1039/c1np00008j] [PMID: 21455524]
[5]
Gordaliza, M. Natural products as leads to anticancer drugs. Clin. Transl. Oncol., 2007, 9(12), 767-776.
[http://dx.doi.org/10.1007/s12094-007-0138-9] [PMID: 18158980]
[6]
Habtemariam, S.; Lentini, G. Plant-derived anticancer agents: Lessons from the pharmacology of geniposide and its aglycone, genipin. Biomedicines, 2018, 6(2), 1-28.
[http://dx.doi.org/10.3390/biomedicines6020039] [PMID: 29587429]
[7]
Butler, M.S.; Robertson, A.A.; Cooper, M.A. Natural product and natural product derived drugs in clinical trials. Nat. Prod. Rep., 2014, 31(11), 1612-1661.
[http://dx.doi.org/10.1039/C4NP00064A] [PMID: 25204227]
[8]
Choudhari, A.S.; Mandave, P.C.; Deshpande, M.; Ranjekar, P.; Prakash, O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front. Pharmacol., 2020, 10, 1614.
[http://dx.doi.org/10.3389/fphar.2019.01614] [PMID: 32116665]
[9]
Mathew, S.; Vazhappilly, C.G. Recent pharmacological advances on genistein in clinical trials. EXCLI J., 2020, 19, 1120-1123.
[PMID: 33088249]
[10]
Ko, J.H.; Sethi, G.; Um, J.Y.; Shanmugam, M.K.; Arfuso, F.; Kumar, A.P.; Bishayee, A.; Ahn, K.S. The role of resveratrol in cancer therapy. Int. J. Mol. Sci., 2017, 18(12), 2589.
[http://dx.doi.org/10.3390/ijms18122589] [PMID: 29194365]
[11]
Elbe, H.; Yigitturk, G. Çavuşoğlu, T.; Uyanikgil, Y.; Ozturk, F. Apoptotic effects of thymol, a novel monoterpene phenol, on different types of cancer. Bratisl. Lek Listy, 2020, 121(2), 122-128.
[PMID: 32115964]
[12]
Venditto, V.J.; Simanek, E.E. Cancer therapies utilizing the camptothecins: A review of the in vivo literature. Mol. Pharm., 2010, 7(2), 307-349.
[http://dx.doi.org/10.1021/mp900243b] [PMID: 20108971]
[13]
Safia; Kamil, M.; Jadiya, P.; Sheikh, S.; Haque, E.; Nazir, A.; Lakshmi, V.; Mir, S.S. The chromone alkaloid, rohitukine, affords anti-cancer activity via modulating apoptosis pathways in A549 cell line and yeast mitogen activated protein kinase (MAPK) pathway. PLoS One, 2015, 10(9), e0137991.
[http://dx.doi.org/10.1371/journal.pone.0137991] [PMID: 26405812]
[14]
Khwaza, V.; Oyedeji, O.O.; Aderibigbe, B.A. Ursolic acid-based derivatives as potential anti-cancer agents: An update. Int. J. Mol. Sci., 2020, 21(16), 5920.
[http://dx.doi.org/10.3390/ijms21165920] [PMID: 32824664]
[15]
Ardalani, H.; Avan, A.; Ghayour-Mobarhan, M. Podophyllotoxin: A novel potential natural anticancer agent. Avicenna J. Phytomed., 2017, 7(4), 285-294.
[PMID: 28884079]
[16]
Giordano, A.; Tommonaro, G. Curcumin and cancer. Nutrients, 2019, 11(10), 2376.
[http://dx.doi.org/10.3390/nu11102376] [PMID: 31590362]
[17]
Sanders, B.; Ray, A.M.; Goldberg, S.; Clark, T.; McDaniel, H.R.; Atlas, S.E.; Farooqi, A.; Konefal, J.; Lages, L.C.; Lopez, J.; Rasul, A.; Tiozzo, E.; Woolger, J.M.; Lewis, J.E. Anti-cancer effects of aloe-emodin: A systematic review. J. Clin. Transl. Res., 2017, 3(3), 283-296.
[PMID: 30895270]
[18]
Renner, O.; Mayer, M.; Leischner, C.; Burkard, M.; Berger, A.; Lauer, U.M.; Venturelli, S.; Bischoff, S.C. Systematic review of gossypol/AT-101 in cancer clinical trials. Pharmaceuticals (Basel), 2022, 15(2), 144.
[http://dx.doi.org/10.3390/ph15020144] [PMID: 35215257]
[19]
Nafees, S.; Zafaryab, M.; Mehdi, S.H.; Zia, B.; Rizvi, M.A.; Khan, M.A. Anti-cancer effect of gingerol in cancer prevention and treatment. Anticancer. Agents Med. Chem., 2021, 21, 428-432.
[20]
Bergman, M.E.; Davis, B.; Phillips, M.A. Medically useful plant terpenoids: Biosynthesis, occurrence and mechanism of action. Molecules, 2019, 24(21), 3961.
[http://dx.doi.org/10.3390/molecules24213961] [PMID: 31683764]
[21]
Wang, G.; Tang, W.; Bidigare, R.R. Terpenoids as therapeutic drugs and pharmaceutical agents. Natural Prod, 2005, 197-227.
[http://dx.doi.org/10.1007/978-1-59259-976-9_9]
[22]
Geris, R.; Simpson, T.J. Meroterpenoids produced by fungi. Nat. Prod. Rep., 2009, 26(8), 1063-1094.
[http://dx.doi.org/10.1039/b820413f] [PMID: 19636450]
[23]
Birch, A.J. Biosynthesis of polyketides and related compounds. Science, 1967, 156(3772), 202-206.
[http://dx.doi.org/10.1126/science.156.3772.202] [PMID: 6021039]
[24]
Russo, D.; Milella, L. Analysis of meroterpenoids. Recent Adv. Nat. Prod. Anal., 2020, 501, 477-501.
[http://dx.doi.org/10.1016/B978-0-12-816455-6.00014-7]
[25]
Mehta, G.; Nayak, U.R.; Dev, S. Bakuchiol, a novel monoterpenoid. Tetrahedron Lett., 1966, 7(38), 4561-4567.
[http://dx.doi.org/10.1016/S0040-4039(00)70078-5]
[26]
Krenisky, J.M.; Luo, J.; Reed, M.J.; Carney, J.R. Isolation and antihyperglycemic activity of bakuchiol from Otholobium pubescens (Fabaceae), a Peruvian medicinal plant used for the treatment of diabetes. Biol. Pharm. Bull., 1999, 22(10), 1137-1140.
[http://dx.doi.org/10.1248/bpb.22.1137] [PMID: 10549873]
[27]
Hsu, P.J.; Miller, J.S.; Berger, J.M. Bakuchiol, an antibacterial component of Psoralidium tenuiflorum. Nat. Prod. Res., 2009, 23(8), 781-788.
[http://dx.doi.org/10.1080/14786410902840158] [PMID: 19418361]
[28]
Labbe, C.; Faini, F.; Coll, J.; Conolly, J.D. Bakuchiol derivatives from the seeds of Psoralea glandulosa. Phytochemistry, 1996, 42(5), 1299-1303.
[http://dx.doi.org/10.1016/0031-9422(96)00144-6]
[29]
Choi, S.Y.; Lee, S.; Choi, W.H.; Lee, Y.; Jo, Y.O.; Ha, T.Y. Isolation and anti-inflammatory activity of Bakuchiol from Ulmus davidiana var. japonica. J. Med. Food, 2010, 13(4), 1019-1023.
[http://dx.doi.org/10.1089/jmf.2009.1207] [PMID: 20553183]
[30]
Zuo, G.; Wang, Z.; Quispe, Y.N.G.; Hwang, S.H.; Kim, H.Y.; Kang, B.G.; Lim, S.S. Target guided isolation of potential tyrosinase inhibitors from Otholobium pubescens (Poir.) JW Grimes by ultrafiltration, high-speed countercurrent chromatography and preparative HPLC. Ind. Crops Prod., 2019, 134, 195-205.
[http://dx.doi.org/10.1016/j.indcrop.2019.03.045]
[31]
Wu, C.Z.; Liu, D.C.; Guo, X.; Dai, Y.; Ma, T.; Li, H.M.; Huo, Q. Synthesis and evaluation of bakuchiol derivatives as potential anticancer agents. Molecules, 2018, 23(3), 515.
[http://dx.doi.org/10.3390/molecules23030515] [PMID: 29495380]
[32]
Li, W.D.; Yan, C.P.; Wu, Y.; Weng, Z.B.; Yin, F.Z.; Yang, G.M.; Cai, B.C.; Chen, Z.P. Osteoblasts proliferation and differentiation stimulating activities of the main components of Fructus Psoraleae corylifoliae. Phytomedicine, 2014, 21(4), 400-405.
[http://dx.doi.org/10.1016/j.phymed.2013.09.015] [PMID: 24220018]
[33]
Choi, Y.H.; Yon, G.H.; Hong, K.S.; Yoo, D.S.; Choi, C.W.; Park, W.K.; Kong, J.Y.; Kim, Y.S.; Ryu, S.Y. In vitro BACE-1 inhibitory phenolic components from the seeds of Psoralea corylifolia. Planta Med., 2008, 74(11), 1405-1408.
[http://dx.doi.org/10.1055/s-2008-1081301] [PMID: 18666047]
[34]
Zhao, G.; Zang, S.Y.; Zheng, X.W.; Zhang, X.H.; Guo, L.H. Bakuchiol analogs inhibit monoamine transporters and regulate monoaminergic functions. Biochem. Pharmacol., 2008, 75(9), 1835-1847.
[http://dx.doi.org/10.1016/j.bcp.2008.01.014] [PMID: 18329002]
[35]
Rao, A.P.; Bhalla, V.K.; Nayak, U.R.; Dev, S. Meroterpenoids-II: Psoralea corylifoliaLinn.-2. Absolute configuration of (+)-bakuchiol. Tetrahedron, 1973, 29(8), 1127-1130.
[http://dx.doi.org/10.1016/0040-4020(73)80072-9]
[36]
Damodaran, N.P.; Dev, S. Synthesis of (±)-bakuchiol methyl ether. Tetrahedron Lett., 1967, 30(30), 2897-2898.
[http://dx.doi.org/10.1016/S0040-4039(00)90883-9]
[37]
Carnduff, J.; Miller, J.A. The synthesis of (±)-bakuchiol. Chem. Commun., 1967, 12(12), 606-607.
[http://dx.doi.org/10.1039/C1967000606B]
[38]
Takano, S.; Shimazaki, Y.; Ogaswara, K. Enantiocontrolled synthesis of natural (+)-bakuchiol. Tetrahedron Lett., 1990, 31(23), 3325-3326.
[http://dx.doi.org/10.1016/S0040-4039(00)89055-3]
[39]
Araki, S.; Bustugan, Y. Short synthesis of (±)-bakuchiol via a geranylindium reagent. J. Chem. Soc., 1991, 2395-2397.
[40]
Sakakiyama, S.; Yamamoto, K.; Asaoka, M. A new synthesis of (+)-bakuchiol. Nat. Prod. Lett., 1999, 14(1), 1-4.
[http://dx.doi.org/10.1080/10575639908045426]
[41]
Du, X.L.; Chen, H.L.; Feng, H.J.; Li, Y.C. Stereoselective total synthesis of natural (s)‐bakuchiol and its enantiomer. Helv. Chim. Acta, 2008, 91(2), 371-378.
[http://dx.doi.org/10.1002/hlca.200890041]
[42]
Esumi, T.; Shimizu, H.; Kashiyama, A.; Sasaki, C.; Toyota, M.; Fukuyama, Y. Efficient construction of a chiral all-carbon quaternary center by asymmetric 1, 4-addition and its application to total synthesis of (+)-bakuchiol. Tetrahedron Lett., 2008, 49(48), 6846-6849.
[http://dx.doi.org/10.1016/j.tetlet.2008.09.106]
[43]
Bequette, J.P.; Jungong, C.S.; Novikov, A.V. Enantioselective synthesis of Bakuchiol using diazosulfonate C-H insertion to install the quaternary center. Tetrahedron Lett., 2009, 50(50), 6963-6964.
[http://dx.doi.org/10.1016/j.tetlet.2009.09.147] [PMID: 20161427]
[44]
Gao, F.; McGrath, K.P.; Lee, Y.; Hoveyda, A.H. Synthesis of quaternary carbon stereogenic centers through enantioselective Cu-catalyzed allylic substitutions with vinylaluminum reagents. J. Am. Chem. Soc., 2010, 132(40), 14315-14320.
[http://dx.doi.org/10.1021/ja106829k] [PMID: 20860365]
[45]
Takao, K.; Sakamoto, S.; Touati, M.A.; Kusakawa, Y.; Tadano, K. Asymmetric construction of all-carbon quaternary stereocenters by chiral-auxiliary-mediated Claisen rearrangement and total synthesis of (+)-bakuchiol. Molecules, 2012, 17(11), 13330-13344.
[http://dx.doi.org/10.3390/molecules171113330] [PMID: 23138536]
[46]
Xu, Q.Q.; Zhao, Q.; Shen, G-S.; Yang, X.C.; Shi, Q.Y.; Lei, X. A facile asymmetric synthesis of Δ3-2-Hydroxybakuchiol, Bakuchiol and ent-Bakuchiol. Tetrahedron, 2013, 69(50), 10739-10746.
[http://dx.doi.org/10.1016/j.tet.2013.10.064]
[47]
Esumi, T.; Yamamoto, C.; Fukuyama, Y. A short synthesis of (+)-bakuchiol. Synlett, 2013, 24(14), 1845-1847.
[http://dx.doi.org/10.1055/s-0033-1338968]
[48]
Huang, M.Y.; Chen, L.; Li, R.; Jia, X.; Hong, R. Synthesis of (±)‐ Bakuchiol via a pot‐economy approach. Chin. J. Chem., 2014, 32(8), 715-720.
[http://dx.doi.org/10.1002/cjoc.201400160]
[49]
Chakrabarty, S.; Takacs, J.M. Synthesis of chiral tertiary boronic esters: Phosphonate-directed catalytic asymmetric hydroboration of trisubstituted alkenes. J. Am. Chem. Soc., 2017, 139(17), 6066-6069.
[http://dx.doi.org/10.1021/jacs.7b02324] [PMID: 28414243]
[50]
Murali, B.; Amit, A.; Anand, M.S.; Venkataraman, B.V. An HPLC method for simultaneous estimation of psoralen, bakuchicin and bakuchiol in Psoralea corylifolia. J. Nat. Rem., 2002, 2, 76-80.
[51]
Chen, Q.; Li, Y.; Chen, Z. Separation, identification, and quantification of active constituents in Fructus Psoraleae by high-performance liquid chromatography with UV, ion trap mass spectrometry, and electrochemical detection. J. Pharm. Anal., 2012, 2(2), 143-151.
[http://dx.doi.org/10.1016/j.jpha.2011.11.005] [PMID: 29403734]
[52]
Chen, Y.; Xiang, Q.; Chen, Z. Simultaneous and highly sensitive quantification of five bioactive components in Fructus Psoraleae and in rat plasma by HPLC with fluorescence detection. Anal. Methods, 2014, 6(1), 269-275.
[http://dx.doi.org/10.1039/C3AY41226A]
[53]
Jeong, M.; Hong, T.; Lee, K.; Hwangbo, H.; Kim, M.; Ma, W.; Zahn, M. HPLC method for simultaneous quantification of bakuchiol and minor furocoumarins in bakuchiol extract from Psoralea corylifolia. J. AOAC Int., 2015, 98(4), 902-906.
[http://dx.doi.org/10.5740/jaoacint.14-228] [PMID: 26268970]
[54]
Kim, Y. J.; Lim, H. S.; Lee, J.; Jeong, S. J. Quantitative analysis of Psoralea corylifolia Linne and its neuroprotective and antineuroinflammatory effects in HT22 hippocampal cells and BV-2 microglia. Molecules, 2016, 21 1076/1-1076/11
[55]
Zhang, Y.; Chen, Z.; Xu, X.; Zhou, Q.; Liu, X.; Liao, L.; Zhang, Z.; Wang, Z. Rapid separation and simultaneous quantitative determination of 13 constituents in Psoraleae Fructus by a single marker using high-performance liquid chromatography with diode array detection. J. Sep. Sci., 2017, 40(21), 4191-4202.
[http://dx.doi.org/10.1002/jssc.201700482] [PMID: 28869337]
[56]
Luan, L.; Shen, X.; Liu, X.; Wu, Y.; Tan, M. Qualitative analysis of Psoraleae Fructus by HPLC-DAD/TOF-MS fingerprint and quantitative analysis of multiple components by single marker. Biomed. Chromatogr., 2018, 32(2), e4059.
[http://dx.doi.org/10.1002/bmc.4059] [PMID: 28777876]
[57]
Alam, F.; Khan, G.N.; Asad, M.H.H.B. Psoralea corylifoliaL: Ethnobotanical, biological, and chemical aspects: A review. Phytother. Res., 2018, 32(4), 597-615.
[http://dx.doi.org/10.1002/ptr.6006] [PMID: 29243333]
[58]
Ryu, S.Y.; Choi, S.U.; Lee, C.O.; Zee, O.P. Antitumor activity of Psoralea corylifolia. Arch. Pharm. Res., 1992, 15(4), 356-359.
[http://dx.doi.org/10.1007/BF02974112]
[59]
Wu, C.Z.; Hong, S.S.; Cai, X.F.; Dat, N.T.; Nan, J.X.; Hwang, B.Y.; Lee, J.J.; Lee, D. Hypoxia-inducible factor-1 and nuclear factor-kappaB inhibitory meroterpene analogues of bakuchiol, a constituent of the seeds of Psoralea corylifolia. Bioorg. Med. Chem. Lett., 2008, 18(8), 2619-2623.
[http://dx.doi.org/10.1016/j.bmcl.2008.03.028] [PMID: 18359631]
[60]
Chen, Z.; Jin, K.; Gao, L.; Lou, G.; Jin, Y.; Yu, Y.; Lou, Y. Anti-tumor effects of bakuchiol, an analogue of resveratrol, on human lung adenocarcinoma A549 cell line. Eur. J. Pharmacol., 2010, 643(2-3), 170-179.
[http://dx.doi.org/10.1016/j.ejphar.2010.06.025] [PMID: 20599920]
[61]
Lin, J.; Yao, H.J.; Li, R.Y. Bakuchiol inhibits cell proliferation and induces apoptosis and cell cycle arrest in SGC-7901 human gastric cancer cells. J. BUON, 2016, 21(4), 889-894.
[PMID: 27685910]
[62]
Gupta, N.; Sharma, S.; Raina, A.; Dangroo, N.A.; Bhushan, S.; Sangwan, P.L. Synthesis and anti-proliferative evaluation of novel 3, 4-dihydro-2 H-1, 3-oxazine derivatives of bakuchiol. RSC Advances, 2016, 6(108), 106150-106159.
[http://dx.doi.org/10.1039/C6RA23757F]
[63]
Gupta, N.; Sharma, S.; Raina, A.; Bhushan, S.; Malik, F.A.; Sangwan, P.L. Synthesis of novel mannich derivatives of bakuchiol as apoptotic inducer through caspase activation and PARP‐1 cleavage in A549 cells. ChemistrySelect, 2017, 2(18), 5196-5201.
[http://dx.doi.org/10.1002/slct.201700504]
[64]
Bapat, K.; Chintalwar, G.J.; Pandey, U.; Thakur, V.S.; Sarma, H.D.; Samuel, G.; Pillai, M.R.A.; Chattopadhyay, S.; Venkatesh, M. Preparation and in vitro evaluation of radioiodinated bakuchiol as an anti tumor agent. Appl. Radiat. Isot., 2005, 62(3), 389-393.
[http://dx.doi.org/10.1016/j.apradiso.2004.07.007] [PMID: 15607914]
[65]
Park, E.J.; Zhao, Y.Z.; Kim, Y.C.; Sohn, D.H. Bakuchiol-induced caspase-3-dependent apoptosis occurs through c-Jun NH2-terminal kinase-mediated mitochondrial translocation of Bax in rat liver myofibroblasts. Eur. J. Pharmacol., 2007, 559(2-3), 115-123.
[http://dx.doi.org/10.1016/j.ejphar.2007.01.024] [PMID: 17292878]
[66]
Park, M.H.; Kim, J.H.; Chung, Y.H.; Lee, S.H. Bakuchiol sensitizes cancer cells to TRAIL through ROS- and JNK-mediated upregulation of death receptors and downregulation of survival proteins. Biochem. Biophys. Res. Commun., 2016, 473(2), 586-592.
[http://dx.doi.org/10.1016/j.bbrc.2016.03.127] [PMID: 27033605]
[67]
Li, L.; Chen, X.; Liu, C. C.; Lee, L. S.; Man, C.; Cheng, S. H. Phytoestrogen bakuchiol exhibits in vitro and in vivo anti-breast cancer effects by inducing S phase arrest and apoptosis. Front. Pharmacol., 2016, 7 128/1-128/14
[68]
Kim, J.E.; Kim, J.H.; Lee, Y.; Yang, H.; Heo, Y.S.; Bode, A.M.; Lee, K.W.; Dong, Z. Bakuchiol suppresses proliferation of skin cancer cells by directly targeting Hck, Blk, and p38 MAP kinase. Oncotarget, 2016, 7(12), 14616-14627.
[http://dx.doi.org/10.18632/oncotarget.7524] [PMID: 26910280]
[69]
Miao, L.; Yun, X.; Tao, R.; Wang, Y.; Fan, G.; Zhu, Y.; Cai, T.; Zhu, Z.; Yan, C.; Gao, X. Bakuchiol exhibits anti-metastasis activity through NF-κB cross-talk signaling with AR and ERβ in androgen-independent prostate cancer cells PC-3. J. Pharmacol. Sci., 2018, 138(1), 1-8.
[http://dx.doi.org/10.1016/j.jphs.2017.04.004] [PMID: 30236540]
[70]
Lv, L.; Liu, B. Anti-tumor effects of bakuchiol on human gastric carcinoma cell lines are mediated through PI3K/AKT and MAPK signaling pathways. Mol. Med. Rep., 2017, 16(6), 8977-8982.
[http://dx.doi.org/10.3892/mmr.2017.7696]
[71]
Chaudhuri, R.K.; Bojanowski, K. Bakuchiol: A retinol-like functional compound revealed by gene expression profiling and clinically proven to have anti-aging effects. Int. J. Cosmet. Sci., 2014, 36(3), 221-230.
[http://dx.doi.org/10.1111/ics.12117] [PMID: 24471735]
[72]
Lau, K.M.; Wong, J.H.; Wu, Y.O.; Cheng, L.; Wong, C.W.; To, M.H.; Lau, C.P.; Yew, D.T.W.; Leung, P.C.; Fung, K.P.; Hui, M.; Ng, T.B.; Lau, C.B. Anti-dermatophytic activity of bakuchiol: In vitro mechanistic studies and in vivo tinea pedis-inhibiting activity in a guinea pig model. Phytomedicine, 2014, 21(7), 942-945.
[http://dx.doi.org/10.1016/j.phymed.2014.03.005] [PMID: 24703327]
[73]
Ohno, O.; Watabe, T.; Nakamura, K.; Kawagoshi, M.; Uotsu, N.; Chiba, T.; Yamada, M.; Yamaguchi, K.; Yamada, K.; Miyamoto, K.; Uemura, D. Inhibitory effects of bakuchiol, bavachin, and isobavachalcone isolated from Piper longum on melanin production in B16 mouse melanoma cells. Biosci. Biotechnol. Biochem., 2010, 74(7), 1504-1506.
[http://dx.doi.org/10.1271/bbb.100221] [PMID: 20622433]
[74]
Wang, J.V.; Schoenberg, E.; Saedi, N. Bakuchiol as a trendy ingredient in skincare: Recent evidence. Skinmed, 2019, 17(3), 188-189.
[PMID: 31496474]
[75]
Dhaliwal, S.; Rybak, I.; Ellis, S.R.; Notay, M.; Trivedi, M.; Burney, W.; Vaughn, A.R.; Nguyen, M.; Reiter, P.; Bosanac, S.; Yan, H.; Foolad, N.; Sivamani, R.K. Prospective, randomized, double-blind assessment of topical bakuchiol and retinol for facial photoageing. Br. J. Dermatol., 2019, 180(2), 289-296.
[http://dx.doi.org/10.1111/bjd.16918] [PMID: 29947134]
[76]
Identifier: NCT03112863. Available from: www.clinicaltrials.gov
[77]
Goldberg, D.J.; Robinson, D.M.; Granger, C. Clinical evidence of the efficacy and safety of a new 3-in-1 anti-aging topical night serum-in-oil containing melatonin, bakuchiol, and ascorbyl tetraisopalmitate: 103 females treated from 28 to 84 days. J. Cosmet. Dermatol., 2019, 18(3), 806-814.
[http://dx.doi.org/10.1111/jocd.12896] [PMID: 30924254]
[78]
Lev-Tov, H. Bakuchiol may be another natural solution to reverse the course of nature. Br. J. Dermatol., 2019, 180(2), 253-254.
[http://dx.doi.org/10.1111/bjd.17438] [PMID: 30714113]
[79]
Draelos, Z.D.; Gunt, H.; Zeichner, J.; Levy, S. Clinical evaluation of a nature-based bakuchiol anti-aging moisturizer for sensitive skin. J. Drugs Dermatol., 2020, 19(12), 1181-1183.
[http://dx.doi.org/10.36849/JDD.2020.5522] [PMID: 33346506]
[80]
Jafernik, K.; Halina, E.; Ercisli, S.; Szopa, A. Characteristics of bakuchiol-the compound with high biological activity and the main source of its acquisition-Cullen corylifolium (L.) Medik. Nat. Prod. Res., 2020, 1-15.
[PMID: 33185126]
[81]
Zhang, X.; Chang, N.; Zhang, Y.; Ye, M.; Han, Z.; Li, J.; Zhang, J. Bakuchiol protects against acute lung injury in septic mice. Inflammation, 2017, 40(2), 351-359.
[http://dx.doi.org/10.1007/s10753-016-0481-5] [PMID: 27878684]
[82]
Pae, H.O.; Cho, H.; Oh, G.S.; Kim, N.Y.; Song, E.K.; Kim, Y.C.; Yun, Y.G.; Kang, C.L.; Kim, J.D.; Kim, J.M.; Chung, H.T. Bakuchiol from Psoralea corylifolia inhibits the expression of inducible nitric oxide synthase gene via the inactivation of nuclear transcription factor-kappaB in RAW 264.7 macrophages. Int. Immunopharmacol., 2001, 1(9-10), 1849-1855.
[http://dx.doi.org/10.1016/S1567-5769(01)00110-2] [PMID: 11562076]
[83]
Lim, H.S.; Kim, Y.J.; Kim, B.Y.; Jeong, S.J. Bakuchiol suppresses inflammatory responses via the downregulation of the p38 MAPK/ERK signaling pathway. Int. J. Mol. Sci., 2019, 20(14), 3574.
[http://dx.doi.org/10.3390/ijms20143574] [PMID: 31336605]
[84]
Lee, S.W.; Yun, B.R.; Kim, M.H.; Park, C.S.; Lee, W.S.; Oh, H.M.; Rho, M.C. Phenolic compounds isolated from Psoralea corylifolia inhibit IL-6-induced STAT3 activation. Planta Med., 2012, 78(9), 903-906.
[http://dx.doi.org/10.1055/s-0031-1298482] [PMID: 22573369]
[85]
Kumar, A.; Sawhney, G.; Kumar Nagar, R.; Chauhan, N.; Gupta, N.; Kaul, A.; Ahmed, Z.; Sangwan, P.L.; Satheesh Kumar, P.; Yadav, G. Evaluation of the immunomodulatory and anti-inflammatory activity of Bakuchiol using RAW 264.7 macrophage cell lines and in animal models stimulated by lipopolysaccharide (LPS). Int. Immunopharmacol., 2021, 91, 107264.
[http://dx.doi.org/10.1016/j.intimp.2020.107264] [PMID: 33340782]
[86]
Lee, S.J.; Yoo, M.; Go, G.Y.; Kim, D.H.; Choi, H.; Leem, Y.E.; Kim, Y.K.; Seo, D.W.; Ryu, J.H.; Kang, J.S.; Bae, G.U. Bakuchiol augments MyoD activation leading to enhanced myoblast differentiation. Chem. Biol. Interact., 2016, 248, 60-67.
[http://dx.doi.org/10.1016/j.cbi.2016.02.008] [PMID: 26902638]
[87]
Shoji, M.; Arakaki, Y.; Esumi, T.; Kohnomi, S.; Yamamoto, C.; Suzuki, Y.; Takahashi, E.; Konishi, S.; Kido, H.; Kuzuhara, T. Bakuchiol is a phenolic isoprenoid with novel enantiomer-selective anti-influenza A virus activity involving Nrf2 activation. J. Biol. Chem., 2015, 290(46), 28001-28017.
[http://dx.doi.org/10.1074/jbc.M115.669465] [PMID: 26446794]
[88]
Weng, Z.B.; Gao, Q.Q.; Wang, F.; Zhao, G.H.; Yin, F.Z.; Cai, B.C.; Chen, Z.P.; Li, W.D. Positive skeletal effect of two ingredients of Psoralea corylifoliaL. on estrogen deficiency-induced osteoporosis and the possible mechanisms of action. Mol. Cell. Endocrinol., 2015, 417, 103-113.
[http://dx.doi.org/10.1016/j.mce.2015.09.025] [PMID: 26419930]
[89]
Lim, S.H.; Ha, T.Y.; Kim, S.R.; Ahn, J.; Park, H.J.; Kim, S. Ethanol extract of Psoralea corylifolia L. and its main constituent, bakuchiol, reduce bone loss in ovariectomised Sprague-Dawley rats. Br. J. Nutr., 2009, 101(7), 1031-1039.
[http://dx.doi.org/10.1017/S0007114508066750] [PMID: 18801207]
[90]
Kim, K.A.; Shim, S.H.; Ahn, H.R.; Jung, S.H. Protective effects of the compounds isolated from the seed of Psoralea corylifoliaon oxidative stress-induced retinal damage. Toxicol. Appl. Pharmacol., 2013, 269(2), 109-120.
[http://dx.doi.org/10.1016/j.taap.2013.03.017] [PMID: 23545180]
[91]
Park, E.J.; Zhao, Y.Z.; Kim, Y.C.; Sohn, D.H. Protective effect of (S)-bakuchiol from Psoralea corylifolia on rat liver injury in vitro and in vivo. Planta Med., 2005, 71(6), 508-513.
[http://dx.doi.org/10.1055/s-2005-864150] [PMID: 15971120]
[92]
Li, Y.G.; Hou, J.; Li, S.Y.; Lv, X.; Ning, J.; Wang, P.; Liu, Z.M.; Ge, G.B.; Ren, J.Y.; Yang, L. Fructus psoraleae contains natural compounds with potent inhibitory effects towards human carboxylesterase 2. Fitoterapia, 2015, 101, 99-106.
[http://dx.doi.org/10.1016/j.fitote.2015.01.004] [PMID: 25596095]
[93]
Huang, Y.; Liu, X.; Wu, Y.; Li, Y.; Guo, F. Meroterpenes from Psoralea corylifolia against Pyricularia oryzae. Planta Med., 2014, 80(15), 1298-1303.
[http://dx.doi.org/10.1055/s-0034-1382995] [PMID: 25127019]
[94]
Madrid, A.; Espinoza, L.; González, C.; Mellado, M.; Villena, J.; Santander, R.; Silva, V.; Montenegro, I. Antifungal study of the resinous exudate and of meroterpenoids isolated from Psoralea glandulosa (Fabaceae). J. Ethnopharmacol., 2012, 144(3), 809-811.
[http://dx.doi.org/10.1016/j.jep.2012.10.027] [PMID: 23099252]
[95]
Mao, H.; Wang, H.; Ma, S.; Xu, Y.; Zhang, H.; Wang, Y.; Niu, Z.; Fan, G.; Zhu, Y.; Gao, X.M. Bidirectional regulation of bakuchiol, an estrogenic-like compound, on catecholamine secretion. Toxicol. Appl. Pharmacol., 2014, 274(1), 180-189.
[http://dx.doi.org/10.1016/j.taap.2013.11.001] [PMID: 24231057]
[96]
Lim, S.H.; Ha, T.Y.; Ahn, J.; Kim, S. Estrogenic activities of Psoralea corylifolia L. seed extracts and main constituents. Phytomedicine, 2011, 18(5), 425-430.
[http://dx.doi.org/10.1016/j.phymed.2011.02.002] [PMID: 21382704]
[97]
Kim, Y.J.; Lee, H.N.; Park, E.H.; Shim, S.H. Inhibition of human 20S proteasome by compounds from seeds of Psoralea corylifolia. Bull. Korean Chem. Soc., 2009, 30(8), 1867-1869.
[http://dx.doi.org/10.5012/bkcs.2009.30.8.1867]
[98]
Kim, Y.C.; Oh, H.; Kim, B.S.; Kang, T.H.; Ko, E.K.; Han, Y.M.; Kim, B.Y.; Ahn, J.S. In vitro protein tyrosine phosphatase 1B inhibitory phenols from the seeds of Psoralea corylifolia. Planta Med., 2005, 71(1), 87-89.
[http://dx.doi.org/10.1055/s-2005-837759] [PMID: 15678382]
[99]
Katsura, H.; Tsukiyama, R.I.; Suzuki, A.; Kobayashi, M. In vitro antimicrobial activities of bakuchiol against oral microorganisms. Antimicrob. Agents Chemother., 2001, 45(11), 3009-3013.
[http://dx.doi.org/10.1128/AAC.45.11.3009-3013.2001] [PMID: 11600349]
[100]
Sun, N.J.; Woo, S.H.; Cassady, J.M.; Snapka, R.M. DNA polymerase and topoisomerase II inhibitors from Psoralea corylifolia. J. Nat. Prod., 1998, 61(3), 362-366.
[http://dx.doi.org/10.1021/np970488q] [PMID: 9544566]
[101]
Xu, Y.; Gao, X.; Wang, L.; Yang, M.; Xie, R. Bakuchiol ameliorates cerebral ischemia-reperfusion injury by modulating NLRP3 inflammasome and Nrf2 signaling. Respir. Physiol. Neurobiol., 2021, 292, 103707.
[http://dx.doi.org/10.1016/j.resp.2021.103707] [PMID: 34087492]
[102]
Miao, L.; Jiao, C.; Shao, R.; Qi, Y.; Fan, G.; Li, X.; Wang, Y.; Zhu, Y.; Zhang, J.; Gao, X. Bakuchiol suppresses oestrogen/testosterone-induced Benign Prostatic Hyperplasia development through up-regulation of epithelial estrogen receptor β and down-regulation of stromal aromatase. Toxicol. Appl. Pharmacol., 2019, 381, 114637.
[http://dx.doi.org/10.1016/j.taap.2019.114637] [PMID: 31238046]
[103]
Wang, J.; Luo, M.; Shen, J.; Liu, Z.; Chen, Y.; Luo, J.; Zeng, Z.; Deng, D.; Xiao, J. Bakuchiol from Psoralea corylifolia L. Ameliorates acute kidney injury and improves survival in experimental polymicrobial sepsis. Int. Immunopharmacol., 2020, 89(Pt A), 107000.
[http://dx.doi.org/10.1016/j.intimp.2020.107000] [PMID: 33039956]
[104]
Xin, Z.; Wu, X.; Ji, T.; Xu, B.; Han, Y.; Sun, M.; Jiang, S.; Li, T.; Hu, W.; Deng, C.; Yang, Y. Bakuchiol: A newly discovered warrior against organ damage. Pharmacol. Res., 2019, 141, 208-213.
[http://dx.doi.org/10.1016/j.phrs.2019.01.001] [PMID: 30610961]
[105]
Liu, H.; Guo, W.; Guo, H.; Zhao, L.; Yue, L.; Li, X.; Feng, D.; Luo, J.; Wu, X.; Cui, W.; Qu, Y. Bakuchiol attenuates oxidative stress and neuron damage by regulating Trx1/TXNIP and the phosphorylation of AMPK after subarachnoid hemorrhage in mice. Front. Pharmacol., 2020, 11, 712.
[http://dx.doi.org/10.3389/fphar.2020.00712] [PMID: 32499702]
[106]
Xu, K.; Sha, Y.; Wang, S.; Chi, Q.; Liu, Y.; Wang, C.; Yang, L. Effects of Bakuchiol on chondrocyte proliferation via the PI3K-Akt and ERK1/2 pathways mediated by the estrogen receptor for promotion of the regeneration of knee articular cartilage defects. Cell Prolif., 2019, 52(5), e12666.
[http://dx.doi.org/10.1111/cpr.12666] [PMID: 31407423]
[107]
Fahim, A.; Himratul-Aznita, W.H.; Abdul-Rahman, P.S. Allium-sativum and bakuchiol combination: A natural alternative to Chlorhexidine for oral infections? Pak. J. Med. Sci., 2020, 36(2), 271-275.
[PMID: 32063973]
[108]
Chai, L.; Zhou, K.; Wang, S.; Zhang, H.; Fan, N.; Li, J.; Tan, X.; Hu, L.; Fan, X. Psoralen and Bakuchiol ameliorate M-CSF plus RANKL-induced osteoclast differentiation and bone resorption via inhibition of AKT and AP-1 pathways in vitro. Cell. Physiol. Biochem., 2018, 48(5), 2123-2133.
[http://dx.doi.org/10.1159/000492554] [PMID: 30110702]
[109]
Chen, H.; Du, X.; Tang, W.; Zhou, Y.; Zuo, J.; Feng, H.; Li, Y. Synthesis and structure-immunosuppressive activity relationships of bakuchiol and its derivatives. Bioorg. Med. Chem., 2008, 16(5), 2403-2411.
[http://dx.doi.org/10.1016/j.bmc.2007.11.054] [PMID: 18063371]
[110]
Cha, M.R.; Choi, C.W.; Lee, J.Y.; Kim, Y.S.; Yon, G.H.; Choi, S.; Ryu, S.H. Anti-proliferative effect of synthesized bakuchiol analogues on cultured human tumor cell lines. Bull. Korean Chem. Soc., 2012, 33(7), 2378-2380.
[http://dx.doi.org/10.5012/bkcs.2012.33.7.2378]
[111]
Majeed, R.; Reddy, M.V.; Chinthakindi, P.K.; Sangwan, P.L.; Hamid, A.; Chashoo, G.; Saxena, A.K.; Koul, S. Bakuchiol derivatives as novel and potent cytotoxic agents: A report. Eur. J. Med. Chem., 2012, 49, 55-67.
[http://dx.doi.org/10.1016/j.ejmech.2011.12.018] [PMID: 22245048]
[112]
Gautam, L.N.; Ling, T.; Lang, W.; Rivas, F. Anti-proliferative evaluation of monoterpene derivatives against leukemia. Eur. J. Med. Chem., 2016, 113, 75-80.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.034] [PMID: 26922230]
[113]
Reddy, M.V.; Thota, N.; Sangwan, P.L.; Malhotra, P.; Ali, F.; Khan, I.A.; Chimni, S.S.; Koul, S. Novel bisstyryl derivatives of bakuchiol: Targeting oral cavity pathogens. Eur. J. Med. Chem., 2010, 45(7), 3125-3134.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.049] [PMID: 20427099]
[114]
Li, H.; Liu, J.; Liu, C.F.; Li, H.; Luo, J.; Fang, S.; Chen, Y.; Zhong, R.; Liu, S.; Lin, S. Design, synthesis, and biological evaluation of membrane-active bakuchiol derivatives as effective broad-spectrum antibacterial agents. J. Med. Chem., 2021, 64(9), 5603-5619.
[http://dx.doi.org/10.1021/acs.jmedchem.0c02059] [PMID: 33909443]
[115]
Manohar, B.; Divakar, S.; Sankar, K.U. Amyloglucosidase catalyzed syntheses of bakuchiol glycosides in supercritical carbon dioxide. Bull. Korean Chem. Soc., 2009, 30(8), 1760-1766.
[http://dx.doi.org/10.5012/bkcs.2009.30.8.1760]
[116]
Banerji, A.; Chintalwar, G.J. Biosynthesis of bakuchiol, a meroterpene from Psoralea corylifolia. Phytochemistry, 1983, 22(9), 1945-1947.
[http://dx.doi.org/10.1016/0031-9422(83)80019-3]
[117]
Banerji, A.; Chintalwar, G.J. Biosynthesis of bakuchiol from cinnamic and p-coumaric acids. Phytochemistry, 1984, 23(8), 1605-1606.
[http://dx.doi.org/10.1016/S0031-9422(00)83449-4]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy