Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

Serine Racemase Expression Differentiates Aging from Alzheimer’s Brain

Author(s): Shengzhou Wu*, Jing Zhou, He Zhang and Steven W. Barger*

Volume 19, Issue 7, 2022

Published on: 07 September, 2022

Page: [494 - 502] Pages: 9

DOI: 10.2174/1567205019666220805105106

Price: $65

Abstract

Aging is an inevitable process characterized by progressive loss of physiological integrity and increased susceptibility to cancer, diabetes, cardiovascular, and neurodegenerative diseases; aging is the primary risk factor for Alzheimer’s disease (AD), the most common cause of dementia. AD is characterized by brain pathology, including extracellular deposition of amyloid aggregation and intracellular accumulation of neurofibrillary tangles composed of hyperphosphorylated tau protein. In addition, losses of synapses and a wide range of neurons are pivotal pathologies in the AD brain. Accumulating evidence demonstrates hypoactivation of hippocampal neural networks in the aging brain, whereas AD-related mild cognitive impairment (AD-MCI) begins with hyperactivation, followed by a diminution of hippocampal activity as AD develops. The biphasic trends of the activity of the hippocampal neural network are consistent with the alteration of N-methyl-D-aspartate receptor (NMDA-R) activity from aging to prodromal (AD-MCI) to mid-/late stage AD. D-serine, a product of racemization catalyzed by serine racemase (SR), is an important co-agonist of the NMDA-R which is involved in synaptic events including neurotransmission, synaptogenesis, long-term potentiation (LTP), development, and excitotoxicity. SR and D-serine are decreased in the hippocampus of the aging brain, correlating with impairment of cognitive function. By contrast, SR is increased in AD brain, which is associated with a greater degree of cognitive dysfunction. Emerging studies suggest that D-serine levels in the brain or in cerebral spinal fluid from AD patients are higher than in age-matched controls, but the results are inconsistent. Very recently, serum D-serine levels in AD were reported to correlate with sex and clinical dementia rating (CDR) stage. This review will discuss alterations of NMDA-R and SR in aging and AD brain, and the mechanisms underlying the differential regulation of SR will be probed. Collectively, we propose that SR may be a molecular switch that distinguishes the effects of aging from those of AD on the brain.

Keywords: Hippocampus, neural network, mild cognitive impairment, long-term potentiation, neurotransmission, synaptic plasticity, ERK, CaMKIV.

[1]
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153(6): 1194-217.
[http://dx.doi.org/10.1016/j.cell.2013.05.039] [PMID: 23746838]
[2]
Franceschi C, Zaikin A, Gordleeva S, et al. Inflammaging 2018: An update and a model. Semin Immunol 2018; 40: 1-5.
[http://dx.doi.org/10.1016/j.smim.2018.10.008] [PMID: 30392751]
[3]
Paroni G, Bisceglia P, Seripa D. Understanding the amyloid hypothesis in Alzheimer’s disease. J Alzheimers Dis 2019; 68(2): 493-510.
[http://dx.doi.org/10.3233/JAD-180802] [PMID: 30883346]
[4]
Nelson PT, Alafuzoff I, Bigio EH, et al. Correlation of Alzheimer’s disease neuropathologic changes with cognitive status: A review of the literature. J Neuropathol Exp Neurol 2012; 71(5): 362-81.
[http://dx.doi.org/10.1097/NEN.0b013e31825018f7] [PMID: 22487856]
[5]
Roberson ED, Scearce-Levie K, Palop JJ, et al. Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 2007; 316(5825): 750-4.
[http://dx.doi.org/10.1126/science.1141736] [PMID: 17478722]
[6]
Hardy JA, Higgins GA. Alzheimer’s disease: The amyloid cascade hypothesis. Science 1992; 256(5054): 184-5.
[http://dx.doi.org/10.1126/science.1566067] [PMID: 1566067]
[7]
Mattson MP. Pathways towards and away from Alzheimer’s disease. Nature 2004; 430(7000): 631-9.
[http://dx.doi.org/10.1038/nature02621] [PMID: 15295589]
[8]
Heneka MT, Carson MJ, Khoury JE, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 2015; 14(4): 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[9]
Mothet JP, Rouaud E, Sinet PM, et al. A critical role for the glial-derived neuromodulator D-serine in the age-related deficits of cellular mechanisms of learning and memory. Aging Cell 2006; 5(3): 267-74.
[http://dx.doi.org/10.1111/j.1474-9726.2006.00216.x] [PMID: 16842499]
[10]
Turpin FR, Potier B, Dulong JR, et al. Reduced serine racemase expression contributes to age-related deficits in hippocampal cognitive function. Neurobiol Aging 2011; 32(8): 1495-504.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.09.001] [PMID: 19800712]
[11]
Dun Y, Duplantier J, Roon P, Martin PM, Ganapathy V, Smith SB. Serine racemase expression and D-serine content are developmentally regulated in neuronal ganglion cells of the retina. J Neurochem 2008; 104(4): 970-8.
[http://dx.doi.org/10.1111/j.1471-4159.2007.05015.x] [PMID: 17976164]
[12]
Zhang H, Kuang XL, Chang Y, Lu J, Jiang H, Wu S. Reduced serine racemase expression in aging rat cerebellum is associated with oxidative DNA stress and hypermethylation in the promoter. Brain Res 2015; 1629: 221-30.
[http://dx.doi.org/10.1016/j.brainres.2015.10.034] [PMID: 26505919]
[13]
Wu SZ, Bodles AM, Porter MM, Griffin WST, Basile AS, Barger SW. Induction of serine racemase expression and D-serine release from microglia by amyloid beta-peptide. J Neuroinflammation 2004; 1(1): 2.
[http://dx.doi.org/10.1186/1742-2094-1-2] [PMID: 15285800]
[14]
Madeira C, Lourenco MV, Vargas-Lopes C, et al. D-serine levels in Alzheimer’s disease: Implications for novel biomarker development. Transl Psychiatry 2015; 5(5): e561.
[http://dx.doi.org/10.1038/tp.2015.52] [PMID: 25942042]
[15]
Balu DT, Pantazopoulos H, Huang CCY, et al. Neurotoxic astrocytes express the D-serine synthesizing enzyme, serine racemase, in Alzheimer’s disease. Neurobiol Dis 2019; 130: 104511.
[http://dx.doi.org/10.1016/j.nbd.2019.104511] [PMID: 31212068]
[16]
Piubelli L, Pollegioni L, Rabattoni V, et al. Serum D-serine levels are altered in early phases of Alzheimer’s disease: Towards a precocious biomarker. Transl Psychiatry 2021; 11(1): 77.
[http://dx.doi.org/10.1038/s41398-021-01202-3] [PMID: 33500383]
[17]
Mothet JP, Parent AT, Wolosker H, et al. D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc Natl Acad Sci USA 2000; 97(9): 4926-31.
[http://dx.doi.org/10.1073/pnas.97.9.4926] [PMID: 10781100]
[18]
Wolosker H, Blackshaw S, Snyder SH. Serine racemase: A glial enzyme synthesizing D-serine to regulate glutamate- N-methyl-D-aspartate neurotransmission. Proc Natl Acad Sci USA 1999; 96(23): 13409-14.
[http://dx.doi.org/10.1073/pnas.96.23.13409] [PMID: 10557334]
[19]
Liu J, Chang L, Song Y, Li H, Wu Y. The role of NMDA receptors in Alzheimer’s disease. Front Neurosci 2019; 13: 43.
[http://dx.doi.org/10.3389/fnins.2019.00043] [PMID: 30800052]
[20]
Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: Implications for neurodegenerative disorders. Nat Rev Neurosci 2010; 11(10): 682-96.
[http://dx.doi.org/10.1038/nrn2911] [PMID: 20842175]
[21]
Hardingham GE, Fukunaga Y, Bading H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 2002; 5(5): 405-14.
[http://dx.doi.org/10.1038/nn835] [PMID: 11953750]
[22]
Dieterich DC, Karpova A, Mikhaylova M, et al. Caldendrin-Jacob: A protein liaison that couples NMDA receptor signalling to the nucleus. PLoS Biol 2008; 6(2): e34.
[http://dx.doi.org/10.1371/journal.pbio.0060034] [PMID: 18303947]
[23]
Dick O, Bading H. Synaptic activity and nuclear calcium signaling protect hippocampal neurons from death signal-associated nuclear translocation of FoxO3a induced by extrasynaptic N-methyl-D-aspartate receptors. J Biol Chem 2010; 285(25): 19354-61.
[http://dx.doi.org/10.1074/jbc.M110.127654] [PMID: 20404335]
[24]
Xu J, Kurup P, Zhang Y, et al. Extrasynaptic NMDA receptors couple preferentially to excitotoxicity via calpain-mediated cleavage of STEP. J Neurosci 2009; 29(29): 9330-43.
[http://dx.doi.org/10.1523/JNEUROSCI.2212-09.2009] [PMID: 19625523]
[25]
Dickerson BC, Salat DH, Greve DN, et al. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 2005; 65(3): 404-11.
[http://dx.doi.org/10.1212/01.wnl.0000171450.97464.49] [PMID: 16087905]
[26]
Elman JA, Oh H, Madison CM, et al. Neural compensation in older people with brain amyloid-β deposition. Nat Neurosci 2014; 17(10): 1316-8.
[http://dx.doi.org/10.1038/nn.3806] [PMID: 25217827]
[27]
Klink K, Jaun U, Federspiel A, et al. Targeting hippocampal hyperactivity with real-time fMRI neurofeedback: Protocol of a single-blind randomized controlled trial in mild cognitive impairment. BMC Psychiatry 2021; 21(1): 87.
[http://dx.doi.org/10.1186/s12888-021-03091-8] [PMID: 33563242]
[28]
Sosulina L, Mittag M, Geis HR, et al. Hippocampal hyperactivity in a rat model of Alzheimer’s disease. J Neurochem 2021; 157(6): 2128-44.
[http://dx.doi.org/10.1111/jnc.15323] [PMID: 33583024]
[29]
Gonzales RA, Brown LM, Jones TW, Trent RD, Westbrook SL, Leslie SW. N-methyl-D-aspartate mediated responses decrease with age in Fischer 344 rat brain. Neurobiol Aging 1991; 12(3): 219-25.
[http://dx.doi.org/10.1016/0197-4580(91)90100-X] [PMID: 1678878]
[30]
Wenk GL, Walker LC, Price DL, Cork LC. Loss of NMDA, but not GABA-A, binding in the brains of aged rats and monkeys. Neurobiol Aging 1991; 12(2): 93-8.
[http://dx.doi.org/10.1016/0197-4580(91)90047-N] [PMID: 1646968]
[31]
Olney JW, Wozniak DF, Farber NB. Excitotoxic neurodegeneration in Alzheimer disease. New hypothesis and new therapeutic strategies. Arch Neurol 1997; 54(10): 1234-40.
[http://dx.doi.org/10.1001/archneur.1997.00550220042012] [PMID: 9341569]
[32]
Masliah E, Hansen L, Alford M, Deteresa R, Mallory M. Deficient glutamate tranport is associated with neurodegeneration in Alzheimer’s disease. Ann Neurol 1996; 40(5): 759-66.
[http://dx.doi.org/10.1002/ana.410400512] [PMID: 8957017]
[33]
Um JW, Nygaard HB, Heiss JK, et al. Alzheimer amyloid-β oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nat Neurosci 2012; 15(9): 1227-35.
[http://dx.doi.org/10.1038/nn.3178] [PMID: 22820466]
[34]
Butterfield DA, Pocernich CB. The glutamatergic system and Alzheimer’s disease: Therapeutic implications. CNS Drugs 2003; 17(9): 641-52.
[http://dx.doi.org/10.2165/00023210-200317090-00004] [PMID: 12828500]
[35]
Snyder EM, Nong Y, Almeida CG, et al. Regulation of NMDA receptor trafficking by amyloid-&#946. Nat Neurosci 2005; 8(8): 1051-8.
[http://dx.doi.org/10.1038/nn1503] [PMID: 16025111]
[36]
Friedman D, Honig LS, Scarmeas N. Seizures and epilepsy in Alzheimer’s disease. CNS Neurosci Ther 2012; 18(4): 285-94.
[http://dx.doi.org/10.1111/j.1755-5949.2011.00251.x] [PMID: 22070283]
[37]
Palop JJ, Mucke L. Epilepsy and cognitive impairments in Alzheimer disease. Arch Neurol 2009; 66(4): 435-40.
[http://dx.doi.org/10.1001/archneurol.2009.15] [PMID: 19204149]
[38]
Rice AC, DeLorenzo RJ. NMDA receptor activation during status epilepticus is required for the development of epilepsy. Brain Res 1998; 782(1-2): 240-7.
[http://dx.doi.org/10.1016/S0006-8993(97)01285-7] [PMID: 9519269]
[39]
Ryu HJ, Kim JE, Yeo SI, et al. Potential roles of D-serine and serine racemase in experimental temporal lobe epilepsy. J Neurosci Res 2010; 88(11): 2469-82.
[http://dx.doi.org/10.1002/jnr.22415] [PMID: 20623543]
[40]
Treiman DM. GABAergic mechanisms in epilepsy. Epilepsia 2001; 42 (Suppl. 3): 8-12.
[http://dx.doi.org/10.1046/j.1528-1157.2001.042suppl.3008.x] [PMID: 11520315]
[41]
Barañano DE, Ferris CD, Snyder SH. Atypical neural messengers. Trends Neurosci 2001; 24(2): 99-106.
[http://dx.doi.org/10.1016/S0166-2236(00)01716-1] [PMID: 11164940]
[42]
Schell MJ, Molliver ME, Snyder SH. D-serine, an endogenous synaptic modulator: Localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci USA 1995; 92(9): 3948-52.
[http://dx.doi.org/10.1073/pnas.92.9.3948] [PMID: 7732010]
[43]
Schell MJ, Brady RO Jr, Molliver ME, Snyder SH. D-serine as a neuromodulator: Regional and developmental localizations in rat brain glia resemble NMDA receptors. J Neurosci 1997; 17(5): 1604-15.
[http://dx.doi.org/10.1523/JNEUROSCI.17-05-01604.1997] [PMID: 9030620]
[44]
Stevens ER, Esguerra M, Kim PM, et al. D-serine and serine racemase are present in the vertebrate retina and contribute to the physiological activation of NMDA receptors. Proc Natl Acad Sci USA 2003; 100(11): 6789-94.
[http://dx.doi.org/10.1073/pnas.1237052100] [PMID: 12750462]
[45]
Papouin T, Ladépêche L, Ruel J, et al. Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell 2012; 150(3): 633-46.
[http://dx.doi.org/10.1016/j.cell.2012.06.029] [PMID: 22863013]
[46]
Inoue R, Hashimoto K, Harai T, Mori H. NMDA- and beta-amyloid1-42-induced neurotoxicity is attenuated in serine racemase knock-out mice. J Neurosci 2008; 28(53): 14486-91.
[http://dx.doi.org/10.1523/JNEUROSCI.5034-08.2008] [PMID: 19118183]
[47]
Jiang H, Du J, Song J, et al. Loss-of-function mutation of serine racemase attenuates retinal ganglion cell loss in diabetic mice. Exp Eye Res 2018; 175: 90-7.
[http://dx.doi.org/10.1016/j.exer.2018.06.017] [PMID: 29913163]
[48]
Sasabe J, Chiba T, Yamada M, et al. D-serine is a key determinant of glutamate toxicity in amyotrophic lateral sclerosis. EMBO J 2007; 26(18): 4149-59.
[http://dx.doi.org/10.1038/sj.emboj.7601840] [PMID: 17762863]
[49]
Zhang H, Song L, Chang Y, et al. Potential deficit from decreased cerebellar granule cell migration in serine racemase-deficient mice is reversed by increased expression of GluN2B and elevated levels of NMDAR agonists. Mol Cell Neurosci 2017; 85: 119-26.
[http://dx.doi.org/10.1016/j.mcn.2017.09.005] [PMID: 28939329]
[50]
Thompson M, Marecki JC, Marinesco S, et al. Paradoxical roles of serine racemase and D-serine in the G93A mSOD1 mouse model of amyotrophic lateral sclerosis. J Neurochem 2012; 120(4): 598-610.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07601.x] [PMID: 22117694]
[51]
Jiang H, Fang J, Wu B, et al. Overexpression of serine racemase in retina and overproduction of D-serine in eyes of streptozotocin-induced diabetic retinopathy. J Neuroinflammation 2011; 8(1): 119.
[http://dx.doi.org/10.1186/1742-2094-8-119] [PMID: 21939517]
[52]
Jiang H, Zhang H, Jiang X, Wu S. Overexpression of D-amino acid oxidase prevents retinal neurovascular pathologies in diabetic rats. Diabetologia 2021; 64(3): 693-706.
[http://dx.doi.org/10.1007/s00125-020-05333-y] [PMID: 33319325]
[53]
Labrie V, Fukumura R, Rastogi A, et al. Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model. Hum Mol Genet 2009; 18(17): 3227-43.
[http://dx.doi.org/10.1093/hmg/ddp261] [PMID: 19483194]
[54]
Ma TM, Abazyan S, Abazyan B, et al. Pathogenic disruption of DISC1-serine racemase binding elicits schizophrenia-like behavior via D-serine depletion. Mol Psychiatry 2013; 18(5): 557-67.
[http://dx.doi.org/10.1038/mp.2012.97] [PMID: 22801410]
[55]
Hashimoto A, Nishikawa T, Hayashi T, et al. The presence of free D-serine in rat brain. FEBS Lett 1992; 296(1): 33-6.
[http://dx.doi.org/10.1016/0014-5793(92)80397-Y] [PMID: 1730289]
[56]
Yang JH, Wada A, Yoshida K, et al. Brain-specific Phgdh deletion reveals a pivotal role for L-serine biosynthesis in controlling the level of D-serine, an N-methyl-D-aspartate receptor co-agonist, in adult brain. J Biol Chem 2010; 285(53): 41380-90.
[http://dx.doi.org/10.1074/jbc.M110.187443] [PMID: 20966073]
[57]
Foltyn VN, Bendikov I, De Miranda J, et al. Serine racemase modulates intracellular D-serine levels through an alpha,beta-elimination activity. J Biol Chem 2005; 280(3): 1754-63.
[http://dx.doi.org/10.1074/jbc.M405726200] [PMID: 15536068]
[58]
Ohshima K, Nojima S, Tahara S, et al. Serine racemase enhances growth of colorectal cancer by producing pyruvate from serine. Nat Metab 2020; 2(1): 81-96.
[http://dx.doi.org/10.1038/s42255-019-0156-2] [PMID: 32694681]
[59]
Ehmsen JT, Ma TM, Sason H, et al. D-serine in glia and neurons derives from 3-phosphoglycerate dehydrogenase. J Neurosci 2013; 33(30): 12464-9.
[http://dx.doi.org/10.1523/JNEUROSCI.4914-12.2013] [PMID: 23884950]
[60]
Verrall L, Walker M, Rawlings N, et al. D-amino acid oxidase and serine racemase in human brain: Normal distribution and altered expression in schizophrenia. Eur J Neurosci 2007; 26(6): 1657-69.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05769.x] [PMID: 17880399]
[61]
Martineau M, Parpura V, Mothet JP. Cell-type specific mechanisms of D-serine uptake and release in the brain. Front Synaptic Neurosci 2014; 6: 12.
[http://dx.doi.org/10.3389/fnsyn.2014.00012] [PMID: 24910611]
[62]
Wang LZ, Zhu XZ. Spatiotemporal relationships among D-serine, serine racemase, and D-amino acid oxidase during mouse postnatal development. Acta Pharmacol Sin 2003; 24(10): 965-74.
[PMID: 14531937]
[63]
Kartvelishvily E, Shleper M, Balan L, Dumin E, Wolosker H. Neuron-derived D-serine release provides a novel means to activate N-methyl-D-aspartate receptors. J Biol Chem 2006; 281(20): 14151-62.
[http://dx.doi.org/10.1074/jbc.M512927200] [PMID: 16551623]
[64]
Williams SM, Diaz CM, Macnab LT, Sullivan RKP, Pow DV. Immunocytochemical analysis of D-serine distribution in the mammalian brain reveals novel anatomical compartmentalizations in glia and neurons. Glia 2006; 53(4): 401-11.
[http://dx.doi.org/10.1002/glia.20300] [PMID: 16342169]
[65]
Miya K, Inoue R, Takata Y, et al. Serine racemase is predominantly localized in neurons in mouse brain. J Comp Neurol 2008; 510(6): 641-54.
[http://dx.doi.org/10.1002/cne.21822] [PMID: 18698599]
[66]
Jiang H, Wu M, Liu Y, et al. Serine racemase deficiency attenuates choroidal neovascularization and reduces nitric oxide and VEGF levels by retinal pigment epithelial cells. J Neurochem 2017; 143(3): 375-88.
[http://dx.doi.org/10.1111/jnc.14214] [PMID: 28892569]
[67]
Zhang H, Lu J, Wu S. Sp4 controls constitutive expression of neuronal serine racemase and NF-E2-related factor-2 mediates its induction by valproic acid. Biochim Biophys Acta Gene Regul Mech 2020; 1863(9): 194597.
[http://dx.doi.org/10.1016/j.bbagrm.2020.194597] [PMID: 32603878]
[68]
Mao X, Yang SH, Simpkins JW, Barger SW. Glutamate receptor activation evokes calpain-mediated degradation of Sp3 and Sp4, the prominent Sp-family transcription factors in neurons. J Neurochem 2007; 100(5): 1300-14.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04297.x] [PMID: 17316402]
[69]
Shengzhou WU, Basile AS, Barger SW. Induction of serine racemase expression and D-serine release from microglia by secreted amyloid precursor protein (sAPP). Curr Alzheimer Res 2007; 4(3): 243-51.
[http://dx.doi.org/10.2174/156720507781077241] [PMID: 17627481]
[70]
Yoshihisa Y, Rehman MU, Nakagawa M, et al. Inflammatory cytokine‐mediated induction of serine racemase in atopic dermatitis. J Cell Mol Med 2018; 22(6): 3133-8.
[http://dx.doi.org/10.1111/jcmm.13592] [PMID: 29566294]
[71]
Wu S, Barger SW. Induction of serine racemase by inflammatory stimuli is dependent on AP-1. Ann N Y Acad Sci 2004; 1035(1): 133-46.
[http://dx.doi.org/10.1196/annals.1332.009] [PMID: 15681805]
[72]
Dumin E, Bendikov I, Foltyn VN, et al. Modulation of D-serine levels via ubiquitin-dependent proteasomal degradation of serine racemase. J Biol Chem 2006; 281(29): 20291-302.
[http://dx.doi.org/10.1074/jbc.M601971200] [PMID: 16714286]
[73]
Dong H, O’Brien RJ, Fung ET, Lanahan AA, Worley PF, Huganir RL. GRIP: A synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature 1997; 386(6622): 279-84.
[http://dx.doi.org/10.1038/386279a0] [PMID: 9069286]
[74]
Mao L, Takamiya K, Thomas G, Lin DT, Huganir RL. GRIP1 and 2 regulate activity-dependent AMPA receptor recycling via exocyst complex interactions. Proc Natl Acad Sci USA 2010; 107(44): 19038-43.
[http://dx.doi.org/10.1073/pnas.1013494107] [PMID: 20956289]
[75]
Kulangara K, Kropf M, Glauser L, et al. Phosphorylation of glutamate receptor interacting protein 1 regulates surface expression of glutamate receptors. J Biol Chem 2007; 282(4): 2395-404.
[http://dx.doi.org/10.1074/jbc.M606471200] [PMID: 17121843]
[76]
Kim PM, Aizawa H, Kim PS, et al. Serine racemase: Activation by glutamate neurotransmission via glutamate receptor interacting protein and mediation of neuronal migration. Proc Natl Acad Sci USA 2005; 102(6): 2105-10.
[http://dx.doi.org/10.1073/pnas.0409723102] [PMID: 15684087]
[77]
Xia M, Zhu S, Shevelkin A, Ross CA, Pletnikov M. DISC1, astrocytes and neuronal maturation: A possible mechanistic link with implications for mental disorders. J Neurochem 2016; 138(4): 518-24.
[http://dx.doi.org/10.1111/jnc.13663] [PMID: 27187935]
[78]
Fujii K, Maeda K, Hikida T, et al. Serine racemase binds to PICK1: Potential relevance to schizophrenia. Mol Psychiatry 2006; 11(2): 150-7.
[http://dx.doi.org/10.1038/sj.mp.4001776] [PMID: 16314870]
[79]
Hikida T, Mustafa AK, Maeda K, et al. Modulation of D-serine levels in brains of mice lacking PICK1. Biol Psychiatry 2008; 63(10): 997-1000.
[http://dx.doi.org/10.1016/j.biopsych.2007.09.025] [PMID: 18191108]
[80]
Ma TM, Paul BD, Fu C, et al. Serine racemase regulated by binding to stargazin and PSD-95: Potential N-methyl-D-aspartate-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (NMDA-AMPA) glutamate neurotransmission cross-talk. J Biol Chem 2014; 289(43): 29631-41.
[http://dx.doi.org/10.1074/jbc.M114.571604] [PMID: 25164819]
[81]
Foltyn VN, Zehl M, Dikopoltsev E, Jensen ON, Wolosker H. Phosphorylation of mouse serine racemase regulates D-serine synthesis. FEBS Lett 2010; 584(13): 2937-41.
[http://dx.doi.org/10.1016/j.febslet.2010.05.022] [PMID: 20493854]
[82]
Vargas-Lopes C, Madeira C, Kahn SA, et al. Protein kinase C activity regulates D-serine availability in the brain. J Neurochem 2011; 116(2): 281-90.
[http://dx.doi.org/10.1111/j.1471-4159.2010.07102.x] [PMID: 21070240]
[83]
Balan L, Foltyn VN, Zehl M, et al. Feedback inactivation of D-serine synthesis by NMDA receptor-elicited translocation of serine racemase to the membrane. Proc Natl Acad Sci USA 2009; 106(18): 7589-94.
[http://dx.doi.org/10.1073/pnas.0809442106] [PMID: 19380732]
[84]
Mustafa AK, Rossum DB, Patterson RL, et al. Glutamatergic regulation of serine racemase via reversal of PIP2 inhibition. Proc Natl Acad Sci USA 2009; 106(8): 2921-6.
[http://dx.doi.org/10.1073/pnas.0813105106] [PMID: 19193859]
[85]
Cook SP, Galve-Roperh I, Martínez del Pozo Á, Rodríguez-Crespo I. Direct calcium binding results in activation of brain serine racemase. J Biol Chem 2002; 277(31): 27782-92.
[http://dx.doi.org/10.1074/jbc.M111814200] [PMID: 12021263]
[86]
Wang W, Barger SW. Roles of quaternary structure and cysteine residues in the activity of human serine racemase. BMC Biochem 2011; 12(1): 63.
[http://dx.doi.org/10.1186/1471-2091-12-63] [PMID: 22151352]
[87]
Wang W, Barger SW. Cross-linking of serine racemase dimer by reactive oxygen species and reactive nitrogen species. J Neurosci Res 2012; 90(6): 1218-29.
[http://dx.doi.org/10.1002/jnr.22832] [PMID: 22354542]
[88]
Canu N, Ciotti MT, Pollegioni L. Serine racemase: A key player in apoptosis and necrosis. Front Synaptic Neurosci 2014; 6: 9.
[http://dx.doi.org/10.3389/fnsyn.2014.00009] [PMID: 24795622]
[89]
Smith MA, Mack V, Ebneth A, et al. The structure of mammalian serine racemase: Evidence for conformational changes upon inhibitor binding. J Biol Chem 2010; 285(17): 12873-81.
[http://dx.doi.org/10.1074/jbc.M109.050062] [PMID: 20106978]
[90]
Marchesani F, Gianquinto E, Autiero I, et al. The allosteric interplay between S‐nitrosylation and glycine binding controls the activity of human serine racemase. FEBS J 2021; 288(9): 3034-54.
[http://dx.doi.org/10.1111/febs.15645] [PMID: 33249721]
[91]
Bruno S, Margiotta M, Marchesani F, et al. Magnesium and calcium ions differentially affect human serine racemase activity and modulate its quaternary equilibrium toward a tetrameric form. Biochim Biophys Acta Proteins Proteomics 2017; 1865(4): 381-7.
[http://dx.doi.org/10.1016/j.bbapap.2017.01.001] [PMID: 28089597]
[92]
Beltrán-Castillo S, Triviño JJ, Eugenín J, von Bernhardi R. TGFβ1-Smad3 signaling mediates the formation of a stable serine racemase dimer in microglia. Biochim Biophys Acta Proteins Proteomics 2020; 1868(9): 140447.
[http://dx.doi.org/10.1016/j.bbapap.2020.140447] [PMID: 32442521]
[93]
Mustafa AK, Kumar M, Selvakumar B, et al. Nitric oxide S-nitrosylates serine racemase, mediating feedback inhibition of d-serine formation. Proc Natl Acad Sci USA 2007; 104(8): 2950-5.
[http://dx.doi.org/10.1073/pnas.0611620104] [PMID: 17293453]
[94]
Marchesani F, Bruno S, Paredi G, Raboni S, Campanini B, Mozzarelli A. Human serine racemase is nitrosylated at multiple sites. Biochim Biophys Acta Proteins Proteomics 2018; 1866(7): 813-21.
[http://dx.doi.org/10.1016/j.bbapap.2018.01.009] [PMID: 29410194]
[95]
Conde JR, Streit WJ. Microglia in the aging brain. J Neuropathol Exp Neurol 2006; 65(3): 199-203.
[http://dx.doi.org/10.1097/01.jnen.0000202887.22082.63] [PMID: 16651881]
[96]
Luo XG, Ding JQ, Chen SD. Microglia in the aging brain: Relevance to neurodegeneration. Mol Neurodegener 2010; 5(1): 12.
[http://dx.doi.org/10.1186/1750-1326-5-12] [PMID: 20334662]
[97]
Perez EJ, Tapanes SA, Loris ZB, et al. Enhanced astrocytic d-serine underlies synaptic damage after traumatic brain injury. J Clin Invest 2017; 127(8): 3114-25.
[http://dx.doi.org/10.1172/JCI92300] [PMID: 28714867]
[98]
Chang CH, Kuo HL, Ma WF, Tsai HC. Cerebrospinal fluid and serum D-serine levels in patients with Alzheimer’s disease: A systematic review and meta-analysis. J Clin Med 2020; 9(12): 3840.
[http://dx.doi.org/10.3390/jcm9123840] [PMID: 33256147]
[99]
Lin CH, Yang HT, Chiu CC, Lane HY. Blood levels of D-amino acid oxidase vs. D-amino acids in reflecting cognitive aging. Sci Rep 2017; 7(1): 14849.
[http://dx.doi.org/10.1038/s41598-017-13951-7] [PMID: 29093468]
[100]
Biemans EALM, Verhoeven-Duif NM, Gerrits J, Claassen JAHR, Kuiperij HB, Verbeek MM. CSF D-serine concentrations are similar in Alzheimer’s disease, other dementias, and elderly controls. Neurobiol Aging 2016; 42: 213-6.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.03.017] [PMID: 27143438]
[101]
Nuzzo T, Miroballo M, Casamassa A, et al. Cerebrospinal fluid and serum D-serine concentrations are unaltered across the whole clinical spectrum of Alzheimer’s disease. Biochim Biophys Acta Proteins Proteomics 2020; 1868(12): 140537.
[http://dx.doi.org/10.1016/j.bbapap.2020.140537] [PMID: 32896673]
[102]
Hashimoto K, Fukushima T, Shimizu E, et al. Possible role of D-serine in the pathophysiology of Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28(2): 385-8.
[http://dx.doi.org/10.1016/j.pnpbp.2003.11.009] [PMID: 14751437]
[103]
Le Douce J, Maugard M, Veran J, et al. Impairment of glycolysis-derived D-serine production in astrocytes contributes to cognitive deficits in Alzheimer’s disease. Cell Metab 2020; 31(3): 503-517.e8.
[http://dx.doi.org/10.1016/j.cmet.2020.02.004] [PMID: 32130882]
[104]
Hendrix RD, Ou Y, Davis JE, et al. Alzheimer amyloid-β- peptide disrupts membrane localization of glucose transporter 1 in astrocytes: Implications for glucose levels in brain and blood. Neurobiol Aging 2021; 97: 73-88.
[http://dx.doi.org/10.1016/j.neurobiolaging.2020.10.001] [PMID: 33161213]
[105]
Chen X, Calandrelli R, Girardini J, et al. Sequential increase of PHGDH expression with Alzheimer’s pathology and symptoms. bioRχiv 2022.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy