Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Design, Synthesis, and Biological Evaluation of Quinoxaline Bearing Tetrahydropyridine Derivatives as Anticancer, Antioxidant, and Anti- Tubercular Agents

Author(s): Ganesh Pavale, Poornima Acharya, Nilesh Korgavkar and M. M. V. Ramana*

Volume 18, Issue 6, 2022

Published on: 10 October, 2022

Page: [414 - 424] Pages: 11

DOI: 10.2174/1573409918666220804142753

Price: $65

Abstract

Background: Quinoxaline and Tetrahydropyridine derivatives showed various biological properties. The combination of these two scaffolds may contribute to good biological activity and may give novel and efficacious bioactive candidates.

Objective: The present study aimed to identify bioactive agents with quinoxaline bearing tetrahydropyridine derivatives possessing anticancer, antioxidant, and anti-tubercular agents.

Methods: A series of novel quinoxaline bearing tetrahydropyridine derivatives have been designed and synthesized in good yields. The synthetic protocol involves three-component Povarov reactions of 6-amino quinoxaline, propenyl guaethol, and substituted aldehydes using BF3·OEt2 as catalyst. The newly synthesized molecules were evaluated for their anticancer activity against four cell lines, i.e. A-549, MCF-7, PC-3, and HepG2.

Results: The results from in vitro assay indicated that compound 4a proved to be as potent as the standard drug adriamycin against all cell lines with GI50 values <10 μg/ml. Compounds 4b, 4f, and 4i exhibited good cytotoxicity against A-549 cell line. All synthesized molecules were evaluated for their antioxidant activity and the results revealed that the compounds 4a, 4b, and 4i showed promising antioxidant activities against DPPH and H2O2 scavenging. In addition, the anti-mycobacterial activity of the synthesized compounds against MTB H37Rv strain was determined using the MABA method. The results indicate that the compounds 4a, 4b, 4g, and 4i showed better antimycobacterial activity than the standard drugs pyrazinamide, ciprofloxacin and streptomycin with an MIC value of 1.6 μg/ml. Furthermore, molecular docking studies and ADME properties showed good pharmacokinetic profile and drug-likeness properties.

Conclusion: These studies showed that a series of novel quinoxaline bearing tetrahydropyridine derivatives exhibit anticancer, anti-mycobacterial, and antioxidant activities.

Keywords: Quinoxaline, Tetrahydropyridine, Anticancer, Antioxidant, Anti-mycobacterial, Molecular docking.

Graphical Abstract

[1]
Jampilek, J. Heterocycles in medicinal chemistry. Molecules, 2019, 24(21), 10.
[http://dx.doi.org/10.3390/molecules24213839] [PMID: 31731387]
[2]
Vicente, E.; Pérez-Silanes, S.; Lima, L.M.; Ancizu, S.; Burguete, A.; Solano, B.; Villar, R.; Aldana, I.; Monge, A. Selective activity against Mycobacteriumtuberculosis of new quinoxaline 1,4-di-N-oxides. Bioorg. Med. Chem., 2009, 17(1), 385-389.
[http://dx.doi.org/10.1016/j.bmc.2008.10.086] [PMID: 19058970]
[3]
Kotharkar, S.A.; Shinde, D.B. Synthesis of antimicrobial 2,9,10-trisubstituted-6-oxo-7,12-dihydro-chromeno[3,4-b]quinoxalines. Bioorg. Med. Chem. Lett., 2006, 16(24), 6181-6184.
[http://dx.doi.org/10.1016/j.bmcl.2006.09.040] [PMID: 17027265]
[4]
Guillon, J.; Grellier, P.; Labaied, M.; Sonnet, P.; Léger, J.M.; Déprez-Poulain, R.; Forfar-Bares, I.; Dallemagne, P.; Lemaître, N.; Péhourcq, F.; Rochette, J.; Sergheraert, C.; Jarry, C. Synthesis, antimalarial activity, and molecular modeling of new pyrrolo[1,2-a]quinoxalines, bispyrrolo[1,2-a]quinoxalines, bispyrido[3,2-e]pyrrolo[1,2-a]pyrazines, and bispyrrolo[1,2-a]thieno[3,2-e]pyrazines. J. Med. Chem., 2004, 47(8), 1997-2009.
[http://dx.doi.org/10.1021/jm0310840] [PMID: 15055999]
[5]
Patel, S.B.; Patel, B.D.; Pannecouque, C.; Bhatt, H.G. Design, synthesis and anti-HIV activity of novel quinoxaline derivatives. Eur. J. Med. Chem., 2016, 117, 230-240.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.019] [PMID: 27105027]
[6]
Wagle, S.; Vasudeva, A.; Suchetha, N. Synthesis of some new 4-styryltetrazolo [1,5-a]quinoxaline and derivatives as potent anticonvulsants. Eur. J. Med. Chem., 2009, 44, 1135.
[http://dx.doi.org/10.1016/j.ejmech.2008.06.006] [PMID: 18672315]
[7]
Mahesh, R.; Devadoss, T.; Pandey, D.K.; Bhatt, S. Discovery of new anti-depressants from structurally novel 5-HT3 receptor antagonists: Design, synthesis and pharmacological evaluation of 3-ethoxyquinoxalin-2-carboxamides. Bioorg. Med. Chem. Lett., 2011, 21(4), 1253-1256.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.064] [PMID: 21256009]
[8]
Tandon, V.K.; Yadav, D.B.; Maurya, H.K.; Chaturvedi, A.K.; Shukla, P.K. Design, synthesis and biological evaluation and related compounds as antifungal and antibacterial agents. Bioorg. Med. Chem., 2006, 14, 6120.
[http://dx.doi.org/10.1016/j.bmc.2006.04.029] [PMID: 16806945]
[9]
Ajani, O.O.; Nlebemuo, M.T.; Adekoya, J.A.; Ogunniran, K.O.; Siyanbola, T.O.; Ajanaku, C.O. Chemistry and pharmacological diversity of quinoxaline motifs as anticancer agents. Acta Pharm., 2019, 69(2), 177-196.
[http://dx.doi.org/10.2478/acph-2019-0013] [PMID: 31259731]
[10]
Abu-hashem, A.A. Synthesis, reactions and biological activity of quinoxaline derivatives. Am. J. Org. Chem., 2015, 5, 14.
[11]
Tamilselvam, K.; Nataraj, J.; Janakiraman, U.; Manivasagam, T.; Essa, M.M. Antioxidant and anti-inflammatory potential of 6-tetrahydropyridine-induced experimental Parkinson’s disease in mice. Int. J. Nutr. Pharmacol. Neurol. Dis., 2013, 3, 294.
[http://dx.doi.org/10.4103/2231-0738.114875]
[12]
Aridoss, G.; Amirthaganesan, S.; Kumar, N.A.; Kim, J.T.; Lim, K.T.; Kabilan, S.; Jeong, Y.T. A facile synthesis, antibacterial, and antitubercular studies of some piperidin-4-one and tetrahydropyridine derivatives. Bioorg. Med. Chem. Lett., 2008, 18(24), 6542-6548.
[http://dx.doi.org/10.1016/j.bmcl.2008.10.045] [PMID: 18952418]
[13]
Das, S.; da Silva, C.J.; Silva, M.M.; Dantas, M.D.A.; de Fátima, Â.; Góis Ruiz, A.L.T.; da Silva, C.M.; de Carvalho, J.E.; Santos, J.C.C.; Figueiredo, I.M.; da Silva-Júnior, E.F.; de Aquino, T.M.; de Araújo-Júnior, J.X.; Brahmachari, G.; Modolo, L.V. Highly functionalized piperidines: Free radical scavenging, anticancer activity, DNA interaction and correlation with biological activity. J. Adv. Res., 2017, 9, 51-61.
[http://dx.doi.org/10.1016/j.jare.2017.10.010] [PMID: 30046486]
[14]
Franco, J.; Prediger, R.D.S.; Pandolfo, P.; Takahashi, R.N.; Farina, M.; Dafre, A.L. Antioxidant responses and lipid peroxidation following intranasal in rats: Increased susceptibility of olfactory bulb. Life Sci., 2007, 80, 1906.
[http://dx.doi.org/10.1016/j.lfs.2007.02.021] [PMID: 17382353]
[15]
Tariq, S.; Somakala, K.; Amir, M. Quinoxaline: An insight into the recent pharmacological advances. Eur. J. Med. Chem., 2018, 143, 542-557.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.064] [PMID: 29207337]
[16]
Pereira, J.A.; Pessoa, A.M.; Cordeiro, M.N.; Fernandes, R.; Prudêncio, C.; Noronha, J.P.; Vieira, M. Quinoxaline, its derivatives and applications: A State of the Art review. Eur. J. Med. Chem., 2015, 97, 664-672.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.058] [PMID: 25011559]
[17]
Mohsin, N.A.; Ahmad, M. Tetrahydropyridine: A promising heterocycle for pharmacologically active molecules. Turk. J. Chem., 2018, 42(5), 1191-1216.
[http://dx.doi.org/10.3906/kim-1709-4]
[18]
Jain, S.; Chandra, V.; Jain, P.K.; Pathak, K.; Vaidya, A.; Chandra, V. Comprehensive review on current developments of quinoline-based anti-cancer agents. Arab. J. Chem., 2019, 12(8), 4920-4946.
[19]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[20]
Adjiri, A. Identifying and targeting the cause of cancer is needed to cure cancer. Oncol. Ther., 2016, 4(1), 17-33.
[http://dx.doi.org/10.1007/s40487-015-0015-6] [PMID: 28261638]
[21]
Smith, I. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin. Microbiol. Rev., 2003, 16(3), 463-496.
[http://dx.doi.org/10.1128/CMR.16.3.463-496.2003] [PMID: 12857778]
[22]
Tiberi, S.; Duarte, R.; Dalcolmo, M. New drugs and perspectives for new anti-tuberculosis regimens. Pulmomol. J., 2018, 2486 Available from: https://www.journalpulmonology.org/en-estadisticas-S2173511517301690
[23]
Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.T. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol., 2009, 7(1), 65-74.
[http://dx.doi.org/10.2174/157015909787602823] [PMID: 19721819]
[24]
Rahman, M.M.; Islam, M.B.; Biswas, M.; Khurshid Alam, A.H. In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Res. Notes, 2015, 8(1), 621.
[http://dx.doi.org/10.1186/s13104-015-1618-6] [PMID: 26518275]
[25]
Hajri, M.; Esteve, M.A.; Khoumeri, O.; Abderrahim, R.; Terme, T.; Montana, M.; Vanelle, P. Synthesis and evaluation of in vitro antiproliferative activity of new ethyl 3-(arylethynyl)quinoxaline-2-carboxylate and pyrido[4,3-b]quinoxalin-1(2H)-one derivatives. Eur. J. Med. Chem., 2016, 124, 959-966.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.025] [PMID: 27770736]
[26]
Tseng, C.H.; Chen, Y.R.; Tzeng, C.C.; Liu, W.; Chou, C.K.; Chiu, C.C.; Chen, Y.L. Discovery of indeno[1,2-b]quinoxaline derivatives as potential anticancer agents. Eur. J. Med. Chem., 2016, 108, 258-273.
[http://dx.doi.org/10.1016/j.ejmech.2015.11.031] [PMID: 26686931]
[27]
Al-marhabi, AR; Abbas, HS; Ammar, YA Synthesis, characterization and biological evaluation of some quinoxaline derivatives: A promising and potent new class of antitumor and antimicrobial agents molecules, 2015, 20, 19805.
[28]
Montana, M.; Correard, F.; Khoumeri, O.; Esteve, M.A.; Terme, T.; Vanelle, P. Synthesis of new quinoxalines containing an oxirane ring by the TDAE strategy and in vitro evaluation in neuroblastoma cell lines. Molecules, 2014, 19(9), 14987-14998.
[http://dx.doi.org/10.3390/molecules190914987] [PMID: 25237753]
[29]
Zhang, M.; Dai, Z.C.; Qian, S.S.; Liu, J.Y.; Xiao, Y.; Lu, A.M.; Zhu, H.L.; Wang, J.X.; Ye, Y.H. Design, synthesis, antifungal, and antioxidant activities of (E)-6-((2-phenylhydrazono)methyl)quinoxaline derivatives. J. Agric. Food Chem., 2014, 62(40), 9637-9643.
[http://dx.doi.org/10.1021/jf504359p] [PMID: 25229541]
[30]
Wang, T.; Tang, Y.; Yang, Y.; An, Q.; Sang, Z.; Yang, T.; Liu, P.; Zhang, T.; Deng, Y.; Luo, Y. Discovery of novel anti-tuberculosis agents with pyrrolo[1,2-a]quinoxaline-based scaffold. Bioorg. Med. Chem. Lett., 2018, 28(11), 2084-2090.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.043] [PMID: 29748048]
[31]
Aeluri, R.; Alla, M.; Bommena, V.R.; Murthy, R.; Jain, N. Synthesis and antiproliferative activity of polysubstituted tetrahydropyridine and piperidin-4-one-3-carboxylate derivatives. Asian J. Org. Chem., 2012, 1(1), 71-79.
[http://dx.doi.org/10.1002/ajoc.201200010]
[32]
León, L.G.; Carballo, R.M.; Vega-Hernández, M.C.; Martín, V.S.; Padrón, J.I.; Padrón, J.M. Antiproliferative activity of 2-alkyl-4-halopiperidines and 2-alkyl-4-halo-1,2,5,6-tetrahydropyridines in solid tumor cell lines. Bioorg. Med. Chem. Lett., 2007, 17(10), 2681-2684.
[http://dx.doi.org/10.1016/j.bmcl.2007.03.010] [PMID: 17376681]
[33]
Wei, L.; Shen, C.; Hu, Y.Z.; Tao, H.Y.; Wang, C.J. Enantioselective synthesis of multi-nitrogen-containing heterocycles using azoalkenes as key intermediates. Chem. Commun. (Camb.), 2019, 55(47), 6672-6684.
[http://dx.doi.org/10.1039/C9CC02371B] [PMID: 31134230]
[34]
Thakur, R.; Jaiswal, Y.; Kumar, A. Imidates: An emerging synthon for N-heterocycles. Org. Biomol. Chem., 2019, 17(46), 9829-9843.
[http://dx.doi.org/10.1039/C9OB01899A] [PMID: 31720673]
[35]
Singh, G.S. Advances in synthesis and chemistry of aziridines. Adv. Heterocycl. Chem., 2019, 129, 245-335.
[http://dx.doi.org/10.1016/bs.aihch.2018.12.003]
[36]
Nageswar, Y.V.D.; Reddy, K.H.V.; Ramesh, K.; Murthy, S.N. Recent developments in the synthesis of quinoxaline derivatives by green synthetic approaches. Org. Prep. Proced. Int., 2013, 45(1), 1-27.
[http://dx.doi.org/10.1080/00304948.2013.743419]
[37]
Khan, M.; Khan, S.; Saigal, S.; Iqbal, S. Recent developments in multicomponent synthesis of structurally diversified tetrahydropyridines. RSC Advances, 2016, 6(48), 42045-42061.
[http://dx.doi.org/10.1039/C6RA06767K]
[38]
Baumann, M.; Baxendale, I.R. An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles. Beilstein J. Org. Chem., 2013, 9, 2265-2319.
[http://dx.doi.org/10.3762/bjoc.9.265] [PMID: 24204439]
[39]
Bertuzzi, G.; Bernardi, L.; Fochi, M. Nucleophilic Dearomatization of Activated Pyridines Catalysts, 2018, 8, 1.
[40]
Kotha, S.; Deodhar, D.; Khedkar, P. Diversity-oriented synthesis of medicinally important 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) derivatives and higher analogs. Org. Biomol. Chem., 2014, 12(45), 9054-9091.
[http://dx.doi.org/10.1039/C4OB01446D] [PMID: 25299735]
[41]
Gerry, C.J.; Schreiber, S.L. Chemical probes and drug leads from advances in synthetic planning and methodology. Nat. Rev. Drug Discov., 2018, 17(5), 333-352.
[http://dx.doi.org/10.1038/nrd.2018.53] [PMID: 29651105]
[42]
Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev., 2012, 112(6), 3083-3135.
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608]
[43]
Sridharan, V.; Suryavanshi, P.A.; Menéndez, J.C. Advances in the chemistry of tetrahydroquinolines. Chem. Rev., 2011, 111(11), 7157-7259.
[http://dx.doi.org/10.1021/cr100307m] [PMID: 21830756]
[44]
Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc., 2006, 1(3), 1112-1116.
[http://dx.doi.org/10.1038/nprot.2006.179] [PMID: 17406391]
[45]
Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol., 2011, 48(4), 412-422.
[http://dx.doi.org/10.1007/s13197-011-0251-1] [PMID: 23572765]
[46]
Collin, F. Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. Int. J. Mol. Sci., 2019, 20(10), 2407.
[http://dx.doi.org/10.3390/ijms20102407] [PMID: 31096608]
[47]
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev., 2010, 4(8), 118-126.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy