Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Experimental Investigation of Immunoglobulin and Complement Concentrations in Exposure to IVIG, HBIG, Rituximab, Tocilizumab, and Bevacizumab

Author(s): Murat Caglayan* and Ataman Gonel

Volume 20, Issue 6, 2023

Published on: 06 September, 2022

Page: [713 - 717] Pages: 5

DOI: 10.2174/1570180819666220804105533

Price: $65

Abstract

Background: Immunoglobulins (Igs) are produced in plasma cells in response to glycoproteinlike immunogens and they are also used as therapeutics in the pharmaceutical industry. It may be important to know the effects of therapeutic Igs on Ig levels during therapy to eliminate any misconceptions about the immunity of patients.

Objective: This study aimed to investigate the effects of monoclonal antibody (mAb) derivative drugs and therapeutic antibody (intravenous Ig [IVIG] and hepatitis B immune globulin [HBIG]) treatments on blood IgG, IgA, IgM, IgE, complement component 3 (C3), and complement component 4 (C4) levels.

Methods: N Protein Control SL / Low (Siemens, Marburg, Germany, Lot: 084654) was used as the control solution. Aliquots of IVIG, HBIG, rituximab, tocilizumab, and bevacizumab (20 μL) were added to 180 μL of the control solution, and the solutions were vortexed (5 s). The samples were studied using a Dade Behring BN II (Siemens, Marburg, Germany) nephelometer. All measurements were repeated three times by performing the same process in which distilled water (20 μL) was added to the control solution to determine the target value, and the average values were taken. The bias formula was used to calculate the amount by which the results deviated from the target value.

Results: IVIG caused the greatest deviation (45.97%) to IgG levels. HBIG, rituximab, tocilizumab, and bevacizumab caused the IgG level to deviate by 0.81%, 9.68%, 27.42%, and 30.65%, respectively. In the IgA test, tocilizumab increased the reading by 8.66%, while the other therapeutics caused reductions in the reading, with the smallest and largest changes caused by HBIG (-0.93%) and bevacizumab (-4.98%). Tocilizumab increased the IgE level by 0.48%, and rituximab and bevacizumab reduced the IgE level by - 0.21% with -8.47%, respectively. Tocilizumab, IVIG, and HBIG caused 1.41%, 2.70%, and 4.32% deviations, respectively, in the C3 levels. Whereas bevacizumab (-1.08%) and rituximab (-5.41%) caused reductions in the C3 levels. Tocilizumab, HBIG, rituximab, IVIG, and bevacizumab caused deviations of 0.87%, -2.31%, -3.76%, -6.36%, -8.38%, respectively, in the C4 levels.

Conclusion: Deviations in measured IgG levels after therapeutic Ig and mAb infusions may cause errors in clinical decisions. It is recommended that Ig levels be measured before infusion or when the therapeutic drug has been eliminated from the blood.

Keywords: IVIG, HBIG, IgG, nephelometry, false result

Graphical Abstract

[1]
Delves, P.J.; Roitt, I.M. The immune system. First of two parts. N. Engl. J. Med., 2000, 343(1), 37-49.
[http://dx.doi.org/10.1056/NEJM200007063430107] [PMID: 10882768]
[2]
Loh, R.K.; Vale, S.; McLean-Tooke, A. Quantitative serum immunoglobulin tests. Aust. Fam. Physician, 2013, 42(4), 195-198.
[PMID: 23550242]
[3]
Janeway, C.; Travers, P.; Walport, M.; Shlomchik, M.J. Immunobiology, 2001, 6.
[4]
Liu, Z.; Tang, Q.; Wen, J.; Tang, Y.; Huang, D.; Huang, Y.; Xie, J.; Luo, Y.; Liang, M.; Wu, C.; Lu, Z.; Tan, A.; Gao, Y.; Wang, Q.; Jiang, Y.; Yao, Z.; Lin, X.; Zhang, H.; Mo, Z.; Yang, X. Elevated serum complement factors 3 and 4 are strong inflammatory markers of the metabolic syndrome development: A longitudinal cohort study. Sci. Rep., 2016, 6(1), 18713.
[http://dx.doi.org/10.1038/srep18713] [PMID: 26726922]
[5]
Selter, R.C.; Biberacher, V.; Grummel, V.; Buck, D.; Eienbröker, C.; Oertel, W.H.; Berthele, A.; Tackenberg, B.; Hemmer, B. Natalizumab treatment decreases serum IgM and IgG levels in multiple sclerosis patients. Mult. Scler., 2013, 19(11), 1454-1461.
[http://dx.doi.org/10.1177/1352458513477229] [PMID: 23439578]
[6]
Lammers, M. Interference with nephelometric assay of C-reactive protein by monoclonal immunoglobulin. Clin. Chem., 1998, 44(7), 1584-1585.
[http://dx.doi.org/10.1093/clinchem/44.7.1584] [PMID: 9665456]
[7]
Kroll, M.H.; Elin, R.J. Interference with clinical laboratory analyses. Clin. Chem., 1994, 40(11 Pt 1), 1996-2005.
[http://dx.doi.org/10.1093/clinchem/40.11.1996] [PMID: 7955368]
[8]
Müller, T.; Laborde, M.; Kassell, G.; Wiedensohler, A. Design and performance of a three-wavelength LED-based total scatter and backscatter integrating nephelometer. Atoms. Meas. Tech., 2011, 4(6), 1291-1303.
[http://dx.doi.org/10.5194/amt-4-1291-2011]
[9]
Gönel, A.; Koyuncu, I.; Screening, H.T. Measurement of the cellular hemoglobin concentration by laser scatter method from excessive lipemic sample: Case report. CASE REPORT., 2019, 22(7), 502-505.
[http://dx.doi.org/10.2174/1386207322666190925130114] [PMID: 31553289]
[10]
Gonel, A.; Kirhan, I.; Koyuncu, I.; Bayraktar, N.; Karadag, M.E.; Karadag, M.J.E. The role of interferences in the increasing incidence of vitamin D deficiency. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(8), 1303-1308.
[11]
Pehlivan, V.F.; Gönel, A.; Pehlivan, B.; Koyuncu, I.J.C.c. False laboratory test result through colistin interference in an intensive care patient: Case report. Comb. Chem. High T Scr., 2020, 23(8), 827-831.
[12]
Siest, G.; Dawkins, S.J.; Galteau, M.M. Drug effects on clinical laboratory tests. J. Pharm. Biomed. Anal., 1983, 1(3), 247-257.
[http://dx.doi.org/10.1016/0731-7085(83)80038-7] [PMID: 16867796]
[13]
Tascanov, M.B.; Gönel, A.J.C. How do contrast agents affect cardiac markers and coagulation tests? Experimental Study., 2019, 22(5), 355-360.
[PMID: 31161978]
[14]
Büyükfırat, E.; Gonel, A.; Karahan, M.A.; Altay, N.; Erol, M.K.; Pehlivan, B.; Atlas, A. Yoğun Bakımda Sedasyon Amaçlı Kullanılan İlaçların Biyokimyasal Markerlara Olan İnterferans Etkisinin Deneysel Araştırılması. JARSS, 28(4), 293-298.
[15]
Saah, A.J.; Koch, T.R.; Drusano, G.L. Cefoxitin falsely elevates creatinine levels. JAMA, 1982, 247(2), 205-206.
[http://dx.doi.org/10.1001/jama.1982.03320270043022] [PMID: 7053461]
[16]
Murphy, J.L.; Hurt, T.L.; Griswold, W.R.; Peterson, B.M.; Rodarte, A.; Krous, H.F.; Reznik, V.M.; Mendoza, S.A. Interference with creatinine concentration measurement by high dose furosemide infusion. Crit. Care Med., 1989, 17(9), 889-890.
[http://dx.doi.org/10.1097/00003246-198909000-00009] [PMID: 2766761]
[17]
Gönel, A.; Koyuncu, I. False immunosuppressant measurement by LC-MS/MS method due to radiopaque agents. Comb. Chem. High Throughput Screen., 2019, 22(2), 129-134.
[http://dx.doi.org/10.2174/1386207322666190418125307] [PMID: 31038053]
[18]
Möhn, N.; Pfeuffer, S.; Ruck, T.; Gross, C.C.; Skripuletz, T.; Klotz, L.; Wiendl, H.; Stangel, M.; Meuth, S.G. Alemtuzumab therapy changes immunoglobulin levels in peripheral blood and CSF. Neurol. Neuroimmunol. Neuroinflamm., 2019, 7(2)e654
[http://dx.doi.org/10.1212/NXI.0000000000000654] [PMID: 31826986]
[19]
Rees, J.A.; Deblonde, G.J-P.; An, D.D.; Ansoborlo, C.; Gauny, S.S.; Abergel, R.J.J.S.r. Evaluating the potential of chelation therapy to prevent and treat gadolinium deposition from MRI contrast agents. Scientific Reports, 2018, 8(1), 1-9.
[http://dx.doi.org/10.1038/s41598-018-22511-6]
[20]
Gönel, A.; Tascanov, M.B.; Bayraktar, N.; Koyuncu, I.; Agan, V.; Enes, M.; Guzelcicek, A. In vitro demonstration of drug-reagent interactions among commonly used parenteral drugs in cardiology. Cardiovasc. Hematol. Agents Med. Chem., 2021, 19(1), 43-49.
[21]
Samarasinghe, S.; Meah, F.; Singh, V.; Basit, A.; Emanuele, N.; Emanuele, M.A.; Mazhari, A.; Holmes, E.W. Biotin interference with routine clinical immunoassays: Understand the causes and mitigate the risks. Endocr. Pract., 2017, 23(8), 989-998.
[http://dx.doi.org/10.4158/EP171761.RA] [PMID: 28534685]
[22]
Avery, G. Biotin interference in immunoassay: A review for the laboratory scientist. Ann. Clin. Biochem., 2019, 56(4), 424-430.
[http://dx.doi.org/10.1177/0004563219842231] [PMID: 31023057]
[23]
Kricka, L.J.; Park, J.Y. Pathobiology of Human Disease; McManus, L.M.; Mitchell, R.N., Eds.; Academic Press: San Diego, 2014, pp. 3207-3221.
[http://dx.doi.org/10.1016/B978-0-12-386456-7.06302-4]
[24]
Gönel, A.; Kirhan, I.J.A-i. Effects of broad spectrum antibiotics on measurement of immunosuppressant drugs. Antiinflamm. Antiallergy Agents Med. Chem., 2020, 20(1), 101-105.

© 2025 Bentham Science Publishers | Privacy Policy