[1]
Espinoza C, Fuenzalida B, Leiva A. Increased fetal cardiovascular disease risk: Potential synergy between gestational diabetes mellitus and maternal hypercholesterolemia. Curr Vasc Pharmacol 2021; 19(6): 601-23.
[http://dx.doi.org/10.2174/1570161119666210423085407]
[http://dx.doi.org/10.2174/1570161119666210423085407]
[2]
Paraskevas KI, Briana DD, Malamitsi-Puchner A, Mikhailidis DP. Fetal/infant origins of adult vascular disease. Curr Vasc Pharmacol 2020; 18(4): 418-20.
[http://dx.doi.org/10.2174/1570161118999200304123040]
[http://dx.doi.org/10.2174/1570161118999200304123040]
[3]
Briana DD, Germanou K, Boutsikou M, et al. Potential prognostic biomarkers of cardiovascular disease in fetal macrosomia: The impact of gestational diabetes. J Matern Fetal Neonatal Med 2018; 31(7): 895-900.
[http://dx.doi.org/10.1080/14767058.2017.1300651]
[http://dx.doi.org/10.1080/14767058.2017.1300651]
[4]
Papathanasiou AE, Briana DD, Gavrili S, et al. Cord blood fatty acid-binding protein-4 levels are upregulated at both ends of the birthweight spectrum. Acta Paediatr 2019; 108(11): 2083-8.
[http://dx.doi.org/10.1111/apa.14826]
[http://dx.doi.org/10.1111/apa.14826]
[5]
Krause B, Sobrevia L, Casanello P. Epigenetics: New concepts of old phenomena in vascular physiology. Curr Vasc Pharmacol 2009; 7(4): 513-20.
[http://dx.doi.org/10.2174/157016109789043883]
[http://dx.doi.org/10.2174/157016109789043883]
[6]
Shiau S, Wang L, Liu H, et al. Prenatal gestational diabetes mellitus exposure and accelerated offspring DNA methylation age in early childhood. Epigenetics 2021; 16(2): 186-95.
[http://dx.doi.org/10.1080/15592294.2020.1790924]
[http://dx.doi.org/10.1080/15592294.2020.1790924]
[7]
Martino F, Magenta A, Pannarale G, et al. Epigenetics and cardiovascular risk in childhood. J Cardiovasc Med (Hagerstown) 2016; 17(8): 539-46.
[http://dx.doi.org/10.2459/JCM.00000000000000334]
[http://dx.doi.org/10.2459/JCM.00000000000000334]
[8]
de Nigris F, Cacciatore F, Mancini FP, et al. Epigenetic hallmarks of fetal early atherosclerotic lesions in humans. JAMA Cardiol 2018; 3(12): 1184-91.
[http://dx.doi.org/10.1001/jamacardio.2018.3546]
[http://dx.doi.org/10.1001/jamacardio.2018.3546]
[9]
Contreras-Duarte S, Carvajal L, Fuenzalida B, Cantin C, Sobrevia L, Leiva A. Maternal dyslipidaemia in pregnancy with gestational diabetes mellitus: Possible impact on foetoplacental vascular function and lipoproteins in the neonatal circulation. Curr Vasc Pharmacol 2019; 17(1): 52-71.
[10]
Larsen TD, Sabey KH, Knutson AJ, et al. Diabetic pregnancy and maternal high-fat diet impair mitochondrial dynamism in the developing fetal rat heart by sex-specific mechanisms. Int J Mol Sci 2019; 20(12): 3090.
[http://dx.doi.org/10.3390/ijms20123090]
[http://dx.doi.org/10.3390/ijms20123090]
[11]
Preston CC, Larsen TD, Eclov JA, et al. Maternal high fat diet and diabetes disrupts transcriptomic pathways that regulate cardiac metabolism and cell fate in newborn rat hearts. Front Endocrinol (Lausanne) 2020; 11: 570846.
[http://dx.doi.org/10.3389/fendo.2020.570846]
[http://dx.doi.org/10.3389/fendo.2020.570846]