Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Purification, Partial Characterization, and Evaluation of the Antiulcer Activity of Calotropis procera Leaf Lectin

Author(s): Saed A. Al-Thobaiti* and Emadeldin Hassan E. Konozy

Volume 29, Issue 9, 2022

Published on: 03 September, 2022

Page: [775 - 787] Pages: 13

DOI: 10.2174/0929866529666220803162457

open access plus

conference banner
Abstract

Background: Lectins are proteins with therapeutic and diagnostic potential that can be applied in battling various ailments.

Aim and Objective: This study was designed to purify and characterize the hemagglutinating activity derived from the leaves of Calotropis procera and its possible role in protecting the stomach against ethanol-induced lesions.

Methods: The Calotropis procera leaf lectin (ProLec), was isolated by homogenization of the defatted leaf powder in Phosphate-Buffered Saline (PBS) and purified by affinity chromatography on Sephadex G-100. The lectin was eluted from the affinity column by 3% acetic acid and was physicochemically characterized. In a dose-dependent manner, ProLec was administered to rats with ethanol-induced ulcers, and biochemical, histopathological, and toxicological examinations were performed.

Results: ProLec is a heterodimer of 75 and 68 kDa. It agglutinated all human RBCs, whereas it showed weak interaction with animal erythrocytes. The protein was optimally active at 25 °C and was labile above this temperature. ProLec exhibited two pH optima and was a metalloprotein requiring Ca, Mn, and Ni. It contains 1.6% tryptophan residues of which about 1% is exposed and critical for lectin activity. The lectin exhibited a potent gastroprotective effect against ethanolinduced gastric lesions with no apparent toxicity to both kidneys and liver. Examination of the pH of the gastric juice of lectin-treated animals indicated a possible role of lectin in maintaining stomach acidity within the normal ranges compared to the gastric juice pH of animals that received ethanol only.

Conclusion: These results may suggest that ProLec could conceivably be a good future drug for the treatment of gastric ulcers, however, extensive immunological and toxicological research remains to be done.

Keywords: Calotropis procera, medicinal plant, lectin, purification, ulcer, gastroprotective.

Graphical Abstract

[1]
Barbosa, P.P.S.; De Araújo, F.N.; De Almeida, J.M.; Gadelha, T.S. Leguminosae lectins as biological tools in medical research: A review. Braz. Arch. Biol. Technol., 2021, 64, e21200170.
[http://dx.doi.org/10.1590/1678-4324-2021200170]
[2]
Sharon, N.; Lis, H. History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology, 2004, 14, 53R-62R.
[3]
Cummings, R.D. Use of lectins in analysis of glycoconjugates. Methods in enzymology; Academic Press: USA, 1994, pp. 66-86.
[4]
Mishra, A.; Behura, A.; Mawatwal, S.; Kumar, A.; Naik, L.; Mohanty, S.S. Structure-function and application of plant lectins in disease biology and immunity. Food Chem. Toxicol., 2019, 134, 110827.
[http://dx.doi.org/10.1016/j.fct.2019.110827]
[5]
Osman, M.E.M.; Konozy, E.H.E. Insight into Erythrina lectins: Properties, structure and proposed physiological significance. Open Bioactive Compd. J., 2020, 9, 57-71.
[6]
Espino-Solis, G.P. Lectins: A brief review. Vitae, 2015, 22(1), 23561.
[7]
Hassan, L.M.; Galal, T.M.; Farahat, E.A.; El-Midany, M.M. The biology of Calotropis procera (Aiton). W. T. Trees, 2015, 9, 311-320.
[http://dx.doi.org/10.1007/s00468-015-1158-7]
[8]
Swapna, P.; Robertson, S.; Elumalai, A.; Eswaraiah, M.; Nirmala, A. Evaluation of antiulcer activity of Calotropis gigantea R.Br leaves. Int. J. Pharm. Sci. Res., 2011, 2, 2938-2941.
[9]
Vimala, G.; Gricilda Shoba, F. A review on antiulcer activity of few Indian medicinal plants. Int. J. Microbiol., 2014, 2014, 519590.
[http://dx.doi.org/10.1155/2014/519590] [PMID: 24971094]
[10]
Halim, S.Z.; Zakaria, Z.A.; Omar, M.H.; Mohtarrudin, N.; Wahab, I.R.A.; Abdullah, M.N.H. Synergistic gastroprotective activity of methanolic extract of a mixture of Melastoma malabathricum and Muntingia calabura leaves in rats. BMC Complement. Altern. Med., 2017, 17(1), 488.
[http://dx.doi.org/10.1186/s12906-017-1992-9] [PMID: 29121900]
[11]
Sung, J.J.Y.; Kuipers, E.J.; El-Serag, H.B. Systematic review: The global incidence and prevalence of peptic ulcer disease. Aliment. Pharmacol. Ther., 2009, 29(9), 938-946.
[http://dx.doi.org/10.1111/j.1365-2036.2009.03960.x] [PMID: 19220208]
[12]
Kavitt, R.T.; Lipowska, A.M.; Anyane-Yeboa, A.; Gralnek, I.M. Diagnosis and treatment of peptic ulcer disease. Am. J. Med., 2019, 132(4), 447-456.
[http://dx.doi.org/10.1016/j.amjmed.2018.12.009] [PMID: 30611829]
[13]
Kuna, L.; Jakab, J.; Smolic, R.; Raguz-Lucic, N.; Vcev, A.; Smolic, M. Peptic ulcer disease: A brief review of conventional therapy and herbal treatment options. J. Clin. Med., 2019, 8(2), 179.
[http://dx.doi.org/10.3390/jcm8020179] [PMID: 30717467]
[14]
Sidahmed, H.M.A.; Azizan, A.H.S.; Mohan, S.; Abdulla, M.A.; Abdelwahab, S.I.; Taha, M.M.E.; Hadi, A.H.; Ketuly, K.A.; Hashim, N.M.; Loke, M.F.; Vadivelu, J. Gastroprotective effect of desmosdumotin C isolated from Mitrella kentii against ethanol-induced gastric mucosal hemorrhage in rats: Possible involvement of glutathione, heat-shock protein-70, sulfhydryl compounds, nitric oxide, and anti-Helicobacter pylori activity. BMC Complement. Altern. Med., 2013, 13, 183.
[http://dx.doi.org/10.1186/1472-6882-13-183] [PMID: 23866830]
[15]
Samonina, G.E.; Kopylova, G.N.; Lukjanzeva, G.V.; Zhuykova, S.E.; Smirnova, E.A.; German, S.V.; Guseva, A.A. Antiulcer effects of amylin: A review. Pathophysiology, 2004, 11(1), 1-6.
[http://dx.doi.org/10.1016/j.pathophys.2003.10.008] [PMID: 15177509]
[16]
Gadekar, R.; Singour, P.K.; Chaurasiya, P.K.; Pawar, R.S.; Patil, U.K. A potential of some medicinal plants as an antiulcer agents. Pharmacogn. Rev., 2010, 4(8), 136-146.
[http://dx.doi.org/10.4103/0973-7847.70906] [PMID: 22228953]
[17]
Nagesh, S.T.; Gokul, S.T. Gastric antiulcer and antiinflammatory activities of Calotropis procera stem bark. Rev. Bras. Farmacogn. Braz. J. Pharmacogn., 2011, 21, 6.
[http://dx.doi.org/10.1590/S0102-695X2011005000175]
[18]
Al-Taweel, A.M.; Perveen, S.; Fawzy, G.A.; Rehman, A.U.; Khan, A.; Mehmood, R.; Fadda, L.M. Evaluation of antiulcer and cytotoxic potential of the leaf, flower, and fruit extracts of Calotropis procera and isolation of a new lignan glycoside. Evid. Based Complement. Alternat. Med., 2017, 2017, 8086791.
[http://dx.doi.org/10.1155/2017/8086791] [PMID: 28951762]
[19]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[20]
Reisfeld, R.A.; Lewis, U.J.; Williams, D.E. Disk electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature, 1962, 195, 281-283.
[http://dx.doi.org/10.1038/195281a0] [PMID: 14491328]
[21]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680-685.
[http://dx.doi.org/10.1038/227680a0] [PMID: 5432063]
[22]
Morris, D.L. Quantitative determination of carbohydrates with Dreywood’s anthrone reagent. Science, 1948, 107(2775), 254-255.
[http://dx.doi.org/10.1126/science.107.2775.254] [PMID: 17814729]
[23]
Awadallah, A.K.E.; Osman, M.E.M.; Ibrahim, M.A.; Bernardes, E.S.; Dias-Baruffi, M.; Konozy, E.H.E. Isolation and partial characterization of 3 nontoxic d-galactose-specific isolectins from seeds of Momordica balsamina. J. Mol. Recognit., 2017, 30(2), e2582.
[http://dx.doi.org/10.1002/jmr.2582] [PMID: 27774692]
[24]
Konozy, E.H.; Bernardes, E.S.; Rosa, C.; Faca, V.; Greene, L.J.; Ward, R.J. Isolation, purification, and physicochemical characterization of a D-galactose-binding lectin from seeds of Erythrina speciosa. Arch. Biochem. Biophys., 2003, 410(2), 222-229.
[http://dx.doi.org/10.1016/S0003-9861(02)00695-1] [PMID: 12573281]
[25]
Spande, T.F.; Witkop, B. Determination of the tryptophan content of proteins with N-bromosuccinimide. Methods in enzymology; Academic Press: USA, 1967, pp. 498-506.
[26]
Kroll, M. Tietz textbook of clinical chemistry. Transfusion, 1999, 39(7), 794.
[27]
Chaney, A.L.; Marbach, E.P. Modified reagents for determination of urea and ammonia. Clin. Chem., 1962, 8, 130-132.
[http://dx.doi.org/10.1093/clinchem/8.2.130] [PMID: 13878063]
[28]
Jaffe, M. Ueber den Niederschlag, welchen Pikrinsäure in normalem Harn erzeugt und über eine neue Reaction des Kreatinins. J. Phys. Chem., 1886, 10(1886), 1-10.
[http://dx.doi.org/10.1515/bchm1.1886.10.5.391]
[29]
Young, D.S.; Pestaner, L.C.; Gibberman, V. Effects of drugs on clinical laboratory tests. Clin. Chem., 1975, 21(5), 1D-432D.
[PMID: 1091375]
[30]
Iyadurai, R.; Gunasekaran, K.; Jose, A.; Pitchaimuthu, K. Calotropis poisoning with severe cardiac toxicity A case report. J. Family Med. Prim. Care, 2020, 9(8), 4444-4447.
[http://dx.doi.org/10.4103/jfmpc.jfmpc_783_20] [PMID: 33110881]
[31]
Chachadi, V.B. Isolation of blood group non-specific lectin from Calotropis gigantean seeds. Jordan J. Biol. Sci., 2019, 12, 141-145.
[32]
Correia, M.T.S.; Coelho, L.C.B.B. Purification of a glucose/mannose specific lectin, isoform 1, from seeds of Cratylia mollis Mart. (Camaratu bean). Appl. Biochem. Biotechnol., 1995, 55(3), 261-273.
[http://dx.doi.org/10.1007/BF02786865] [PMID: 8579345]
[33]
Faye, L.; Chrispeels, M.J. Transport and processing of the glycosylated precursor of Concanavalin A in jack-bean. Planta, 1987, 170(2), 217-224.
[http://dx.doi.org/10.1007/BF00397891] [PMID: 24232881]
[34]
Lotan, R.; Skutelsky, E.; Danon, D.; Sharon, N. The purification, composition, and specificity of the anti-T lectin from peanut (Arachis hypogaea). J. Biol. Chem., 1975, 250(21), 8518-8523.
[http://dx.doi.org/10.1016/S0021-9258(19)40790-4] [PMID: 811657]
[35]
Naik, S.; Kumar, S. Biochemical characterization of lactose binding entadin lectin from Entada rheedii seeds with cytotoxic activity against cancer cell lines. ACS Omega, 2020, 5(27), 16430-16439.
[http://dx.doi.org/10.1021/acsomega.0c00577] [PMID: 32685806]
[36]
Dias, R.O.; Machado, L.S.; Migliolo, L.; Franco, O.L. Insights into animal and plant lectins with antimicrobial activities. Molecules, 2015, 20(1), 519-541.
[http://dx.doi.org/10.3390/molecules20010519] [PMID: 25569512]
[37]
Ghosh, G.; Mandal, D.K. Novel unfolding sequence of banana lectin: Folded, unfolded and natively unfolded-like monomeric states in guanidine hydrochloride. Biochimie, 2014, 99, 138-145.
[http://dx.doi.org/10.1016/j.biochi.2013.11.022] [PMID: 24316282]
[38]
Nubi, T.; Adewole, T.S.; Agunbiade, T.O.; Osukoya, O.A.; Kuku, A. Purification and erythrocyte-membrane perturbing activity of a ketose-specific lectin from Moringa oleifera seeds. Biotechnol. Rep., 2021, 31, e00650.
[http://dx.doi.org/10.1016/j.btre.2021.e00650]
[39]
Awaad, A.A.; Alkanhal, H.F.; El-Meligy, R.M.; Zain, G.M.; Sesh Adri, V.D.; Hassan, D.A. Anti-ulcerative colitis activity of Calotropis procera Linn. Saudi Pharm. J., 2018, 26, 75-78.
[http://dx.doi.org/10.1016/j.jsps.2017.10.010]
[40]
Basu, A.; Sen, T.; Pal, S.; Mascolo, N.; Capasso, F.; Nag Chaudhuri, A.K. Studies on the antiulcer activity of the chloroform fraction of Calotropis procera root extract. Phytother. Res., 1997, 11, 163-165.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199703)11:2<163:AID-PTR51>3.0.CO;2-S]
[41]
de Alencar, N.M.; Pinheiro, R.S.; de Figueiredo, I.S.; Luz, P.B.; Freitas, L.B. de Souza, Tde.F.; do Carmo, L.D.; Marques, L.M.; Ramos, M.V. The preventive effect on ethanol-induced gastric lesions of the medicinal plant Plumeria rubra: Involvement of the latex proteins in the NO/cGMP/K ATP signaling pathway. Evid. Based Complement. Alternat. Med., 2015, 2015, 706782.
[http://dx.doi.org/10.1155/2015/706782] [PMID: 26788111]
[42]
Rani, R.; Sharma, D.; Chaturvedi, M.; Yadav, J.P. Phytochemical analysis, antibacterial and antioxidant activity of Calotropis procera and Calotropis gigantea. J. Nat. Prod., 2019, 9, 47-60.
[43]
Pan, W.L.; Ng, T.B. A dimeric Phaseolus coccineus lectin with anti-oxidative, anti-proliferative and cytokine-inducing activities. Int. J. Biol. Macromol., 2015, 81, 960-966.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.09.034] [PMID: 26410813]
[44]
Pinto, I.R.; Chaves, H.V.; Vasconcelos, A.S.; de Sousa, F.C.F.; Santi-Gadelha, T.; de Lacerda, J.T.J.G.; Ribeiro, K.A.; Freitas, R.S.; Maciel, L.M.; Filho, S.M.P.; Viana, A.F.S.C.; de Almeida Gadelha, C.A.; Filho, G.C.; de Paulo Teixeira Pinto, V.; Pereira, K.M.A.; Rodrigues, E. Silva, A.A.; Bezerra, M.M. Antiulcer and antioxidant activity of a lectin from Mucuna pruriens seeds on ethanol-induced gastropathy: Involvement of alpha-2 adrenoceptors and prostaglandins. Curr. Pharm. Des., 2019, 25(12), 1430-1439.
[http://dx.doi.org/10.2174/1381612825666190524081433] [PMID: 31124421]
[45]
Bitencourt, F.S.; Figueiredo, J.G.; Mota, M.R.; Bezerra, C.C.; Silvestre, P.P.; Vale, M.R.; Nascimento, K.S.; Sampaio, A.H.; Nagano, C.S.; Saker-Sampaio, S.; Farias, W.R.; Cavada, B.S.; Assreuy, A.M.; de Alencar, N.M. Antinociceptive and anti-inflammatory effects of a mucin-binding agglutinin isolated from the red marine alga Hypnea cervicornis. Naunyn Schmiedebergs Arch. Pharmacol., 2008, 377(2), 139-148.
[http://dx.doi.org/10.1007/s00210-008-0262-2] [PMID: 18270688]
[46]
Kumar, S.; Gupta, A.; Pandey, A.K. Calotropis procera root extract has the capability to combat free radical mediated damage. ISRN Pharmacol., 2013, 2013, 691372.
[http://dx.doi.org/10.1155/2013/691372] [PMID: 24222863]
[47]
Kumar, V.L.; Shivkar, Y.M. Involvement of prostaglandins in inflammation induced by latex of Calotropis procera. Mediators Inflamm., 2004, 13(3), 151-155.
[http://dx.doi.org/10.1080/09511920410001713583] [PMID: 15223605]
[48]
Liu, Y.; Liang, J.; Wu, J.; Chen, H.; Zhang, Z.; Yang, H.; Chen, L.; Chen, H.; Su, Z.; Li, Y. Transformation of patchouli alcohol to β-patchoulene by gastric juice: β-patchoulene is more effective in preventing ethanol-induced gastric injury. Sci. Rep., 2017, 7(1), 5591.
[http://dx.doi.org/10.1038/s41598-017-05996-5] [PMID: 28717228]
[49]
Chari, S.; Teyssen, S.; Singer, M.V. Alcohol and gastric acid secretion in humans. Gut, 1993, 34(6), 843-847.
[http://dx.doi.org/10.1136/gut.34.6.843] [PMID: 8314520]
[50]
Sommansson, A.; Wan Saudi, W.S.; Nylander, O.; Sjöblom, M. The ethanol-induced stimulation of rat duodenal mucosal bicarbonate secretion in vivo is critically dependent on luminal Cl-. PLoS One, 2014, 9(7), e102654.
[http://dx.doi.org/10.1371/journal.pone.0102654] [PMID: 25033198]
[51]
Feldman, M. Gastric bicarbonate secretion in humans. Effect of pentagastrin, bethanechol, and 11,16,16-trimethyl prostaglandin E2. J. Clin. Invest., 1983, 72(1), 295-303.
[http://dx.doi.org/10.1172/JCI110969] [PMID: 6135708]

© 2024 Bentham Science Publishers | Privacy Policy