Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

MicroRNAs and Long Non-coding RNAs as Novel Targets in Anti-cancer Drug Development

Author(s): Melisa Çetinkaya and Yusuf Baran*

Volume 24, Issue 7, 2023

Published on: 28 September, 2022

Page: [913 - 925] Pages: 13

DOI: 10.2174/1389201023666220803150431

Price: $65

Abstract

Non-coding RNAs comprise the majority of RNAs that have been transcribed from the human genome, and these non-coding RNAs have essential regulatory roles in the cellular processes. They have been discovered to influence the expression of the genes, including tumorsuppressive and oncogenes, that establish the non-coding RNAs as novel targets for anti-cancer drug development. Among non-coding RNAs, microRNAs have been extensively studied in terms of cancer biology, and some microRNA-based therapeutics have been reached in clinical studies. Even though most of the research regarding targeting non-coding RNAs for anti-cancer drug development focused on microRNAs, long non-coding RNAs have also started to gain importance as potential therapeutic targets for cancer therapy. In this chapter, the strategies and importance of targeting microRNAs and long non-coding RNAs will be described, along with the clinical studies that involve microRNA-based cancer therapeutics and preclinical studies that involve long noncoding RNA-based therapeutics. Finally, the delivery strategies that have great importance in the effective delivery of the non-coding RNA-based cancer therapeutics, hence the therapy's effectiveness, will be described.

Keywords: miRNA-based cancer therapeutics, miRNA mimics, antagomiRs, MRX34, lncRNA-based cancer therapeutics, and drug delivery strategies

Graphical Abstract

[1]
Dunham, I.; Kundaje, A.; Aldred, S.F.; Collins, P.J.; Davis, C.A.; Doyle, F.; Epstein, C.B.; Frietze, S.; Harrow, J.; Kaul, R. An integrated encyclopedia of DNA elements in the human genome. Nature, 2012, 489(7414), 57-74.
[http://dx.doi.org/10.1038/nature11247] [PMID: 22955616]
[2]
Palazzo, A.F.; Lee, E.S. Non-coding RNA: What is functional and what is junk? Front. Genet., 2015, 6(JAN), 2.
[http://dx.doi.org/10.3389/fgene.2015.00002] [PMID: 25674102]
[3]
Mattick, J.S.; Makunin, I.V. Non-coding RNA. Hum. Mol. Genet., 2006, 15(Suppl. 1), R17-R29.
[http://dx.doi.org/10.1093/hmg/ddl046]
[4]
Fu, X.D. Non-coding RNA: A new frontier in regulatory biology. Natl. Sci. Rev., 2014, 1(2), 190-204.
[http://dx.doi.org/10.1093/nsr/nwu008] [PMID: 25821635]
[5]
Esteller, M. Non-coding RNAs in human disease. Nat. Rev. Genet., 2011, 12(12), 861-874.
[http://dx.doi.org/10.1038/nrg3074] [PMID: 22094949]
[6]
Ling, H.; Fabbri, M.; Calin, G.A. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat. Rev. Drug Discov., 2013, 12(11), 847-865.
[http://dx.doi.org/10.1038/nrd4140] [PMID: 24172333]
[7]
Kasinski, A.L.; Slack, F.J. Epigenetics and genetics. MicroRNAs en route to the clinic: Progress in validating and targeting microRNAs for cancer therapy. Nat. Rev. Cancer, 2011, 11(12), 849-864.
[http://dx.doi.org/10.1038/nrc3166] [PMID: 22113163]
[8]
van Rooij, E.; Kauppinen, S. Development of microRNA therapeutics is coming of age. EMBO Mol. Med., 2014, 6(7), 851-864.
[http://dx.doi.org/10.15252/emmm.201100899] [PMID: 24935956]
[9]
Chakraborty, C.; Sharma, A.R.; Sharma, G.; Lee, S.S. Therapeutic advances of miRNAs: A preclinical and clinical update. J. Adv. Res., 2020, 28, 127-138.
[http://dx.doi.org/10.1016/j.jare.2020.08.012] [PMID: 33364050]
[10]
Rinn, J.L.; Chang, H.Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem., 2012, 81(1), 145-166.
[http://dx.doi.org/10.1146/annurev-biochem-051410-092902] [PMID: 22663078]
[11]
Beckedorff, F.C.; Amaral, M.S.; Deocesano-Pereira, C.; Verjovski-Almeida, S. Long non-coding RNAs and their implications in cancer epigenetics. Biosci. Rep., 2013, 33(4), 667-675.
[http://dx.doi.org/10.1042/BSR20130054] [PMID: 23875687]
[12]
Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2), 281-297.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[13]
Macfarlane, L.A.; Murphy, P.R. MicroRNA: Biogenesis, function and role in cancer. Curr. Genomics, 2010, 11(7), 537-561.
[http://dx.doi.org/10.2174/138920210793175895] [PMID: 21532838]
[14]
Lynam-Lennon, N.; Maher, S.G.; Reynolds, J.V. The roles of microRNA in cancer and apoptosis. Biol. Rev. Camb. Philos. Soc., 2009, 84(1), 55-71.
[http://dx.doi.org/10.1111/j.1469-185X.2008.00061.x] [PMID: 19046400]
[15]
Garzon, R.; Marcucci, G.; Croce, C.M. Targeting microRNAs in cancer: Rationale, strategies and challenges. Nat. Rev. Drug Discov., 2010, 9(10), 775-789.
[http://dx.doi.org/10.1038/nrd3179] [PMID: 20885409]
[16]
Henry, J.C.; Azevedo-Pouly, A.C.P.; Schmittgen, T.D. MicroRNA replacement therapy for cancer. Pharm. Res., 2011, 28(12), 3030-3042.
[http://dx.doi.org/10.1007/s11095-011-0548-9] [PMID: 21879389]
[17]
Bader, A.G.; Brown, D.; Stoudemire, J.; Lammers, P. Developing therapeutic microRNAs for cancer. Gene Ther., 2011, 18(12), 1121-1126.
[http://dx.doi.org/10.1038/gt.2011.79] [PMID: 21633392]
[18]
Weiler, J.; Hunziker, J.; Hall, J. Anti-miRNA oligonucleotides (AMOs): Ammunition to target miRNAs implicated in human disease? Gene Ther., 2006, 13(6), 496-502.
[http://dx.doi.org/10.1038/sj.gt.3302654] [PMID: 16195701]
[19]
Zhang, S.; Chen, L.; Jung, E.J.; Calin, G.A. Targeting microRNAs with small molecules: From dream to reality. Clin. Pharmacol. Ther., 2010, 87(6), 754-758.
[http://dx.doi.org/10.1038/clpt.2010.46] [PMID: 20428111]
[20]
Vester, B.; Wengel, J. LNA (locked nucleic acid): High-affinity targeting of complementary RNA and DNA. Biochemistry, 2004, 43(42), 13233-13241.
[http://dx.doi.org/10.1021/bi0485732] [PMID: 15491130]
[21]
Elmén, J.; Lindow, M.; Schütz, S.; Lawrence, M.; Petri, A.; Obad, S.; Lindholm, M.; Hedtjärn, M.; Hansen, H.F.; Berger, U.; Gullans, S.; Kearney, P.; Sarnow, P.; Straarup, E.M.; Kauppinen, S. LNA-mediated microRNA silencing in non-human primates. Nature, 2008, 452(7189), 896-899.
[http://dx.doi.org/10.1038/nature06783] [PMID: 18368051]
[22]
Obad, S.; dos Santos, C.O.; Petri, A.; Heidenblad, M.; Broom, O.; Ruse, C.; Fu, C.; Lindow, M.; Stenvang, J.; Straarup, E.M.; Hansen, H.F.; Koch, T.; Pappin, D.; Hannon, G.J.; Kauppinen, S. Silencing of microRNA families by seed-targeting tiny LNAs. Nat. Genet., 2011, 43(4), 371-378.
[http://dx.doi.org/10.1038/ng.786] [PMID: 21423181]
[23]
Krützfeldt, J.; Rajewsky, N.; Braich, R.; Rajeev, K.G.; Tuschl, T.; Manoharan, M.; Stoffel, M. Silencing of microRNAs in vivo with ‘antagomirs’. Nature, 2005, 438(7068), 685-689.
[http://dx.doi.org/10.1038/nature04303] [PMID: 16258535]
[24]
Ebert, M.S.; Neilson, J.R.; Sharp, P.A. MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian cells. Nat. Methods, 2007, 4(9), 721-726.
[http://dx.doi.org/10.1038/nmeth1079] [PMID: 17694064]
[25]
Li, Z.; Rana, T.M. Therapeutic targeting of microRNAs: Current status and future challenges. Nat. Rev. Drug Discov., 2014, 13(8), 622-638.
[http://dx.doi.org/10.1038/nrd4359] [PMID: 25011539]
[26]
Jiao, C.; Zhu, A.; Jiao, X.; Ge, J.; Xu, X. Combined low miR-34s are associated with unfavorable prognosis in children with hepatoblastoma: A Chinese population-based study. J. Pediatr. Surg., 2016, 51(8), 1355-1361.
[http://dx.doi.org/10.1016/j.jpedsurg.2016.02.091] [PMID: 27046304]
[27]
Zeng, Z.; Chen, X.; Zhu, D.; Luo, Z.; Yang, M. Low expression of circulating MicroRNA-34c is associated with poor prognosis in triple-negative breast cancer. Yonsei Med. J., 2017, 58(4), 697-702.
[http://dx.doi.org/10.3349/ymj.2017.58.4.697] [PMID: 28540980]
[28]
Liang, J.; Li, Y.; Daniels, G.; Sfanos, K.; De Marzo, A.; Wei, J.; Li, X.; Chen, W.; Wang, J.; Zhong, X.; Melamed, J.; Zhao, J.; Lee, P. LEF1 targeting EMT in prostate cancer invasion is regulated by miR-34a. Mol. Cancer Res., 2015, 13(4), 681-688.
[http://dx.doi.org/10.1158/1541-7786.MCR-14-0503] [PMID: 25587085]
[29]
Yang, F.; Li, Q.J.; Gong, Z.B.; Zhou, L.; You, N.; Wang, S.; Li, X.L.; Li, J.J.; An, J.Z.; Wang, D.S.; He, Y.; Dou, K.F. MicroRNA-34a targets Bcl-2 and sensitizes human hepatocellular carcinoma cells to sorafenib treatment. Technol. Cancer Res. Treat., 2014, 13(1), 77-86.
[http://dx.doi.org/10.7785/tcrt.2012.500364] [PMID: 23862748]
[30]
Yamamura, S.; Saini, S.; Majid, S.; Hirata, H.; Ueno, K.; Deng, G.; Dahiya, R. MicroRNA-34a modulates c-Myc transcriptional complexes to suppress malignancy in human prostate cancer cells. PLoS One, 2012, 7(1)e29722
[http://dx.doi.org/10.1371/journal.pone.0029722] [PMID: 22235332]
[31]
Zhang, X.; Ai, F.; Li, X.; Tian, L.; Wang, X.; Shen, S.; Liu, F. MicroRNA-34a suppresses colorectal cancer metastasis by regulating notch signaling. Oncol. Lett., 2017, 14(2), 2325-2333.
[http://dx.doi.org/10.3892/ol.2017.6444] [PMID: 28781671]
[32]
Wang, X.; Li, J.; Dong, K.; Lin, F.; Long, M.; Ouyang, Y.; Wei, J.; Chen, X.; Weng, Y.; He, T.; Zhang, H. Tumor suppressor miR-34a targets PD-L1 and functions as a potential immunotherapeutic target in acute myeloid leukemia. Cell. Signal., 2015, 27(3), 443-452.
[http://dx.doi.org/10.1016/j.cellsig.2014.12.003] [PMID: 25499621]
[33]
Hong, D.S.; Kang, Y.K.; Brenner, A.J.; Sachdev, J.C.; Ejadi, S.; Borad, M.J.; Kim, T.Y.; Lim, H.Y.; Park, K.; Becerra, C.; Bader, A.G.; Stoudemire, J.; Smith, S.; Kim, S.; Beg, M.S. MRX34, a liposomal MiR-34 Mimic, in patients with advanced solid tumors: Final dose-escalation results from a first-in-human phase I trial of microrna therapy. J. Clin. Oncol., 2016, 34(15)(Suppl.), 2508.
[http://dx.doi.org/10.1200/JCO.2016.34.15_suppl.2508] [PMID: 27044938]
[34]
Beg, M.S.; Brenner, A.J.; Sachdev, J.; Borad, M.; Kang, Y.K.; Stoudemire, J.; Smith, S.; Bader, A.G.; Kim, S.; Hong, D.S.; Phase, I. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest. New Drugs, 2017, 35(2), 180-188.
[http://dx.doi.org/10.1007/s10637-016-0407-y] [PMID: 27917453]
[35]
Calin, G.A.; Dumitru, C.D.; Shimizu, M.; Bichi, R.; Zupo, S.; Noch, E.; Aldler, H.; Rattan, S.; Keating, M.; Rai, K.; Rassenti, L.; Kipps, T.; Negrini, M.; Bullrich, F.; Croce, C.M. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA, 2002, 99(24), 15524-15529.
[http://dx.doi.org/10.1073/pnas.242606799] [PMID: 12434020]
[36]
Cimmino, A.; Calin, G.A.; Fabbri, M.; Iorio, M.V.; Ferracin, M.; Shimizu, M.; Wojcik, S.E.; Aqeilan, R.I.; Zupo, S.; Dono, M.; Rassenti, L.; Alder, H.; Volinia, S.; Liu, C.G.; Kipps, T.J.; Negrini, M.; Croce, C.M. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA, 2005, 102(39), 13944-13949.
[http://dx.doi.org/10.1073/pnas.0506654102] [PMID: 16166262]
[37]
Bandi, N.; Zbinden, S.; Gugger, M.; Arnold, M.; Kocher, V.; Hasan, L.; Kappeler, A.; Brunner, T.; Vassella, E. miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer. Cancer Res., 2009, 69(13), 5553-5559.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4277] [PMID: 19549910]
[38]
Reid, G.; Pel, M.E.; Kirschner, M.B.; Cheng, Y.Y.; Mugridge, N.; Weiss, J.; Williams, M.; Wright, C.; Edelman, J.J.B.; Vallely, M.P.; McCaughan, B.C.; Klebe, S.; Brahmbhatt, H.; MacDiarmid, J.A.; van Zandwijk, N. Restoring expression of miR-16: A novel approach to therapy for malignant pleural mesothelioma. Ann. Oncol., 2013, 24(12), 3128-3135.
[http://dx.doi.org/10.1093/annonc/mdt412] [PMID: 24148817]
[39]
van Zandwijk, N.; Pavlakis, N.; Kao, S.C.; Linton, A.; Boyer, M.J.; Clarke, S.; Huynh, Y.; Chrzanowska, A.; Fulham, M.J.; Bailey, D.L.; Cooper, W.A.; Kritharides, L.; Ridley, L.; Pattison, S.T.; MacDiarmid, J.; Brahmbhatt, H.; Reid, G. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: A first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol., 2017, 18(10), 1386-1396.
[http://dx.doi.org/10.1016/S1470-2045(17)30621-6] [PMID: 28870611]
[40]
Bayraktar, R.; Van Roosbroeck, K. miR-155 in cancer drug resistance and as target for miRNA-based therapeutics. Cancer Metastasis Rev., 2018, 37(1), 33-44.
[http://dx.doi.org/10.1007/s10555-017-9724-7] [PMID: 29282605]
[41]
Peng, Y.; Dong, W.; Lin, T.X.; Zhong, G.Z.; Liao, B.; Wang, B.; Gu, P.; Huang, L.; Xie, Y.; Lu, F.D.; Chen, X.; Xie, W.B.; He, W.; Wu, S.X.; Huang, J. MicroRNA-155 promotes bladder cancer growth by repressing the tumor suppressor DMTF1. Oncotarget, 2015, 6(18), 16043-16058.
[http://dx.doi.org/10.18632/oncotarget.3755] [PMID: 25965824]
[42]
Liu, F.; Song, D.; Wu, Y.; Liu, X.; Zhu, J.; Tang, Y. MiR-155 inhibits proliferation and invasion by directly targeting PDCD4 in non-small cell lung cancer. Thorac. Cancer, 2017, 8(6), 613-619.
[http://dx.doi.org/10.1111/1759-7714.12492] [PMID: 28842954]
[43]
Fulci, V.; Chiaretti, S.; Goldoni, M.; Azzalin, G.; Carucci, N.; Tavolaro, S.; Castellano, L.; Magrelli, A.; Citarella, F.; Messina, M.; Maggio, R.; Peragine, N.; Santangelo, S.; Mauro, F.R.; Landgraf, P.; Tuschl, T.; Weir, D.B.; Chien, M.; Russo, J.J.; Ju, J.; Sheridan, R.; Sander, C.; Zavolan, M.; Guarini, A.; Foà, R.; Macino, G. Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. Blood, 2007, 109(11), 4944-4951.
[http://dx.doi.org/10.1182/blood-2006-12-062398] [PMID: 17327404]
[44]
Lawrie, C.H.; Soneji, S.; Marafioti, T.; Cooper, C.D.O.; Palazzo, S.; Paterson, J.C.; Cattan, H.; Enver, T.; Mager, R.; Boultwood, J.; Wainscoat, J.S.; Hatton, C.S. MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int. J. Cancer, 2007, 121(5), 1156-1161.
[http://dx.doi.org/10.1002/ijc.22800] [PMID: 17487835]
[45]
Kluiver, J.; Poppema, S.; de Jong, D.; Blokzijl, T.; Harms, G.; Jacobs, S.; Kroesen, B-J.; van den Berg, A. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J. Pathol., 2005, 207(2), 243-249.
[http://dx.doi.org/10.1002/path.1825] [PMID: 16041695]
[46]
Querfeld, C.; Foss, F.M.; Kim, Y.H.; Pinter-Brown, L.; William, B.M.; Porcu, P.; Pacheco, T.; Haverkos, B.M.; DeSimone, J.; Guitart, J.; Halwani, A.S.; Eradat, H.A.; Huen, A.; Schroeder, K.; Pestano, L.A.; Williams, P.J., Jr; Cheronis, I.; Gordon, G.S.; Escolar, D.; Rubin, P.; Marshall, W.S. Phase 1 trial of cobomarsen, an inhibitor of Mir-155, in cutaneous T cell lymphoma. Blood, 2018, 132(Suppl. 1), 2903-2903.
[http://dx.doi.org/10.1182/blood-2018-99-119861]
[47]
Mercer, T.R.; Mattick, J.S. Structure and function of long noncoding RNAs in epigenetic regulation. Nat. Struct. Mol. Biol., 2013, 20(3), 300-307.
[http://dx.doi.org/10.1038/nsmb.2480] [PMID: 23463315]
[48]
Ponting, C.P.; Oliver, P.L.; Reik, W. Evolution and functions of long noncoding RNAs. Cell, 2009, 136(4), 629-641.
[http://dx.doi.org/10.1016/j.cell.2009.02.006] [PMID: 19239885]
[49]
Hu, G.; Niu, F.; Humburg, B.A.; Liao, K.; Bendi, S.; Callen, S.; Fox, H.S.; Buch, S. Molecular mechanisms of long noncoding RNAs and their role in disease pathogenesis. Oncotarget, 2018, 9(26), 18648-18663.
[http://dx.doi.org/10.18632/oncotarget.24307] [PMID: 29719633]
[50]
Fernandes, J.C.R.; Acuña, S.M.; Aoki, J.I.; Floeter-Winter, L.M.; Muxel, S.M. Long non-coding RNAs in the regulation of gene expression: Physiology and disease. Noncoding RNA, 2019, 5(1)E17
[http://dx.doi.org/10.3390/ncrna5010017] [PMID: 30781588]
[51]
Arun, G.; Diermeier, S.D.; Spector, D.L. Therapeutic targeting of long non-coding RNAs in cancer. Trends Mol. Med., 2018, 24(3), 257-277.
[http://dx.doi.org/10.1016/j.molmed.2018.01.001] [PMID: 29449148]
[52]
Huarte, M. The emerging role of lncRNAs in cancer. Nat. Med., 2015, 21(11), 1253-1261.
[http://dx.doi.org/10.1038/nm.3981] [PMID: 26540387]
[53]
Aprile, M.; Katopodi, V.; Leucci, E.; Costa, V. LncRNAs in cancer: From garbage to junk. Cancers, (Basel) 2020, 12(11), 1-32.
[http://dx.doi.org/10.3390/cancers12113220]] [PMID: 33142861]
[54]
Derrien, T.; Johnson, R.; Bussotti, G.; Tanzer, A.; Djebali, S.; Tilgner, H.; Guernec, G.; Martin, D.; Merkel, A.; Knowles, D.G.; Lagarde, J.; Veeravalli, L.; Ruan, X.; Ruan, Y.; Lassmann, T.; Carninci, P.; Brown, J.B.; Lipovich, L.; Gonzalez, J.M.; Thomas, M.; Davis, C.A.; Shiekhattar, R.; Gingeras, T.R.; Hubbard, T.J.; Notredame, C.; Harrow, J.; Guigó, R. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res., 2012, 22(9), 1775-1789.
[http://dx.doi.org/10.1101/gr.132159.111] [PMID: 22955988]
[55]
Slaby, O.; Laga, R.; Sedlacek, O. Therapeutic targeting of non-coding RNAs in cancer. Biochem. J., 2017, 474(24), 4219-4251.
[http://dx.doi.org/10.1042/BCJ20170079] [PMID: 29242381]
[56]
Fathi Dizaji, B. Strategies to target long non-coding RNAs in cancer treatment: Progress and challenges. Egypt. J. Med. Hum. Genet., 2020, 21(1), 41.
[http://dx.doi.org/10.1186/s43042-020-00074-4]
[57]
Wong, N.K.; Huang, C.L.; Islam, R.; Yip, S.P. Long non-coding RNAs in hematological malignancies: Translating basic techniques into diagnostic and therapeutic strategies. J. Hematol. Oncol., 2018, 11(1), 131.
[http://dx.doi.org/10.1186/s13045-018-0673-6] [PMID: 30466456]
[58]
Martinez, J.; Patkaniowska, A.; Urlaub, H.; Lührmann, R.; Tuschl, T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell, 2002, 110(5), 563-574.
[http://dx.doi.org/10.1016/S0092-8674(02)00908-X] [PMID: 12230974]
[59]
Lennox, K.A.; Behlke, M.A. Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Nucleic Acids Res., 2016, 44(2), 863-877.
[http://dx.doi.org/10.1093/nar/gkv1206] [PMID: 26578588]
[60]
Prabhakar, B.; Zhong, X.B.; Rasmussen, T.P. Exploiting long noncoding RNAs as pharmacological targets to modulate epigenetic diseases. Yale J. Biol. Med., 2017, 90(1), 73-86.
[PMID: 28356895]
[61]
Vickers, T.A.; Crooke, S.T. Antisense oligonucleotides capable of promoting specific target mRNA reduction via competing RNase H1-dependent and independent mechanisms. PLoS One, 2014, 9(10)e108625
[http://dx.doi.org/10.1371/journal.pone.0108625] [PMID: 25299183]
[62]
Kurreck, J.; Wyszko, E.; Gillen, C.; Erdmann, V.A. Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res., 2002, 30(9), 1911-1918.
[http://dx.doi.org/10.1093/nar/30.9.1911] [PMID: 11972327]
[63]
Faghihi, M.A.; Wahlestedt, C. Regulatory roles of natural antisense transcripts. Nat. Rev. Mol. Cell Biol., 2009, 10(9), 637-643.
[http://dx.doi.org/10.1038/nrm2738] [PMID: 19638999]
[64]
Wahlestedt, C. Targeting long non-coding RNA to therapeutically upregulate gene expression. Nat. Rev. Drug Discov., 2013, 12(6), 433-446.
[http://dx.doi.org/10.1038/nrd4018] [PMID: 23722346]
[65]
Liu, S.J.; Horlbeck, M.A.; Cho, S.W.; Birk, H.S.; Malatesta, M.; He, D.; Attenello, F.J.; Villalta, J.E.; Cho, M.Y.; Chen, Y. CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science, 2017, 355(6320), 7111.
[http://dx.doi.org/10.1126/science.aah7111]
[66]
Kolb, G.; Reigadas, S.; Castanotto, D.; Faure, A.; Ventura, M.; Rossi, J.J.; Toulmé, J.J. Endogenous expression of an anti-TAR aptamer reduces HIV-1 replication. RNA Biol., 2006, 3(4), 150-156.
[http://dx.doi.org/10.4161/rna.3.4.3811] [PMID: 17299271]
[67]
Darfeuille, F.; Reigadas, S.; Hansen, J.B.; Orum, H.; Di Primo, C.; Toulmé, J.J. Aptamers targeted to an RNA hairpin show improved specificity compared to that of complementary oligonucleotides. Biochemistry, 2006, 45(39), 12076-12082.
[http://dx.doi.org/10.1021/bi0606344] [PMID: 17002307]
[68]
Ji, P.; Diederichs, S.; Wang, W.; Böing, S.; Metzger, R.; Schneider, P.M.; Tidow, N.; Brandt, B.; Buerger, H.; Bulk, E.; Thomas, M.; Berdel, W.E.; Serve, H.; Müller-Tidow, C. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 2003, 22(39), 8031-8041.
[http://dx.doi.org/10.1038/sj.onc.1206928] [PMID: 12970751]
[69]
Liu, J.; Peng, W.X.; Mo, Y.Y.; Luo, D. MALAT1-mediated tumorigenesis. Landmark Ed., 2017, 22(1), 66-80.
[http://dx.doi.org/10.2741/4472] [PMID: 27814602]
[70]
Gutschner, T.; Hämmerle, M.; Eissmann, M.; Hsu, J.; Kim, Y.; Hung, G.; Revenko, A.; Arun, G.; Stentrup, M.; Gross, M.; Zörnig, M.; MacLeod, A.R.; Spector, D.L.; Diederichs, S. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res., 2013, 73(3), 1180-1189.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2850] [PMID: 23243023]
[71]
Arun, G.; Diermeier, S.; Akerman, M.; Chang, K.C.; Wilkinson, J.E.; Hearn, S.; Kim, Y.; MacLeod, A.R.; Krainer, A.R.; Norton, L.; Brogi, E.; Egeblad, M.; Spector, D.L. Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss. Genes Dev., 2016, 30(1), 34-51.
[http://dx.doi.org/10.1101/gad.270959.115] [PMID: 26701265]
[72]
Amodio, N.; Stamato, M.A.; Juli, G.; Morelli, E.; Fulciniti, M.; Manzoni, M.; Taiana, E.; Agnelli, L.; Cantafio, M.E.G.; Romeo, E.; Raimondi, L.; Caracciolo, D.; Zuccalà, V.; Rossi, M.; Neri, A.; Munshi, N.C.; Tagliaferri, P.; Tassone, P. Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity. Leukemia, 2018, 32(9), 1948-1957.
[http://dx.doi.org/10.1038/s41375-018-0067-3] [PMID: 29487387]
[73]
Zeng, C.; Xu, Y.; Xu, L.; Yu, X.; Cheng, J.; Yang, L.; Chen, S.; Li, Y. Inhibition of long non-coding RNA NEAT1 impairs myeloid differentiation in acute promyelocytic leukemia cells. BMC Cancer, 2014, 14(1), 693.
[http://dx.doi.org/10.1186/1471-2407-14-693] [PMID: 25245097]
[74]
Zhao, C.; Wang, S.; Zhao, Y.; Du, F.; Wang, W.; Lv, P.; Qi, L. Long noncoding RNA NEAT1 modulates cell proliferation and apoptosis by regulating miR-23a-3p/SMC1A in acute myeloid leukemia. J. Cell. Physiol., 2019, 234(5), 6161-6172.
[http://dx.doi.org/10.1002/jcp.27393] [PMID: 30246348]
[75]
Chen, Q.; Cai, J.; Wang, Q.; Wang, Y.; Liu, M.; Yang, J.; Zhou, J.; Kang, C.; Li, M.; Jiang, C. Long noncoding RNA NEAT1, regulated by the EGFR pathway, contributes to glioblastoma progression through the WNT/β-catenin pathway by scaffolding EZH2. Clin. Cancer Res., 2018, 24(3), 684-695.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0605] [PMID: 29138341]
[76]
Taiana, E.; Favasuli, V.; Ronchetti, D.; Todoerti, K.; Pelizzoni, F.; Manzoni, M.; Barbieri, M.; Fabris, S.; Silvestris, I.; Gallo Cantafio, M.E.; Platonova, N.; Zuccalà, V.; Maltese, L.; Soncini, D.; Ruberti, S.; Cea, M.; Chiaramonte, R.; Amodio, N.; Tassone, P.; Agnelli, L.; Neri, A. Long non-coding RNA NEAT1 targeting impairs the DNA repair machinery and triggers anti-tumor activity in multiple myeloma. Leukemia, 2020, 34(1), 234-244.
[http://dx.doi.org/10.1038/s41375-019-0542-5] [PMID: 31427718]
[77]
Xiao, G.; Yao, J.; Kong, D.; Ye, C.; Chen, R.; Li, L.; Zeng, T.; Wang, L.; Zhang, W.; Shi, X.; Zhou, T.; Li, J.; Wang, Y.; Xu, C.L.; Jiang, J.; Sun, Y. The long noncoding RNA TTTY15, which is located on the Y chromosome, promotes prostate cancer progression by sponging let-7. Eur. Urol., 2019, 76(3), 315-326.
[http://dx.doi.org/10.1016/j.eururo.2018.11.012] [PMID: 30527798]
[78]
Ling, H. Non-coding RNAs: Therapeutic strategies and delivery systems. Adv. Exp. Med. Biol., 2016, 937, 229-237.
[http://dx.doi.org/10.1007/978-3-319-42059-2_12] [PMID: 27573903]
[79]
Yang, N. An overview of viral and nonviral delivery systems for microRNA. Int. J. Pharm. Investig., 2015, 5(4), 179-181.
[http://dx.doi.org/10.4103/2230-973X.167646] [PMID: 26682187]
[80]
Chen, Y.; Li, Z.; Chen, X.; Zhang, S. Long non-coding RNAs: From disease code to drug role. Acta Pharm. Sin. B, 2021, 11(2), 340-354.
[http://dx.doi.org/10.1016/j.apsb.2020.10.001] [PMID: 33643816]
[81]
Fernandez-Piñeiro, I.; Badiola, I.; Sanchez, A. Nanocarriers for microRNA delivery in cancer medicine. Biotechnol. Adv., 2017, 35(3), 350-360.
[http://dx.doi.org/10.1016/j.biotechadv.2017.03.002] [PMID: 28286148]
[82]
Xia, Y.; Tian, J.; Chen, X. Effect of surface properties on liposomal siRNA delivery. Biomaterials, 2016, 79, 56-68.
[http://dx.doi.org/10.1016/j.biomaterials.2015.11.056] [PMID: 26695117]
[83]
Barba, A.A.; Bochicchio, S.; Dalmoro, A.; Lamberti, G. Lipid delivery systems for nucleic-acid-based-drugs: From production to clinical applications. Pharmaceutics, 2019, 11(8), 5-7.
[http://dx.doi.org/10.3390/pharmaceutics11080360] [PMID: 31344836]
[84]
Xu, F.; Liao, J.Z.; Xiang, G.Y.; Zhao, P.X.; Ye, F.; Zhao, Q.; He, X.X. MiR-101 and doxorubicin codelivered by liposomes suppressing malignant properties of hepatocellular carcinoma. Cancer Med., 2017, 6(3), 651-661.
[http://dx.doi.org/10.1002/cam4.1016] [PMID: 28135055]
[85]
Kalluri, R.; LeBleu, V.S. The biology, function, and biomedical applications of exosomes. Science, 2020, 367(6478)
[http://dx.doi.org/10.1126/science.aau6977]
[86]
Ha, D.; Yang, N.; Nadithe, V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: Current perspectives and future challenges. Acta Pharm. Sin. B, 2016, 6(4), 287-296.
[http://dx.doi.org/10.1016/j.apsb.2016.02.001] [PMID: 27471669]
[87]
Lang, F.M.; Hossain, A.; Gumin, J.; Momin, E.N.; Shimizu, Y.; Ledbetter, D.; Shahar, T.; Yamashita, S.; Parker Kerrigan, B.; Fueyo, J.; Sawaya, R.; Lang, F.F. Mesenchymal stem cells as natural biofactories for exosomes carrying miR-124a in the treatment of gliomas. Neuro-oncol., 2018, 20(3), 380-390.
[http://dx.doi.org/10.1093/neuonc/nox152] [PMID: 29016843]
[88]
Bai, Z.; Wei, J.; Yu, C.; Han, X.; Qin, X.; Zhang, C.; Liao, W.; Li, L.; Huang, W. Non-viral nanocarriers for intracellular delivery of microRNA therapeutics. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(8), 1209-1225.
[http://dx.doi.org/10.1039/C8TB02946F] [PMID: 32255160]
[89]
Kunath, K.; von Harpe, A.; Fischer, D.; Petersen, H.; Bickel, U.; Voigt, K.; Kissel, T. Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: Comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J. Control. Release, 2003, 89(1), 113-125.
[http://dx.doi.org/10.1016/S0168-3659(03)00076-2] [PMID: 12695067]
[90]
Zakeri, A.; Kouhbanani, M.A.J.; Beheshtkhoo, N.; Beigi, V.; Mousavi, S.M.; Hashemi, S.A.R.; Karimi Zade, A.; Amani, A.M.; Savardashtaki, A.; Mirzaei, E.; Jahandideh, S.; Movahedpour, A. Polyethylenimine-based nanocarriers in co-delivery of drug and gene: A developing horizon. Nano Rev. Exp., 2018, 9(1)1488497
[http://dx.doi.org/10.1080/20022727.2018.1488497] [PMID: 30410712]
[91]
Dai, Y.; Zhang, X. MicroRNA delivery with bioreducible polyethylenimine as a non-viral vector for breast cancer gene therapy. Macromol. Biosci., 2019, 19(4)e1800445
[http://dx.doi.org/10.1002/mabi.201800445] [PMID: 30614181]
[92]
Li, Y.; Dai, Y.; Zhang, X.; Chen, J. Three-layered polyplex as a microRNA targeted delivery system for breast cancer gene therapy. Nanotechnology, 2017, 28(28)285101
[http://dx.doi.org/10.1088/1361-6528/aa757f] [PMID: 28627503]
[93]
Newkome, G.R.; Shreiner, C.D. Poly(amidoamine), polypropylenimine, and related dendrimers and dendrons possessing different 1→2 branching motifs: An overview of the divergent procedures. Polymer, (Guildf.), 2008, 49(1), 1-173.
[http://dx.doi.org/10.1016/j.polymer.2007.10.021] [http://dx.doi.org/10.1016/j.polymer.2007.10.021]
[94]
Conde, J.; Oliva, N.; Atilano, M.; Song, H.S.; Artzi, N. Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment. Nat. Mater., 2016, 15(3), 353-363.
[http://dx.doi.org/10.1038/nmat4497] [PMID: 26641016]
[95]
Makadia, H.K.; Siegel, S.J. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, (Basel), 2011, 3(3), 1377-1397.
[http://dx.doi.org/10.3390/polym3031377] [PMID: 22577513]
[96]
Wang, S.; Zhang, J.; Wang, Y.; Chen, M. Hyaluronic acid-coated PEI-PLGA nanoparticles mediated co-delivery of doxorubicin and miR-542-3p for triple negative breast cancer therapy. Nanomedicine, 2016, 12(2), 411-420.
[http://dx.doi.org/10.1016/j.nano.2015.09.014] [PMID: 26711968]
[97]
Denizli, M.; Aslan, B.; Mangala, L.S.; Jiang, D.; Rodriguez-Aguayo, C.; Lopez-Berestein, G.; Sood, A.K. Chitosan nanoparticles for miRNA delivery. Methods Mol. Biol., 2017, 1632, 219-230.
[http://dx.doi.org/10.1007/978-1-4939-7138-1_14] [PMID: 28730442]
[98]
Gaur, S.; Wen, Y.; Song, J.H.; Parikh, N.U.; Mangala, L.S.; Blessing, A.M.; Ivan, C.; Wu, S.Y.; Varkaris, A.; Shi, Y.; Lopez-Berestein, G.; Frigo, D.E.; Sood, A.K.; Gallick, G.E. Chitosan nanoparticle-mediated delivery of miRNA-34a decreases prostate tumor growth in the bone and its expression induces non-canonical autophagy. Oncotarget, 2015, 6(30), 29161-29177.
[http://dx.doi.org/10.18632/oncotarget.4971] [PMID: 26313360]
[99]
Fu, Y.; Chen, J.; Huang, Z. Recent progress in MicroRNA-based delivery systems for the treatment of human disease. ExRNA, 2019, 1(1), 1-14.
[http://dx.doi.org/10.1186/s41544-019-0024-y] [PMID: 34171007]
[100]
Mamaeva, V.; Sahlgren, C.; Lindén, M. Mesoporous silica nanoparticles in medicine--recent advances. Adv. Drug Deliv. Rev., 2013, 65(5), 689-702.
[http://dx.doi.org/10.1016/j.addr.2012.07.018] [PMID: 22921598]
[101]
Li, Y.; Duo, Y.; Zhai, P.; He, L.; Zhong, K.; Zhang, Y.; Huang, K.; Luo, J.; Zhang, H.; Yu, X. Dual targeting delivery of miR-328 by functionalized mesoporous silica nanoparticles for colorectal cancer therapy. Nanomedicine, (Lond.), 2018, 13(14), 1753-1772.
[http://dx.doi.org/10.2217/nnm-2017-0353]] [PMID: 30084727]
[102]
Kong, F.Y.; Zhang, J.W.; Li, R.F.; Wang, Z.X.; Wang, W.J.; Wang, W. Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules, 2017, 22(9)E1445
[http://dx.doi.org/10.3390/molecules22091445] [PMID: 28858253]
[103]
Xue, H.Y.; Liu, Y.; Liao, J.Z.; Lin, J.S.; Li, B.; Yuan, W.G.; Lee, R.J.; Li, L.; Xu, C.R.; He, X.X. Gold nanoparticles delivered miR-375 for treatment of hepatocellular carcinoma. Oncotarget, 2016, 7(52), 86675-86686.
[http://dx.doi.org/10.18632/oncotarget.13431] [PMID: 27880727]
[104]
Gong, N.; Teng, X.; Li, J.; Liang, X.J. Antisense oligonucleotide-conjugated nanostructure-targeting lncRNA MALAT1 inhibits cancer metastasis. ACS Appl. Mater. Interfaces, 2019, 11(1), 37-42.
[http://dx.doi.org/10.1021/acsami.8b18288] [PMID: 30548064]
[105]
Li, Y.; Chen, Y.; Li, J.; Zhang, Z.; Huang, C.; Lian, G.; Yang, K.; Chen, S.; Lin, Y.; Wang, L.; Huang, K.; Zeng, L. Co-delivery of microRNA-21 antisense oligonucleotides and gemcitabine using nanomedicine for pancreatic cancer therapy. Cancer Sci., 2017, 108(7), 1493-1503.
[http://dx.doi.org/10.1111/cas.13267] [PMID: 28444967]
[106]
Vo, J.N.; Cieslik, M.; Zhang, Y.; Shukla, S.; Xiao, L.; Zhang, Y.; Wu, Y-M.; Dhanasekaran, S.M.; Engelke, C.G.; Cao, X.; Robinson, D.R.; Nesvizhskii, A.I.; Chinnaiyan, A.M. The landscape of circular RNA in cancer. Cell, 2019, 176(4), 869-881.e13.
[http://dx.doi.org/10.1016/j.cell.2018.12.021] [PMID: 30735636]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy