Abstract
Background: The chemistry of organoselenium reagents provides an asset for organic synthesis. The versatility of these reagents as electrophiles and nucleophiles makes them one of the key components of organic synthesis. Various synthetic transformations such as oxyselenenylations, selenocyclization and selenoxide elimination have been successfully achieved using organoselenium reagents under mild reaction conditions. The presence of selenocysteine in a few mammalian enzymes was the key information for selenium chemists to explore the biochemistry of selenium compounds. Glutathione peroxidase (GPx), a mammalian selenoenzyme, is well known for maintaining redox equilibrium by detoxifying reactive oxygen species.
Objective: The aim is to critically analyze the recent development and prospects of synthesis and antioxidant properties of organoselenium compounds.
Methods: In this review, we summarised research and review papers from the PubMed and Scopus databases. The primary themes were linked to the synthesis of organoselenium compounds and their capacity to maintain cellular redox equilibrium when exposed to oxidative stress.
Results: The study reveals that diselenide compounds synthesised by various methods showed a better antioxidant activity profile compared to selenides. In a few cases, the activity was found better than the standard compound ebselen. Moreover, the synthesis and antioxidant activity of Selenium-based nanoparticles have been also included.
Conclusion: In the past two decades, various biological properties of organoselenium compounds have been extensively studied, including the antioxidant properties. This review article will give insight into the synthesis of different types of recently synthesised organoselenium compounds. The review would be helpful to the researchers working in the field of medicinal chemistry in directing the synthesis of new organoselenium compounds as antioxidants.
Keywords: Organoselenium, antioxidant activity, GPx mimics, diselenides, selenides, enzymes.
[http://dx.doi.org/10.1021/ba-1968-0076.ch051];
(b) Jones, D.N.; Mundy, D.; Whitehouse, R.D. Steroidal selenoxides diastereoisomeric at selenium; syn-elimination, absolute configuration, and optical rotatory dispersion characteristics. J. Chem. Soc. D, 1970, 86-87(2), 86.
[http://dx.doi.org/10.1039/c29700000086];
(c) Walter, R.; Roy, J. Selenomethionine, a potential catalytic antioxidant in biological systems. J. Org. Chem., 1971, 36(17), 2561-2563.
[http://dx.doi.org/10.1021/jo00816a045] [PMID: 5133874]
[http://dx.doi.org/10.1002/anie.201605239] [PMID: 27484052];
(b) Tancock, J.; Wirth, T. Selenium-mediated synthesis of tetrasubstituted naphthalenes through rearrangement. Molecules, 2015, 20(6), 10866-10872.
[http://dx.doi.org/10.3390/molecules200610866] [PMID: 26076108];
(c) Shahzad, S.A.; Vivant, C.; Wirth, T. Selenium-mediated synthesis of biaryls through rearrangement. Org. Lett., 2010, 12(6), 1364-1367.
[http://dx.doi.org/10.1021/ol100274e] [PMID: 20178316];
(d) Shahzad, S.A.; Wirth, T. Fast synthesis of benzofluorenes by selenium-mediated carbocyclizations. Angew. Chem. Int. Ed. Engl., 2009, 48(14), 2588-2591.
[http://dx.doi.org/10.1002/anie.200806148] [PMID: 19241429];
(e) Freudendahl, D.M.; Shahzad, S.A.; Wirth, T. Recent advances in organoselenium chemistry. Eur. J. Org. Chem., 2009, 2009(11), 1649-1664.
[http://dx.doi.org/10.1002/ejoc.200801171];
(f) Freudendahl, D.M.; Santoro, S.; Shahzad, S.A.; Santi, C.; Wirth, T. Green chemistry with selenium reagents: Development of efficient catalytic reactions. Angew. Chem. Int. Ed. Engl., 2009, 48(45), 8409-8411.
[http://dx.doi.org/10.1002/anie.200903893] [PMID: 19802863];
(g) Browne, D. M.; Wirth, T. New developments with chiral electrophilic selenium reagents. Curr. Org. Chem., 2006, 10, 1893-1903.
[http://dx.doi.org/10.2174/138527206778521213]
[http://dx.doi.org/10.1016/j.tet.2012.08.078];
(b) Singh, F.V.; Wirth, T. Selenium-catalyzed regioselective cyclization of unsaturated carboxylic acids using hypervalent iodine oxidants. Org. Lett., 2011, 13(24), 6504-6507.
[http://dx.doi.org/10.1021/ol202800k] [PMID: 22085140];
(c) Singh, F.V.; Wirth, T. Organoselenium Chemistry; Wirth, T., Ed.; Wiley-VCH, 2011, pp. 321-356.
[http://dx.doi.org/10.1002/9783527641949.ch8];
(d) Browne, D.M.; Niyomura, O.; Wirth, T. Catalytic use of selenium electrophiles in cyclizations. Org. Lett., 2007, 9(16), 3169-3171.
[http://dx.doi.org/10.1021/ol071223y] [PMID: 17608489];
(e) Braga, A.L.; Ludtke, D.S.; Vargas, F.; Braga, R.C. Catalytic applications of chiral organoselenium compounds in asymmetric synthesis. Synlett, 2006, 10(10), 1453-1466.
[http://dx.doi.org/10.1055/s-2006-941592]
[http://dx.doi.org/10.1002/chem.201405998] [PMID: 25766307];
(b) Wirth, T. Small organoselenium compounds: More than just glutathione peroxidase mimics. Angew. Chem. Int. Ed. Engl., 2015, 54(35), 10074-10076.
[http://dx.doi.org/10.1002/anie.201505056] [PMID: 26192066];
(c) Akhoon, S.A.; Naqvi, T.; Nisar, S.; Rizvi, M.A. Synthestic organo- selenium compounds in medicinal domain. Asian J. Chem., 2015, 27(8), 2745-2752.
[http://dx.doi.org/10.14233/ajchem.2015.18834];
(d) Singh, V.P.; Poon, J-F.; Butcher, R.J.; Engman, L. Pyridoxine-derived organoselenium compounds with glutathione peroxidase-like and chain-breaking antioxidant activity. Chemistry, 2014, 20(39), 12563-12571.
[http://dx.doi.org/10.1002/chem.201403229] [PMID: 25123932];
(e) Nascimento, V.; Alberto, E.E.; Tondo, D.W.; Dambrowski, D.; Detty, M.R.; Nome, F.; Braga, A.L. GPx-Like activity of selenides and selenoxides: Experimental evidence for the involvement of hydroxy perhydroxy selenane as the active species. J. Am. Chem. Soc., 2012, 134(1), 138-141.
[http://dx.doi.org/10.1021/ja209570y] [PMID: 22136421]
[http://dx.doi.org/10.1016/0014-5793(73)80755-0];
(b) Rotruck, J.T.; Pope, A.L.; Ganther, H.E.; Swanson, A.B.; Hafeman, D.G.; Hoekstra, W.G. Selenium: Biochemical role as a component of glutathione peroxidase. Science, 1973, 179, 588-590.
[http://dx.doi.org/10.1126/science.179.4073.588]
[http://dx.doi.org/10.1016/S0006-291X(05)80905-2] [PMID: 2268318];
(b) Köhrle, J. Iodothyronine deiodinases. Methods Enzymol., 2002, 347, 125-167.
[http://dx.doi.org/10.1016/S0076-6879(02)47014-0] [PMID: 11898402]
[http://dx.doi.org/10.1073/pnas.93.3.1006] [PMID: 8577704]
[http://dx.doi.org/10.1002/9783527641949];
(b) Patai, S.; Rappoport, Z. The Chemistry of Organic Selenium and Tellurium Compounds; John Wiley, 2012, p. 3.;
(c) Back, T.G. Organoselenium Chemistry; Oxford University Press: Oxford, 1999. ;
(d) Wirth, T. Organoselenium chemistry: Modern developments in organic synthesis. Top. Curr. Chem., 2000, 208, 259.
[http://dx.doi.org/10.1007/3-540-48171-0_1];
(e) Liotta, D. Organoselenium Chemistry; John Wiley & Sons: New York, 1987. ;
(f) Paulmier, C. Selenium Reagents and Intermediates in Organic Synthesis; Pergamon Press: Oxford, 1986. ;
(g) Patai, S.; Rappoport, Z. The Chemistry of Organic Selenium and Tellurium Compounds; Wiley, 1986, p. 1.
[http://dx.doi.org/10.1002/9780470771761];
(h) Patai, S.; Rappoport, Z. The Chemistry of Organic Selenium and Tellurium Compounds; Wiley, 1987, p. 2.;
(i) Nicolaou, K.C.; Petasis, N.A. Selenium in Natural Products Synthesis; CIS: Philadelphia, 1984. ;
(j) Krief, A.; Hevesi, L. Organoselenium Chemistry I; Springer: Berlin, 1988.
[http://dx.doi.org/10.1007/978-3-642-73241-6];
(k) Klayman, D.L.; Günther, W.H.H Organic Selenium Compounds: Their Chemistry and Biology; Wiley: New York, 1973.
(b) Bhowmick, D.; Mugesh, G. Patai Series: Organic Selenium and Tellurium Compounds; Rappoport, Z., Ed.; John Wiley & Sons, 2013, 4, p. 1175.;
(c) Braga, A.L.; Rafique, J. Patai Series: Organic Selenium and Tellurium Compounds; Rappoport, Z., Ed.; John Wiley & Sons, 2014, Vol. 4, p. 1175.;
(d) Singh, F.V.; Wirth, T. Patai Series: Organic Selenium and Tellurium Compounds; Rappoport, Z., Ed.; John Wiley & Sons, 2012, Vol. 3, p. 303.;
(e) Nogueira, C.W.; Rocha, J.B.T. Patai Series: Organic Selenium and Tellurium Compounds; Rappoport, Z., Ed.; John Wiley & Sons, 2012, Vol. 3, p. 1277.;
(f) Freudendahl, D.M.; Wirth, T. Selenium and Tellurium Chemistry; Woolins, J.D.; Laitinen, R.S., Eds.; Springer, 2011, p. 41.
[http://dx.doi.org/10.1007/978-3-642-20699-3_2];
(g) Bhujan, B.J.; Mugesh, G. Organoselenium Chemistry; Wirth, T., Ed.; Wiley-VCH, 2011, p. 361.;
(h) Beaulieu, P.L.; Déziel, R. Organoselenium Chemistry: A Practical Approach; Back, T.G., Ed.; Oxford University Press: Oxford, 1999, p. 35.;
(i) Nishibayashi, Y.; Uemura, S. Topics in Current Chemistry; Wirth, T., Ed.; , 2000, 208, p. 201.
[http://dx.doi.org/10.1021/acschembio.6b00031] [PMID: 26949981];
(b) Braga, A.L.; Barbosa, F.A.R.; Saba, S.; Canto, R.F.S.; Rafique, J. Recent advances in the synthesis of biologically relevant selenium-containing 5-membered heterocycles. Curr. Org. Chem., 2016, 20, 166-188.;
(c) Ninomiya, M.; Garud, D.R.; Koketsu, M. Biologically significant selenium-containing heterocycles. Coord. Chem. Rev., 2011, 255(23-24), 2968-2990.
[http://dx.doi.org/10.1016/j.ccr.2011.07.009];
(d) Mukherjee, A.J.; Zade, S.S.; Singh, H.B.; Sunoj, R.B. Organoselenium chemistry: role of intramolecular interactions. Chem. Rev., 2010, 110(7), 4357-4416.
[http://dx.doi.org/10.1021/cr900352j] [PMID: 20384363];
(e) Alberto, E.E.; do Nascimentob, V.; Braga, A.L. Catalytic application of selenium and tellurium compounds as glutathione peroxidase enzyme mimetics. J. Braz. Chem. Soc., 2010, 21(11), 2032-2041.
[http://dx.doi.org/10.1590/S0103-50532010001100004];
(f) Bhabak, K.P.; Mugesh, G. Functional mimics of glutathione peroxidase: Bioinspired synthetic antioxidants. Acc. Chem. Res., 2010, 43(11), 1408-1419.
[http://dx.doi.org/10.1021/ar100059g] [PMID: 20690615];
(g) Sarma, B.K.; Mugesh, G. Thiol cofactors for selenoenzymes and their synthetic mimics. Org. Biomol. Chem., 2008, 6(6), 965-974.
[http://dx.doi.org/10.1039/b716239a] [PMID: 18327317];
(h) Mlochowski, J.; Kloc, K.; Lisiak, R.; Potaczek, P.; Wojtowicz, H. Developments in the chemistry of selenaheterocyclic compounds of practical importance in synthesis and medicinal biology. ChemInform, 2007, 6(11), 14-46.
[http://dx.doi.org/10.1002/chin.200711265];
(i) Narajji, C.; Karvekar, M.D.; Das, A.K. Biological importance of organoselenium compounds. Indian J. Pharm. Sci., 2007, 69(3), 344-351.
[http://dx.doi.org/10.4103/0250-474X.34541];
(j) Guillena, G.; Ramon, D.J. Enantioselective α-heterofunctionalisation of carbonyl compounds: Organocatalysis is the simplest approach. Tetrahedron Asymmetry, 2006, 17(10), 1465-1492.
[http://dx.doi.org/10.1016/j.tetasy.2006.05.020];
(k) Tiecco, M.; Testaferri, L.; Marini, F.; Bagnoli, L.; Santi, C.; Temperini, A.; Sternativo, S.; Tomassini, C. Asymmetric syntheses promoted by organoselenium reagents. Phosphorus Sulfur Silicon Relat. Elem., 2005, 180(3-4), 729-740.
[http://dx.doi.org/10.1080/10426500590907462];
(l) Mugesh, G.; du Mont, W-W.; Sies, H. Chemistry of biologically important synthetic organoselenium compounds. Chem. Rev., 2001, 101(7), 2125-2179.
[http://dx.doi.org/10.1021/cr000426w] [PMID: 11710243];
(m) Petragnani, N.; Stefani, H.A.; Valduga, C.J. Recent advances in selenocyclofunctionalization reactions. Tetrahedron, 2001, 57(8), 1411-1448.
[http://dx.doi.org/10.1016/S0040-4020(00)01033-4];
(n) Ren, X.; Yang, L.; Liu, J.; Su, D.; You, D.; Liu, C.; Zhang, K.; Luo, G.; Mu, Y.; Yan, G.; Shen, J. A novel glutathione peroxidase mimic with antioxidant activity. Arch. Biochem. Biophys., 2001, 387(2), 250-256.
[http://dx.doi.org/10.1006/abbi.2000.2238] [PMID: 11370848];
(o) Tiecco, M. Electrophilic selenium, selenocyclizations. Top. Curr. Chem., 2000, 208, 7-54.
[http://dx.doi.org/10.1007/3-540-48171-0_2];
(p) Mugesh, G.; Singh, H.B. Synthetic organoselenium compounds as antioxidants: Glutathione peroxidase activity. Chem. Soc. Rev., 2000, 29(5), 347-357.
[http://dx.doi.org/10.1039/a908114c];
(q) Wirth, T. Chiral selenium compounds in organic synthesis. Tetrahedron, 1999, 55(1), 1-28.
[http://dx.doi.org/10.1016/S0040-4020(98)00946-6];
(r) Takada, H.; Nishibayashi, Y.; Srivastava, S.K.; Ohe, K.; Uemura, S. Highly selective asymmetric intramolecular selenocyclisation. Phosphorus Sulfur Silicon Relat. Elem., 1998, 219(1), 136-138.
[http://dx.doi.org/10.1080/10426509808546012];
(s) Wessjohann, L.A.; Sinks, U. Benzeneselenenyl reagents in organic synthesis. J. Prakt. Chem., 1998, 340(3), 189-203.
[http://dx.doi.org/10.1002/prac.19983400302];
(t) Nishibayashi, Y.; Uemura, S. Heteroatom stabilized carbenium ions. Rev. Heteroatom Chem., 1996, 14, 83.;
(u) Tiecco, M.; Testaferri, L.; Tingoli, M.; Bagnoli, L.; Marini, F.; Santi, C.; Temperini, A. Production and reactivity of new organoselenium intermediates. Formation of carbon-oxygen and carbon-nitrogen bonds. Gazz. Chim. Ital., 1996, 126, 635-644.;
(v) Reich, H.J.; Wollowitz, S. Preparation of α, β-unsaturated carbonyl compounds and nitriles by selenoxide elimination. Org. React., 1993, 44, 1.
[http://dx.doi.org/10.1002/0471264180.or044.01];
(w) Reich, H.J. Functional group manipulation using organoselenium reagents. Acc. Chem. Res., 1979, 12(1), 22-30.
[http://dx.doi.org/10.1021/ar50133a004]
[http://dx.doi.org/10.1016/0006-2952(84)90083-2] [PMID: 6487370];
(b) Wendel, A.; Fausel, M.; Safayhi, H.; Tiegs, G.; Otter, R. A novel biologically active seleno-organic compound--II. Activity of PZ 51 in relation to glutathione peroxidase. Biochem. Pharmacol., 1984, 33(20), 3241-3245.
[http://dx.doi.org/10.1016/0006-2952(84)90084-4] [PMID: 6487371]
[http://dx.doi.org/10.1002/chem.200801258] [PMID: 18932179];
(b) Bhabak, K.P.; Mugesh, G. Synthesis, characterization, and antioxidant activity of some ebselen analogues. Chemistry, 2007, 13(16), 4594-4601.
[http://dx.doi.org/10.1002/chem.200601584] [PMID: 17299817];
(c) Sarma, B.K.; Mugesh, G. Glutathione peroxidase (GPx)-like antioxidant activity of the organoselenium drug ebselen: Unexpected complications with thiol exchange reactions. J. Am. Chem. Soc., 2005, 127(32), 11477-11485.
[http://dx.doi.org/10.1021/ja052794t] [PMID: 16089478];
(d) Back, T.G.; Dyck, D.P. A novel camphor-derived selenenamide that acts as a glutathione peroxidase mimetic. J. Am. Chem. Soc., 1997, 119(9), 2079-2083.
[http://dx.doi.org/10.1021/ja963602k];
(e) Jacquemin, P.V.; Christiaens, L.E.; Renson, M.J.; Evers, M.J.; Dereu, N. Synthesis of 2H,3-4-Dihydro-1,2-benzoselenazin-3-one and derivatives: A new heterocyclic ring system. Tetrahedron Lett., 1992, 33(27), 3863-3866.
[http://dx.doi.org/10.1016/S0040-4039(00)74805-2];
(f) Wilson, S.R.; Zucker, P.A.; Huang, R.R.C.; Spector, P.A. Development of synthetic compounds with glutathione peroxidase activity. J. Am. Chem. Soc., 1989, 111(15), 5936-5939.
[http://dx.doi.org/10.1021/ja00197a065];
(g) Reich, H.J.; Jasperse, C.P. Organoselenium chemistry. Redox chemistry of selenocysteine model systems. J. Am. Chem. Soc., 1987, 109(18), 5549-5551.
[http://dx.doi.org/10.1021/ja00252a055]
[http://dx.doi.org/10.1039/C0OB00038H] [PMID: 21049128];
(b) Hassan, W.; Pinton, S.; Rocha, J.T.; Deobald, A.M.; Braga, A.L.; Nogueira, C.W.; Latini, A.S.; Rocha, J.B.T. Hydroxyl containing seleno-imine compound exhibits improved anti-oxidant potential and does not inhibit thiol-containing enzymes. Chem. Biol. Interact., 2011, 190(1), 35-44.
[http://dx.doi.org/10.1016/j.cbi.2011.01.012] [PMID: 21256831];
(c) Bhabak, K.P.; Mugesh, G. Synthesis and structure-activity correlation studies of secondary- and tertiaryamine-based glutathione peroxidase mimics. Chemistry, 2009, 15(38), 9846-9854.
[http://dx.doi.org/10.1002/chem.200900818] [PMID: 19551790];
(d) Bhabak, K.P.; Mugesh, G. A simple and efficient strategy to enhance the antioxidant activities of amino-substituted glutathione peroxidase mimics. Chemistry, 2008, 14(28), 8640-8651.
[http://dx.doi.org/10.1002/chem.200800963] [PMID: 18668498];
(e) Mugesh, G.; Panda, A.; Singh, H.B.; Punekar, N.S.; Butcher, R.J. Glutathione peroxidase-like antioxidant activity of diaryl diselenides: A mechanistic study. J. Am. Chem. Soc., 2001, 123(5), 839-850.
[http://dx.doi.org/10.1021/ja994467p] [PMID: 11456617];
(f) Mugesh, G.; Panda, A.; Singh, H.B.; Butcher, R.J. Intramolecular Se···N nonbonding interactions in low-valent organoselenium derivatives: A detailed study by 1H and 77Se NMR spectroscopy and X-ray crystallography. Chemistry, 1999, 5(5), 1411-1421.
[http://dx.doi.org/10.1002/(SICI)1521-3765(19990503)5:5<1411::AID-CHEM1411>3.0.CO;2-M];
(g) Wirth, T. Glutathione peroxidase-like activities of oxygen-containing diselenides. Molecules, 1998, 3(8), 164-166.
[http://dx.doi.org/10.3390/30700164]
[http://dx.doi.org/10.1039/b503282m] [PMID: 15827654]
(b) Fumakura, F.; Mishra, B.; Priyadarsini, K.I.; Iwaoka, M. A water-soluble cyclic selenide with enhanced glutathione peroxidase-like catalytic activities. Eur. J. Org. Chem., 2010, 3(3), 440-445.
[http://dx.doi.org/10.1002/ejoc.200901114];
(c) Johansson, H.; Svartström, O.; Phadnis, P.; Engman, L.; Ott, M.K. Exploring a synthetic organoselenium compound for antioxidant pharmacotherapy--toxicity and effects on ROS-production. Bioorg. Med. Chem., 2010, 18(5), 1783-1788.
[http://dx.doi.org/10.1016/j.bmc.2010.01.057] [PMID: 20156690];
(d) Plano, D.; Baquedano, Y.; Ibáñez, E.; Jiménez, I.; Palop, J.A.; Spallholz, J.E.; Sanmartín, C. Antioxidant-prooxidant properties of a new organoselenium compound library. Molecules, 2010, 15(10), 7292-7312.
[http://dx.doi.org/10.3390/molecules15107292] [PMID: 20966875];
(e) Belenky, P.; Bogan, K.L.; Brenner, C. NAD+ metabolism in health and disease. Trends Biochem. Sci., 2007, 32(1), 12-19.
[http://dx.doi.org/10.1016/j.tibs.2006.11.006] [PMID: 17161604];
(f) Back, T.G.; Moussa, Z.; Parvez, M. The exceptional glutathione peroxidase-like activity of di(3-hydroxypropyl) selenide and the unexpected role of a novel spirodioxaselenanonane intermediate in the catalytic cycle. Angew. Chem. Int. Ed., 2004, 43(10), 1268-1270.
[http://dx.doi.org/10.1002/anie.200353128] [PMID: 14991795];
(g) Rojanasakul, Y.; Ye, J.; Chen, F.; Wang, L.; Cheng, N.; Castranova, V.; Vallyathan, V.; Shi, X. Dependence of NF-kappaB activation and free radical generation on silica-induced TNF-α production in macrophages. Mol. Cell. Biochem., 1999, 200(1-2), 119-125.
[http://dx.doi.org/10.1023/A:1007051402840] [PMID: 10569191]
[http://dx.doi.org/10.1002/chem.200800694] [PMID: 18604859];
(b) Back, T.G.; Kuzma, D.; Parvez, M. Aromatic derivatives and tellurium analogues of cyclic seleninate esters and spirodioxyselenuranes that act as glutathione peroxidase mimetics. J. Org. Chem., 2005, 70(23), 9230-9236.
[http://dx.doi.org/10.1021/jo0512711] [PMID: 16268595];
(c) Zade, S.S.; Singh, H.B.; Butcher, R.J. The isolation and crystal structure of a cyclic selenenate ester derived from Bis(2,6-diformyl-4-tert-butylphenyl)diselenide and its glutathione peroxidase-like activity. Angew. Chem. Int. Ed., 2004, 43(34), 4513-4515.
[http://dx.doi.org/10.1002/anie.200460380] [PMID: 15340957];
(d) Back, T.G.; Moussa, Z. Diselenides and allyl selenides as glutathione peroxidase mimetics. Remarkable activity of cyclic seleninates produced in situ by the oxidation of allyl ω-hydroxyalkyl selenides. J. Am. Chem. Soc., 2003, 125(44), 13455-13460.
[http://dx.doi.org/10.1021/ja0357588] [PMID: 14583041];
(e) Back, T.G.; Moussa, Z. Remarkable activity of a novel cyclic seleninate ester as a glutathione peroxidase mimetic and its facile in situ generation from allyl 3-hydroxypropyl selenide. J. Am. Chem. Soc., 2002, 124(41), 12104-12105.
[http://dx.doi.org/10.1021/ja028030k] [PMID: 12371844]
[http://dx.doi.org/10.1007/s11064-020-03026-x] [PMID: 32285377]
[http://dx.doi.org/10.1016/j.ejphar.2014.09.005] [PMID: 25218989]
[http://dx.doi.org/10.1016/j.tetlet.2009.09.093]
[http://dx.doi.org/10.3390/molecules26154446] [PMID: 34361597]
[http://dx.doi.org/10.1021/ja00085a040]
[http://dx.doi.org/10.1002/ejoc.200900485]
[http://dx.doi.org/10.1039/C8OB00451J] [PMID: 29737350]
[http://dx.doi.org/10.1016/j.bmc.2020.115866] [PMID: 33203607]
[http://dx.doi.org/10.1016/j.bioorg.2018.05.019] [PMID: 29864687]
[http://dx.doi.org/10.1016/j.ejmech.2019.06.075] [PMID: 31276896]
[http://dx.doi.org/10.1039/C0OB00823K] [PMID: 21186397]
[PMID: 4327809];
(b) Erdos, E.G.; Yang, H.Y.T. An enzyme in microsomal fraction of kidney that inactivates bradykinin. Life Sci., 1967, 6(6), 569-574.
[http://dx.doi.org/10.1016/0024-3205(67)90090-2] [PMID: 4962200];
(c) Yang, H.Y.T.; Erdös, E.G. Second kininase in human blood plasma. Nature, 1967, 215(5108), 1402-1403.
[http://dx.doi.org/10.1038/2151402a0] [PMID: 6055465]
[http://dx.doi.org/10.1007/s00018-004-4239-0] [PMID: 15549168];
(b) Natesh, R.; Schwager, S.L.U.; Sturrock, E.D.; Acharya, K.R. Crystal structure of the human angiotensin-converting enzyme-lisinopril complex. Nature, 2003, 421(6922), 551-554.
[http://dx.doi.org/10.1038/nature01370] [PMID: 12540854];
(c) Ehlers, M.R.W.; Riordan, J.F. Angiotensin-converting enzyme: Zinc- and inhibitor-binding stoichiometries of the somatic and testis isozymes. Biochemistry, 1991, 30(29), 7118-7126.
[http://dx.doi.org/10.1021/bi00243a012] [PMID: 1649623];
(d) Ehlers, M.R.W.; Fox, E.A.; Strydom, D.J.; Riordan, J.F. Molecular cloning of human testicular angiotensin-converting enzyme: The testis isozyme is identical to the C-terminal half of endothelial angiotensin-converting enzyme. Proc. Natl. Acad. Sci. USA, 1989, 86(20), 7741-7745.
[http://dx.doi.org/10.1073/pnas.86.20.7741] [PMID: 2554286]
[http://dx.doi.org/10.1016/j.ejmech.2014.09.022] [PMID: 25244678]
[http://dx.doi.org/10.3184/030823402103171726]
[http://dx.doi.org/10.1016/j.tiv.2013.12.010] [PMID: 24394197]
[http://dx.doi.org/10.1055/s-2005-871546];
(b) Liu, D.; Dai, Q.; Zhang, X. A new class of readily available and conformationally rigid phosphino-oxazoline ligands for asymmetric catalysis. Tetrahedron, 2005, 61(26), 6460-6471.
[http://dx.doi.org/10.1016/j.tet.2005.03.111]
[http://dx.doi.org/10.1016/j.tiv.2015.03.017] [PMID: 25862122]
[http://dx.doi.org/10.1016/j.jorganchem.2012.08.035]
[http://dx.doi.org/10.1002/anie.201502430] [PMID: 26032473]
[http://dx.doi.org/10.1021/jo00180a024];
(b) Press, D.J.; McNeil, N.M.R.; Hambrook, M.; Back, T.G. Effects of methoxy substituents on the glutathione peroxidase-like activity of cyclic seleninate esters. J. Org. Chem., 2014, 79(19), 9394-9401.
[http://dx.doi.org/10.1021/jo501689h] [PMID: 25198287]
[http://dx.doi.org/10.13005/ojc/300423]
[http://dx.doi.org/10.1002/asia.202100139] [PMID: 33660419]
[http://dx.doi.org/10.1039/C9NJ02227A]
[http://dx.doi.org/10.1002/hc.1047]
[http://dx.doi.org/10.2174/1573406416666200403081831] [PMID: 32242787]
[http://dx.doi.org/10.1016/j.tetlet.2012.10.067]
[http://dx.doi.org/10.1039/C4NJ02329C]
[http://dx.doi.org/10.1016/j.arabjc.2021.103051]
[http://dx.doi.org/10.1016/j.tetlet.2016.11.106]
[http://dx.doi.org/10.1039/c2ob06533a] [PMID: 22307539]
[http://dx.doi.org/10.1016/j.ejmech.2021.113384] [PMID: 33799070]
[http://dx.doi.org/10.1039/D0OB02368J] [PMID: 33591294]
[http://dx.doi.org/10.3390/molecules25153354] [PMID: 32722043]
[http://dx.doi.org/10.3390/ma12213579] [PMID: 31683558]
[http://dx.doi.org/10.3390/catal8110493]
[http://dx.doi.org/10.1002/jhet.3199]
[http://dx.doi.org/10.1002/hc.21164]
[http://dx.doi.org/10.3390/molecules200712959] [PMID: 26193249]
[http://dx.doi.org/10.1021/ja908080u] [PMID: 20345146]
[http://dx.doi.org/10.1039/c2ob26156a] [PMID: 22932965]
[http://dx.doi.org/10.1021/acs.joc.6b01593] [PMID: 27525346]
[http://dx.doi.org/10.1016/j.jorganchem.2016.04.019]
[http://dx.doi.org/10.1039/J39700002484]
[http://dx.doi.org/10.3390/molecules200712670] [PMID: 26184146]
[http://dx.doi.org/10.1016/j.ijbiomac.2012.08.011] [PMID: 22935693]
[http://dx.doi.org/10.1016/j.tet.2012.03.003]
[http://dx.doi.org/10.1039/b202021c]
[http://dx.doi.org/10.1016/j.ejps.2012.12.016] [PMID: 23287366]
[http://dx.doi.org/10.1016/j.tet.2009.01.038]
[http://dx.doi.org/10.1016/j.jorganchem.2012.04.014]
[http://dx.doi.org/10.3390/molecules200610095] [PMID: 26039333]
[http://dx.doi.org/10.1155/2020/5417024]
[http://dx.doi.org/10.1246/cl.200490]
[http://dx.doi.org/10.1038/nnano.2007.260] [PMID: 18654371]
[http://dx.doi.org/10.1039/C9CC02427A] [PMID: 31033970]