Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Research Progress on Small Molecules Inhibitors Targeting TRK Kinases

Author(s): Ju Liu, Yadong Zhang, Yan Zhu, Lu Tian, Mingrui Tang, Jiwei Shen, Ye Chen* and Shi Ding*

Volume 30, Issue 10, 2023

Published on: 27 October, 2022

Page: [1175 - 1192] Pages: 18

DOI: 10.2174/0929867329666220801145639

Price: $65

Abstract

Background: Trk gene fusions are an important driver in the development of cancers, including secretory breast cancer and infantile congenital sarcoma. Since the first-generation of small molecule Trk inhibitors (Larotrectinib and Entrectinib) came to market, research on small molecule TRK inhibitors, especially second-generation inhibitors that break through the resistance problem, has developed rapidly. Therefore, this article focuses on the research progress of first-generation drugs and second-generation drugs that break through drug resistance.

Methods: We used the database to search for relevant and cutting-edge documents, and then filtered and selected them based on the content. The appropriate articles were analyzed and classified, and finally, the article was written according to the topics.

Results: The phenomenon of Trk protein fusion and its relation to tumors are described, followed by an explanation of the composition and signaling pathways of Trk kinases. The representative Trk inhibitors and the development of novel Trk inhibitors are classified according to whether they overcome drug resistance problems.

Conclusion: This paper provides a theoretical reference for the development of novel inhibitors by introducing and summarizing the representative and novel Trk inhibitors that break through the drug resistance problem.

Keywords: Trk gene fusions, Trk inhibitors, drug resistance, overcoming drug resistance

[1]
Snider, W.D. Functions of the neurotrophins during nervous system development: What the knockouts are teaching us. Cell, 1994, 77(5), 627-638.
[http://dx.doi.org/10.1016/0092-8674(94)90048-5] [PMID: 8205613]
[2]
Amatu, A.; Sartore-Bianchi, A.; Bencardino, K.; Pizzutilo, E.G.; Tosi, F.; Siena, S. Tropomyosin receptor kinase (TRK) biology and the role of NTRK gene fusions in cancer. Ann. Oncol., 2019, 8, 5-15.
[3]
Drilon, A. TRK inhibitors in TRK fusion-positive cancers. Ann. Oncol., 2019, 30(8), 23-30.
[http://dx.doi.org/10.1093/annonc/mdz282]
[4]
Huse, M.; Kuriyan, J. The conformational plasticity of protein kinases. Cell, 2002, 109(3), 275-282.
[http://dx.doi.org/10.1016/S0092-8674(02)00741-9] [PMID: 12015977]
[5]
Chao, M.V. Neurotrophins and their receptors: A convergence point for many signalling pathways. Nat. Rev. Neurosci., 2003, 4(4), 299-309.
[http://dx.doi.org/10.1038/nrn1078] [PMID: 12671646]
[6]
Drilon, A.; Laetsch, T.W.; Kummar, S.; DuBois, S.G.; Lassen, U.N.; Demetri, G.D.; Nathenson, M.; Doebele, R.C.; Farago, A.F.; Pappo, A.S.; Turpin, B.; Dowlati, A.; Brose, M.S.; Mascarenhas, L.; Federman, N.; Berlin, J.; El-Deiry, W.S.; Baik, C.; Deeken, J.; Boni, V.; Nagasubramanian, R.; Taylor, M.; Rudzinski, E.R.; Meric-Bernstam, F.; Sohal, D.P.S.; Ma, P.C.; Raez, L.E.; Hechtman, J.F.; Benayed, R.; Ladanyi, M.; Tuch, B.B.; Ebata, K.; Cruickshank, S.; Ku, N.C.; Cox, M.C.; Hawkins, D.S.; Hong, D.S.; Hyman, D.M. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N. Engl. J. Med., 2018, 378(8), 731-739.
[http://dx.doi.org/10.1056/NEJMoa1714448] [PMID: 29466156]
[7]
Vaishnavi, A.; Le, A.T.; Doebele, R.C. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov., 2015, 5(1), 25-34.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0765] [PMID: 25527197]
[8]
Amatu, A.; Sartore-Bianchi, A.; Siena, S. NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open, 2016, 1(2), e000023.
[http://dx.doi.org/10.1136/esmoopen-2015-000023] [PMID: 27843590]
[9]
Reuther, G.W.; Lambert, Q.T.; Caligiuri, M.A.; Der, C.J. Identification and characterization of an activating TrkA deletion mutation in acute myeloid leukemia. Mol. Cell. Biol., 2000, 20(23), 8655-8666.
[http://dx.doi.org/10.1128/MCB.20.23.8655-8666.2000] [PMID: 11073967]
[10]
Okamura, R.; Boichard, A.; Kato, S.; Sicklick, J.K.; Bazhenova, L.; Kurzrock, R. Analysis of NTRK alterations in pan-cancer adult and pediatric malignancies: Implications for NTRK-targeted therapeutics. JCO Precis Oncol., 2018, 2018, PO.18.00183.
[11]
Greco, A.; Fusetti, L.; Miranda, C.; Villa, R.; Zanotti, S.; Pagliardini, S.; Pierotti, M.A. Role of the TFG N-terminus and coiled-coil domain in the transforming activity of the thyroid TRK-T3 oncogene. Oncogene, 1998, 16(6), 809-816.
[http://dx.doi.org/10.1038/sj.onc.1201596] [PMID: 9488046]
[12]
Greco, A.; Mariani, C.; Miranda, C.; Lupas, A.; Pagliardini, S.; Pomati, M.; Pierotti, M.A. The DNA rearrangement that generates the TRK-T3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain. Mol. Cell. Biol., 1995, 15(11), 6118-6127.
[http://dx.doi.org/10.1128/MCB.15.11.6118] [PMID: 7565764]
[13]
Mitra, G.; Martin-Zanca, D.; Barbacid, M. Identification and biochemical characterization of p70TRK, product of the human TRK oncogene. Proc. Natl. Acad. Sci. USA, 1987, 84(19), 6707-6711.
[http://dx.doi.org/10.1073/pnas.84.19.6707] [PMID: 3477801]
[14]
Bailey, J.J.; Schirrmacher, R.; Farrell, K.; Bernard-Gauthier, V. Tropomyosin receptor kinase inhibitors: An updated patent review for 2010-2016 - Part II. Expert Opin. Ther. Pat., 2017, 27(7), 831-849.
[http://dx.doi.org/10.1080/13543776.2017.1297797] [PMID: 28270021]
[15]
Miao, Q.; Ma, K.; Chen, D.; Wu, X.; Jiang, S. Targeting tropomyosin receptor kinase for cancer therapy. Eur. J. Med. Chem., 2019, 175, 129-148.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.053] [PMID: 31077998]
[16]
Menichincheri, M.; Ardini, E.; Magnaghi, P.; Avanzi, N.; Banfi, P.; Bossi, R.; Buffa, L.; Canevari, G.; Ceriani, L.; Colombo, M.; Corti, L.; Donati, D.; Fasolini, M.; Felder, E.; Fiorelli, C.; Fiorentini, F.; Galvani, A.; Isacchi, A.; Borgia, A.L.; Marchionni, C.; Nesi, M.; Orrenius, C.; Panzeri, A.; Pesenti, E.; Rusconi, L.; Saccardo, M.B.; Vanotti, E.; Perrone, E.; Orsini, P. Discovery of entrectinib: A new 3-aminoindazole as a potent anaplastic lymphoma kinase (ALK), c-ros oncogene 1 kinase (ROS1), and pan-tropomyosin receptor kinases (Pan-TRKs) inhibitor. J. Med. Chem., 2016, 59(7), 3392-3408.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00064] [PMID: 27003761]
[17]
Russo, M.; Misale, S.; Wei, G.; Siravegna, G.; Crisafulli, G.; Lazzari, L.; Corti, G.; Rospo, G.; Novara, L.; Mussolin, B.; Bartolini, A.; Cam, N.; Patel, R.; Yan, S.; Shoemaker, R.; Wild, R.; Di Nicolantonio, F.; Bianchi, A.S.; Li, G.; Siena, S.; Bardelli, A. Acquired resistance to the TRK inhibitor entrectinib in colorectal cancer. Cancer Discov., 2016, 6(1), 36-44.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0940] [PMID: 26546295]
[18]
Drilon, A.; Nagasubramanian, R.; Blake, J.F.; Ku, N.; Tuch, B.B.; Ebata, K.; Smith, S.; Lauriault, V.; Kolakowski, G.R.; Brandhuber, B.J.; Larsen, P.D.; Bouhana, K.S.; Winski, S.L.; Hamor, R.; Wu, W.I.; Parker, A.; Morales, T.H.; Sullivan, F.X.; DeWolf, W.E.; Wollenberg, L.A.; Gordon, P.R.; Douglas-Lindsay, D.N.; Scaltriti, M.; Benayed, R.; Raj, S.; Hanusch, B.; Schram, A.M.; Jonsson, P.; Berger, M.F.; Hechtman, J.F.; Taylor, B.S.; Andrews, S.; Rothenberg, S.M.; Hyman, D.M. A next-generation TRK kinase inhibitor overcomes acquired resistance to prior TRK kinase inhibition in patients with TRK fusion-positive solid tumors. Cancer Discov., 2017, 7(9), 963-972.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0507] [PMID: 28578312]
[19]
Cocco, E.; Schram, A.M.; Kulick, A.; Misale, S.; Won, H.H.; Yaeger, R.; Razavi, P.; Ptashkin, R.; Hechtman, J.F.; Toska, E.; Cownie, J.; Somwar, R.; Shifman, S.; Mattar, M.; Selçuklu, S.D.; Samoila, A.; Guzman, S.; Tuch, B.B.; Ebata, K.; de Stanchina, E.; Nagy, R.J.; Lanman, R.B.; Houck-Loomis, B.; Patel, J.A.; Berger, M.F.; Ladanyi, M.; Hyman, D.M.; Drilon, A.; Scaltriti, M. Resistance to TRK inhibition mediated by convergent MAPK pathway activation. Nat. Med., 2019, 25(9), 1422-1427.
[http://dx.doi.org/10.1038/s41591-019-0542-z] [PMID: 31406350]
[20]
Faulkner, S.; Griffin, N.; Rowe, C.W.; Jobling, P.; Lombard, J.M.; Oliveira, S.M.; Walker, M.M.; Hondermarck, H. Nerve growth factor and its receptor tyrosine kinase TrkA are overexpressed in cervical squamous cell carcinoma. FASEB Bioadv., 2020, 2(7), 398-408.
[http://dx.doi.org/10.1096/fba.2020-00016] [PMID: 32676580]
[21]
Papadopoulos, K.P.; Borazanci, E.; Shaw, A.T.; Katayama, R.; Shimizu, Y.; Zhu, V.W.; Sun, T.Y.; Wakelee, H.A.; Madison, R.; Schrock, A.B.; Senaldi, G.; Nakao, N.; Hanzawa, H.; Tachibana, M.; Isoyama, T.; Nakamaru, K.; Deng, C.; Li, M.; Fan, F.; Zhao, Q.; Gao, Y.; Seto, T.; Jänne, P.A.; Ou, S.I.U.S.; Phase, I.U.S.; Phase, I. First-in-human Study of Taletrectinib (DS-6051b/AB-106), a ROS1/TRK Inhibitor, in patients with advanced solid tumors. Clin. Cancer Res., 2020, 26(18), 4785-4794.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-1630] [PMID: 32591465]
[22]
Skaper, S.D. The biology of neurotrophins, signalling pathways, and functional peptide mimetics of neurotrophins and their receptors. CNS Neurol. Disord. Drug Targets, 2008, 7(1), 46-62.
[http://dx.doi.org/10.2174/187152708783885174] [PMID: 18289031]
[23]
Cocco, E.; Scaltriti, M.; Drilon, A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol., 2018, 15(12), 731-747.
[http://dx.doi.org/10.1038/s41571-018-0113-0] [PMID: 30333516]
[24]
Reichardt, L.F. Neurotrophin-regulated signalling pathways. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2006, 361(1473), 1545-1564.
[http://dx.doi.org/10.1098/rstb.2006.1894]
[25]
Deinhardt, K.; Chao, M.V. Trk receptors. Handb. Exp. Pharmacol., 2014, 220, 103-119.
[http://dx.doi.org/10.1007/978-3-642-45106-5_5] [PMID: 24668471]
[26]
Li, M.; Dai, F.R.; Du, X.P.; Yang, Q.D.; Zhang, X.; Chen, Y. Infusion of BDNF into the nucleus accumbens of aged rats improves cognition and structural synaptic plasticity through PI3K-ILK-Akt signaling. Behav. Brain Res., 2012, 231(1), 146-153.
[http://dx.doi.org/10.1016/j.bbr.2012.03.010] [PMID: 22446058]
[27]
Guiton, M.; Gunn-Moore, F.J.; Glass, D.J.; Geis, D.R.; Yancopoulos, G.D.; Tavaré, J.M. Naturally occurring tyrosine kinase inserts block high affinity binding of phospholipase C gamma and Shc to TrkC and neurotrophin-3 signaling. J. Biol. Chem., 1995, 270(35), 20384-20390.
[http://dx.doi.org/10.1074/jbc.270.35.20384] [PMID: 7657612]
[28]
Drilon, A.; Li, G.; Dogan, S.; Gounder, M.; Shen, R.; Arcila, M.; Wang, L.; Hyman, D.M.; Hechtman, J.; Wei, G.; Cam, N.R.; Christiansen, J.; Luo, D.; Maneval, E.C.; Bauer, T.; Patel, M.; Liu, S.V.; Ou, S.H.; Farago, A.; Shaw, A.; Shoemaker, R.F.; Lim, J.; Hornby, Z.; Multani, P.; Ladanyi, M.; Berger, M.; Katabi, N.; Ghossein, R.; Ho, A.L. What hides behind the MASC: Clinical response and acquired resistance to entrectinib after ETV6-NTRK3 identification in a mammary analogue secretory carcinoma (MASC). Ann. Oncol., 2016, 27(5), 920-926.
[http://dx.doi.org/10.1093/annonc/mdw042] [PMID: 26884591]
[29]
Ardini, E.; Menichincheri, M.; Banfi, P.; Bosotti, R.; De Ponti, C.; Pulci, R.; Ballinari, D.; Ciomei, M.; Texido, G.; Degrassi, A.; Avanzi, N.; Amboldi, N.; Saccardo, M.B.; Casero, D.; Orsini, P.; Bandiera, T.; Mologni, L.; Anderson, D.; Wei, G.; Harris, J.; Vernier, J.M.; Li, G.; Felder, E.; Donati, D.; Isacchi, A.; Pesenti, E.; Magnaghi, P.; Galvani, A. Entrectinib, a Pan-TRK, ROS1, and ALK inhibitor with activity in multiple molecularly defined cancer indications. Mol. Cancer Ther., 2016, 15(4), 628-639.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0758] [PMID: 26939704]
[30]
Iyer, R.; Wehrmann, L.; Golden, R.L.; Naraparaju, K.; Croucher, J.L.; MacFarland, S.P.; Guan, P.; Kolla, V.; Wei, G.; Cam, N.; Li, G.; Hornby, Z.; Brodeur, G.M. Entrectinib is a potent inhibitor of Trk-driven neuroblastomas in a xenograft mouse model. Cancer Lett., 2016, 372(2), 179-186.
[http://dx.doi.org/10.1016/j.canlet.2016.01.018] [PMID: 26797418]
[31]
Drilon, A.; Siena, S.; Ou, S.I.; Patel, M.; Ahn, M.J.; Lee, J.; Bauer, T.M.; Farago, A.F.; Wheler, J.J.; Liu, S.V.; Doebele, R.; Giannetta, L.; Cerea, G.; Marrapese, G.; Schirru, M.; Amatu, A.; Bencardino, K.; Palmeri, L.; Sartore-Bianchi, A.; Vanzulli, A.; Cresta, S.; Damian, S.; Duca, M.; Ardini, E.; Li, G.; Christiansen, J.; Kowalski, K.; Johnson, A.D.; Patel, R.; Luo, D.; Chow-Maneval, E.; Hornby, Z.; Multani, P.S.; Shaw, A.T.; De Braud, F.G. Safety and antitumor activity of the multitargeted Pan-TRK, ROS1, and ALK inhibitor entrectinib: Combined results from two phase I trials (ALKA-372-001 and STARTRK-1). Cancer Discov., 2017, 7(4), 400-409.
[http://dx.doi.org/10.1158/2159-8290.CD-16-1237] [PMID: 28183697]
[32]
Liu, D.; Offin, M.; Harnicar, S.; Li, B.T.; Drilon, A. Entrectinib: an orally available, selective tyrosine kinase inhibitor for the treatment of NTRK, ROS1, and ALK fusion-positive solid tumors. Ther. Clin. Risk Manag., 2018, 14, 1247-1252.
[http://dx.doi.org/10.2147/TCRM.S147381] [PMID: 30050303]
[33]
Schram, A.M.; Chang, M.T.; Jonsson, P.; Drilon, A. Fusions in solid tumours: Diagnostic strategies, targeted therapy, and acquired resistance. Nat. Rev. Clin. Oncol., 2017, 14(12), 735-748.
[http://dx.doi.org/10.1038/nrclinonc.2017.127] [PMID: 28857077]
[34]
Doebele, R.C.; Davis, L.E.; Vaishnavi, A.; Le, A.T.; Estrada-Bernal, A.; Keysar, S.; Jimeno, A.; Varella-Garcia, M.; Aisner, D.L.; Li, Y.; Stephens, P.J.; Morosini, D.; Tuch, B.B.; Fernandes, M.; Nanda, N.; Low, J.A. An oncogenic NTRK fusion in a patient with soft-tissue sarcoma with response to the tropomyosin-related kinase inhibitor LOXO-101. Cancer Discov., 2015, 5(10), 1049-1057.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0443] [PMID: 26216294]
[35]
Federman, N.; McDermott, R. Larotrectinib, a highly selective tropomyosin receptor kinase (TRK) inhibitor for the treatment of TRK fusion cancer. Expert Rev. Clin. Pharmacol., 2019, 12(10), 931-939.
[http://dx.doi.org/10.1080/17512433.2019.1661775] [PMID: 31469968]
[36]
Choi, H.S.; Rucker, P.V.; Wang, Z.; Fan, Y.; Albaugh, P.; Chopiuk, G.; Gessier, F.; Sun, F.; Adrian, F.; Liu, G.; Hood, T.; Li, N.; Jia, Y.; Che, J.; McCormack, S.; Li, A.; Li, J.; Steffy, A.; Culazzo, A.; Tompkins, C.; Phung, V.; Kreusch, A.; Lu, M.; Hu, B.; Chaudhary, A.; Prashad, M.; Tuntland, T.; Liu, B.; Harris, J.; Seidel, H.M.; Loren, J.; Molteni, V. (R)-2-phenylpyrrolidine substituted imidazopyridazines: A new class of potent and selective Pan-TRK inhibitors. ACS Med. Chem. Lett., 2015, 6(5), 562-567.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00050] [PMID: 26005534]
[37]
Choi, H.S.; Rucker, P.V.; Wang, Z.; Fan, Y.; Albaugh, P.; Chopiuk, G.; Gessier, F.; Sun, F.; Adrian, F.; Liu, G.; Hood, T.; Li, N.; Jia, Y.; Che, J.; McCormack, S.; Li, A.; Li, J.; Steffy, A.; Culazzo, A.; Tompkins, C.; Phung, V.; Kreusch, A.; Lu, M.; Hu, B.; Chaudhary, A.; Prashad, M.; Tuntland, T.; Liu, B.; Harris, J.; Seidel, H.M.; Loren, J.; Molteni, V. Structure coordinates have been deposited into the PDB: 4YMJ; 4YNE; 4YPS. ACS Med. Chem. Lett., 2015, 6, 562-567.
[38]
Shirahashi, H.; Toriihara, E.; Suenaga, Y.; Yoshida, H.; Akaogi, K.; Endou, Y.; Wakabayashi, M.; Takashima, M. The discovery of novel 3-aryl-indazole derivatives as peripherally restricted pan-TRK inhibitors for the treatment of pain. Bioorg. Med. Chem. Lett., 2019, 29(16), 2320-2326.
[http://dx.doi.org/10.1016/j.bmcl.2019.06.018] [PMID: 31235262]
[39]
Zhang, Y.; Liu, Y.; Zhou, Y.; Zhang, Q.; Han, T.; Tang, C.; Fan, W. Pyrazolo[1,5-a]pyrimidine based TRK inhibitors: Design, Synthesis, biological activity evaluation. Bioorg. Med. Chem. Lett., 2021, 31, 127712.
[PMID: 33246108]
[40]
Lewis, R.T.; Bode, C.M.; Choquette, D.M.; Potashman, M.; Romero, K.; Stellwagen, J.C.; Teffera, Y.; Moore, E.; Whittington, D.A.; Chen, H.; Epstein, L.F.; Emkey, R.; Andrews, P.S.; Yu, V.L.; Saffran, D.C.; Xu, M.; Drew, A.; Merkel, P.; Szilvassy, S.; Brake, R.L. The discovery and optimization of a novel class of potent, selective, and orally bioavailable anaplastic lymphoma kinase (ALK) inhibitors with potential utility for the treatment of cancer. J. Med. Chem., 2012, 55(14), 6523-6540.
[http://dx.doi.org/10.1021/jm3005866] [PMID: 22734674]
[41]
Weiss, G.; Sachdev, J.; Infante, J.; Mita, M.; Natale, R.; Arkenau, H.T. Phase (Ph) 1/2 study of TSR-011, a potent inhibitor of ALK and TRK, including crizotinib-resistant ALK mutations. J. Clin. Oncol., 2014, 32, e19005.
[42]
Fancelli, D.; Moll, J.; Varasi, M.; Bravo, R.; Artico, R.; Berta, D.; Bindi, S.; Cameron, A.; Candiani, I.; Cappella, P.; Carpinelli, P.; Croci, W.; Forte, B.; Giorgini, M.L.; Klapwijk, J.; Marsiglio, A.; Pesenti, E.; Rocchetti, M.; Roletto, F.; Severino, D.; Soncini, C.; Storici, P.; Tonani, R.; Zugnoni, P.; Vianello, P. 1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazoles: identification of a potent Aurora kinase inhibitor with a favorable antitumor kinase inhibition profile. J. Med. Chem., 2006, 49(24), 7247-7251.
[http://dx.doi.org/10.1021/jm060897w] [PMID: 17125279]
[43]
Thress, K.; MacIntyre, T.; Wang, H.; Liu, Z.Y.; Hoffmann, E.; Wang, T.; Whitston, D.; Brown, J.L.; Webster, K.; Omer, C. Identification and preclinical characterization of AZ-23, a novel, selective, and orally bioavailable inhibitor of the TRK kinase pathway. Eur. J. Cancer, Suppl., 2008, 6(12), 180.
[http://dx.doi.org/10.1016/S1359-6349(08)72508-4]
[44]
Albanese, C.; Alzani, R.; Amboldi, N.; Degrassi, A.; Festuccia, C.; Fiorentini, F.; Gravina, G.; Mercurio, C.; Pastori, W.; Brasca, M.; Pesenti, E.; Galvani, A.; Ciomei, M. Anti-tumour efficacy on glioma models of PHA-848125, a multi-kinase inhibitor able to cross the blood-brain barrier. Br. J. Pharmacol., 2013, 169(1), 156-166.
[http://dx.doi.org/10.1111/bph.12112] [PMID: 23347136]
[45]
Albanese, C.; Alzani, R.; Amboldi, N.; Avanzi, N.; Ballinari, D.; Brasca, M.G.; Festuccia, C.; Fiorentini, F.; Locatelli, G.; Pastori, W.; Patton, V.; Roletto, F.; Colotta, F.; Galvani, A.; Isacchi, A.; Moll, J.; Pesenti, E.; Mercurio, C.; Ciomei, M. Dual targeting of CDK and tropomyosin receptor kinase families by the oral inhibitor PHA-848125, an agent with broad-spectrum antitumor efficacy. Mol. Cancer Ther., 2010, 9(8), 2243-2254.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0190] [PMID: 20682657]
[46]
Brasca, M.G.; Amboldi, N.; Ballinari, D.; Cameron, A.; Casale, E.; Cervi, G.; Colombo, M.; Colotta, F.; Croci, V.; D’Alessio, R.; Fiorentini, F.; Isacchi, A.; Mercurio, C.; Moretti, W.; Panzeri, A.; Pastori, W.; Pevarello, P.; Quartieri, F.; Roletto, F.; Traquandi, G.; Vianello, P.; Vulpetti, A.; Ciomei, M. Identification of N,1,4,4-tetramethyl-8-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (PHA-848125), a potent, orally available cyclin dependent kinase inhibitor. J. Med. Chem., 2009, 52(16), 5152-5163.
[http://dx.doi.org/10.1021/jm9006559] [PMID: 19603809]
[47]
Lippa, B.; Morris, J.; Corbett, M.; Kwan, T.A.; Noe, M.C.; Snow, S.L.; Gant, T.G.; Mangiaracina, M.; Coffey, H.A.; Foster, B.; Knauth, E.A.; Wessel, M.D. Discovery of novel isothiazole inhibitors of the TRK A kinase: Structure-activity relationship, computer modeling, optimization, and identification of highly potent antagonists. Bioorg. Med. Chem. Lett., 2006, 16(13), 3444-3448.
[http://dx.doi.org/10.1016/j.bmcl.2006.04.003] [PMID: 16632359]
[48]
Albaugh, P.; Fan, Y.; Mi, Y.; Sun, F.; Adrian, F.; Li, N.; Jia, Y.; Sarkisova, Y.; Kreusch, A.; Hood, T.; Lu, M.; Liu, G.; Huang, S.; Liu, Z.; Loren, J.; Tuntland, T.; Karanewsky, D.S.; Seidel, H.M.; Molteni, V. Discovery of GNF-5837, a selective TRK inhibitor with efficacy in rodent cancer tumor models. ACS Med. Chem. Lett., 2012, 3(2), 140-145.
[http://dx.doi.org/10.1021/ml200261d]
[49]
El-Damasy, A.K.; Cho, N.C.; Nam, G.; Pae, A.N.; Keum, G. Discovery of a nanomolar multikinase inhibitor (KST016366): A new benzothiazole derivative with remarkable broad-spectrum antiproliferative activity. ChemMedChem, 2016, 11(15), 1587-1595.
[http://dx.doi.org/10.1002/cmdc.201600224] [PMID: 27405013]
[50]
Patwardhan, P.P.; Ivy, K.S.; Musi, E.; de Stanchina, E.; Schwartz, G.K. Significant blockade of multiple receptor tyrosine kinases by MGCD516 (Sitravatinib), a novel small molecule inhibitor, shows potent anti-tumor activity in preclinical models of sarcoma. Oncotarget, 2016, 7(4), 4093-4109.
[http://dx.doi.org/10.18632/oncotarget.6547] [PMID: 26675259]
[51]
Yakes, F.M.; Chen, J.; Tan, J.; Yamaguchi, K.; Shi, Y.; Yu, P.; Qian, F.; Chu, F.; Bentzien, F.; Cancilla, B.; Orf, J.; You, A.; Laird, A.D.; Engst, S.; Lee, L.; Lesch, J.; Chou, Y.C.; Joly, A.H. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol. Cancer Ther., 2011, 10(12), 2298-2308.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0264] [PMID: 21926191]
[52]
Hong, S.; Kim, J.; Seo, J.H.; Jung, K.H.; Hong, S.S.; Hong, S. Design, synthesis, and evaluation of 3,5-disubstituted 7-azaindoles as Trk inhibitors with anticancer and antiangiogenic activities. J. Med. Chem., 2012, 55(11), 5337-5349.
[http://dx.doi.org/10.1021/jm3002982] [PMID: 22575050]
[53]
Lieberman, H.; Yang, D.L.; Philbrook, M.; Santos, M.; Ho, C. Pharmaceutical formulations of tropomyosin related kinase (TRK) inhibitors. WO2016100677A2, 2016.
[54]
Skerratt, S.E.; Andrews, M.; Bagal, S.K.; Bilsland, J.; Brown, D.; Bungay, P.J.; Cole, S.; Gibson, K.R.; Jones, R.; Morao, I.; Nedderman, A.; Omoto, K.; Robinson, C.; Ryckmans, T.; Skinner, K.; Stupple, P.; Waldron, G. The Discovery of a potent, selective, and peripherally restricted Pan-Trk inhibitor (PF-06273340) for the treatment of pain. J. Med. Chem., 2016, 59(22), 10084-10099.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00850] [PMID: 27766865]
[55]
Awad, M.M.; Katayama, R.; McTigue, M.; Liu, W.; Deng, Y.L.; Brooun, A.; Friboulet, L.; Huang, D.; Falk, M.D.; Timofeevski, S.; Wilner, K.D.; Lockerman, E.L.; Khan, T.M.; Mahmood, S.; Gainor, J.F.; Digumarthy, S.R.; Stone, J.R.; Mino-Kenudson, M.; Christensen, J.G.; Iafrate, A.J.; Engelman, J.A.; Shaw, A.T. Acquired resistance to crizotinib from a mutation in CD74-ROS1. N. Engl. J. Med., 2013, 368(25), 2395-2401.
[http://dx.doi.org/10.1056/NEJMoa1215530] [PMID: 23724914]
[56]
Gainor, J.F.; Dardaei, L.; Yoda, S.; Friboulet, L.; Leshchiner, I.; Katayama, R.; Dagogo-Jack, I.; Gadgeel, S.; Schultz, K.; Singh, M.; Chin, E.; Parks, M.; Lee, D.; DiCecca, R.H.; Lockerman, E.; Huynh, T.; Logan, J.; Ritterhouse, L.L.; Le, L.P.; Muniappan, A.; Digumarthy, S.; Channick, C.; Keyes, C.; Getz, G.; Dias-Santagata, D.; Heist, R.S.; Lennerz, J.; Sequist, L.V.; Benes, C.H.; Iafrate, A.J.; Mino-Kenudson, M.; Engelman, J.A.; Shaw, A.T. Molecular mechanisms of resistance to first and second generation ALK inhibitors in ALK-rearranged lung cancer. Cancer Discov., 2016, 6(10), 1118-1133.
[http://dx.doi.org/10.1158/2159-8290.CD-16-0596] [PMID: 27432227]
[57]
Drilon, A.; Ou, S.I.; Cho, B.C.; Kim, D.W.; Lee, J.; Lin, J.J.; Zhu, V.W.; Ahn, M.J.; Camidge, D.R.; Nguyen, J.; Zhai, D.; Deng, W.; Huang, Z.; Rogers, E.; Liu, J.; Whitten, J.; Lim, J.K.; Stopatschinskaja, S.; Hyman, D.M.; Doebele, R.C.; Cui, J.J.; Shaw, A.T. Repotrectinib (TPX-0005) is a next-generation ROS1/TRK/ALK inhibitor that potently inhibits ROS1/TRK/ALK solvent-front mutations. Cancer Discov., 2018, 8(10), 1227-1236.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0484] [PMID: 30093503]
[58]
Liu, Z.; Yu, P.; Dong, L.; Wang, W.; Duan, S.; Wang, B.; Gong, X.; Ye, L.; Wang, H.; Tian, J. Discovery of the next-generation Pan-TRK kinase inhibitors for the treatment of cancer. J. Med. Chem., 2021, 64(14), 10286-10296.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00712] [PMID: 34253025]
[59]
Sun, M.; Cai, S.; Li, P.; Zhang, F.; Zhang, H.; Zhou, J. Design, synthesis and biological activity of bicyclic carboxamide derivatives as TRK inhibitors. Bioorg. Med. Chem., 2020, 28(23), 115811.
[http://dx.doi.org/10.1016/j.bmc.2020.115811] [PMID: 33069129]
[60]
Zhuo, L.S.; Wang, M.S.; Wu, F.X.; Xu, H.C.; Gong, Y.; Yu, Z.C.; Tian, Y.G.; Pang, C.; Hao, G.F.; Huang, W.; Yang, G.F. Discovery of next-generation tropomyosin receptor kinase inhibitors for combating multiple resistance associated with protein mutation. J. Med. Chem., 2021, 64(20), 15503-15514.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01539] [PMID: 34668694]
[61]
Duan, Y.; Wang, J.; Zhu, S.; Tu, Z.C.; Zhang, Z.; Chan, S.; Ding, K. Design, synthesis, and structure-activity relationships (SAR) of 3-vinylindazole derivatives as new selective tropomyosin receptor kinases (TRK) inhibitors. Eur. J. Med. Chem., 2020, 203, 112552.
[http://dx.doi.org/10.1016/j.ejmech.2020.112552] [PMID: 32702585]
[62]
Morphy, R. Selectively nonselective kinase inhibition: Striking the right balance. J. Med. Chem., 2010, 53(4), 1413-1437.
[http://dx.doi.org/10.1021/jm901132v] [PMID: 20166671]
[63]
Liu, X.; Wang, B.; Chen, C.; Jiang, Z.; Hu, C.; Wu, H.; Zhang, Y.; Liu, X.; Wang, W.; Wang, J.; Hu, Z.; Wang, A.; Huang, T.; Liu, Q.; Wang, W.; Wang, L.; Wang, W.; Ren, T.; Li, L.; Xia, R.; Ge, J.; Liu, Q.; Liu, J. Discovery of (E)-N-(4-((4-methylpiperazin-1-yl)methyl)-3-(trifluoromethyl) phenyl)-3-((3-(2-(pyridin-2-yl)vinyl)-1H-indazol-6-yl) thio) propanamide (CHMFL-ABL-121) as a highly potent ABL kinase inhibitor capable of overcoming a variety of ABL mutants including T315I for chronic myeloid leukemia. Eur. J. Med. Chem., 2018, 160, 61-81.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.007] [PMID: 30317026]
[64]
Wang, B.; Zhang, W.; Liu, X.; Zou, F.; Wang, J.; Liu, Q.; Wang, A.; Hu, Z.; Chen, Y.; Qi, S.; Jiang, Z.; Chen, C.; Hu, C.; Wang, L.; Wang, W.; Liu, Q.; Liu, J. Discovery of (E)-N-(4-methyl-5-(3-(2-(pyridin-2-yl)vinyl)-1H-indazol-6-yl) thiazol-2-yl)-2-(4-methylpiperazin-1-yl)acetamide (IHMT-TRK-284) as a novel orally available type II TRK kinase inhibitor capable of overcoming multiple resistant mutants. Eur. J. Med. Chem., 2020, 207, 112744.
[http://dx.doi.org/10.1016/j.ejmech.2020.112744] [PMID: 32949955]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy