Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Repurposing Metformin for Vascular Disease

Author(s): Chris R. Triggle*, Isra Marei, Kevin Ye, Hong Ding, Todd J. Anderson, Morley D. Hollenberg and Michael A. Hill

Volume 30, Issue 35, 2023

Published on: 26 September, 2022

Page: [3955 - 3978] Pages: 24

DOI: 10.2174/0929867329666220729154615

open access plus

conference banner
Abstract

Metformin has been used as an oral anti-hyperglycaemic drug since the late 1950s; however, following the release in 1998 of the findings of the 20-year United Kingdom Prospective Diabetes Study (UKPDS), metformin use rapidly increased and today is the first-choice anti-hyperglycaemic drug for patients with type 2 diabetes (T2D). Metformin is in daily use by an estimated 150 million people worldwide. Historically, the benefits of metformin as an anti-diabetic and cardiovascular-protective drug have been linked to effects in the liver, where it acts to inhibit gluconeogenesis and lipogenesis, as well as reduce insulin resistance and enhance peripheral glucose utilization. However, direct protective effects on the endothelium and effects in the gut prior to metformin absorption are now recognized as important. In the gut, metformin modulates the glucagon-like peptide- 1 (GLP-1) - gut-brain axis and impacts the intestinal microbiota. As the apparent number of putative tissue and cellular targets for metformin has increased, so has the interest in re-purposing metformin to treat other diseases that include polycystic ovary syndrome (PCOS), cancer, neurodegenerative diseases, and COVID-19. Metformin is also being investigated as an anti-ageing drug. Of particular interest is whether metformin provides the same level of vascular protection in individuals other than those with T2D, including obese individuals with metabolic syndrome, or in the setting of vascular thromboinflammation caused by SARS-CoV-2. In this review, we critically evaluate the literature to highlight clinical settings in which metformin might be therapeutically repurposed for the prevention and treatment of vascular disease.

Keywords: Metformin, vascular disease, type 2 diabetes, endothelium, inflammation, obesity, SARS-CoV-2, COVID-19.

[1]
Sterne, J. Du nouveau dans les antidiabetiques. La NN dimethylamine guanyl guanide (NNDG). Maroc Med., 1957, 36, 1295-1296.
[2]
Glossmann, H.H.; Lutz, O.M.D. Pharmacology of metformin - An update. Eur. J. Pharmacol., 2019, 865, 172782.
[http://dx.doi.org/10.1016/j.ejphar.2019.172782] [PMID: 31705902]
[3]
Zhou, G.; Myers, R.; Li, Y.; Chen, Y.; Shen, X.; Fenyk-Melody, J.; Wu, M.; Ventre, J.; Doebber, T.; Fujii, N.; Musi, N.; Hirshman, M.F.; Goodyear, L.J.; Moller, D.E. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest., 2001, 108(8), 1167-1174.
[http://dx.doi.org/10.1172/JCI13505] [PMID: 11602624]
[4]
Muise, E.S.; Guan, H-P.; Liu, J.; Nawrocki, A.R.; Yang, X.; Wang, C.; Rodríguez, C.G.; Zhou, D.; Gorski, J.N.; Kurtz, M.M.; Feng, D.; Leavitt, K.J.; Wei, L.; Wilkening, R.R.; Apgar, J.M.; Xu, S.; Lu, K.; Feng, W.; Li, Y.; He, H.; Previs, S.F.; Shen, X.; van Heek, M.; Souza, S.C.; Rosenbach, M.J.; Biftu, T.; Erion, M.D.; Kelley, D.E.; Kemp, D.M.; Myers, R.W.; Sebhat, I.K. Pharmacological AMPK activation induces transcriptional responses congruent to exercise in skeletal and cardiac muscle, adipose tissues and liver. PLoS One, 2019, 14(2), e0211568.
[http://dx.doi.org/10.1371/journal.pone.0211568] [PMID: 30811418]
[5]
UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet, 1998, 352(9131), 837-853.
[http://dx.doi.org/10.1016/S0140-6736(98)07019-6] [PMID: 9742976]
[6]
UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet, 1998, 352(9131), 854-865.
[http://dx.doi.org/10.1016/S0140-6736(98)07037-8] [PMID: 9742977]
[7]
Stratton, I.M.; Adler, A.I.; Neil, H.A.; Matthews, D.R.; Manley, S.E.; Cull, C.A.; Hadden, D.; Turner, R.C.; Holman, R.R. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): Prospective observational study. BMJ, 2000, 321(7258), 405-412.
[http://dx.doi.org/10.1136/bmj.321.7258.405] [PMID: 10938048]
[8]
Holman, R.R.; Paul, S.K.; Bethel, M.A.; Matthews, D.R.; Neil, H.A. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med., 2008, 359(15), 1577-1589.
[http://dx.doi.org/10.1056/NEJMoa0806470] [PMID: 18784090]
[9]
Johnson, J.A.; Simpson, S.H.; Toth, E.L.; Majumdar, S.R. Reduced cardiovascular morbidity and mortality associated with metformin use in subjects with type 2 diabetes. Diabet. Med., 2005, 22(4), 497-502.
[http://dx.doi.org/10.1111/j.1464-5491.2005.01448.x] [PMID: 15787679]
[10]
Jong, C.B.; Chen, K.Y.; Hsieh, M.Y.; Su, F.Y.; Wu, C.C.; Voon, W.C.; Hsieh, I.C.; Shyu, K.G.; Chong, J.T.; Lin, W.S.; Hsu, C.N.; Ueng, K.C.; Lai, C.L. Metformin was associated with lower all-cause mortality in type 2 diabetes with acute coronary syndrome: A Nationwide registry with propensity score-matched analysis. Int. J. Cardiol., 2019, 291, 152-157.
[http://dx.doi.org/10.1016/j.ijcard.2019.03.021] [PMID: 30905518]
[11]
Bergmark, B.A.; Bhatt, D.L.; McGuire, D.K.; Cahn, A.; Mosenzon, O.; Steg, P.G.; Im, K.; Kanevsky, E.; Gurmu, Y.; Raz, I.; Braunwald, E.; Scirica, B.M. Metformin use and clinical outcomes among patients with diabetes mellitus with or without heart failure or kidney dysfunction: Observations from the SAVOR-TIMI 53 Trial. Circulation, 2019, 140(12), 1004-1014.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.040144] [PMID: 31362530]
[12]
Knowler, W.C.; Barrett-Connor, E.; Fowler, S.E.; Hamman, R.F.; Lachin, J.M.; Walker, E.A.; Nathan, D.M. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med., 2002, 346(6), 393-403.
[http://dx.doi.org/10.1056/NEJMoa012512] [PMID: 11832527]
[13]
Diabetes Prevention Program Research Group. Long-term safety, tolerability, and weight loss associated with metformin in the Diabetes Prevention Program Outcomes Study. Diabetes Care, 2012, 35(4), 731-737.
[http://dx.doi.org/10.2337/dc11-1299] [PMID: 22442396]
[14]
Han, Y.; Xie, H.; Liu, Y.; Gao, P.; Yang, X.; Shen, Z. Effect of metformin on all-cause and cardiovascular mortality in patients with coronary artery diseases: A systematic review and an updated meta-analysis. Cardiovasc. Diabetol., 2019, 18(1), 96.
[http://dx.doi.org/10.1186/s12933-019-0900-7] [PMID: 31362743]
[15]
Griffin, S.J.; Leaver, J.K.; Irving, G.J. Impact of metformin on cardiovascular disease: A meta-analysis of randomised trials among people with type 2 diabetes. Diabetologia, 2017, 60(9), 1620-1629.
[http://dx.doi.org/10.1007/s00125-017-4337-9] [PMID: 28770324]
[16]
Boussageon, R.; Supper, I.; Bejan-Angoulvant, T.; Kellou, N.; Cucherat, M.; Boissel, J-P.; Kassai, B.; Moreau, A.; Gueyffier, F.; Cornu, C. Reappraisal of metformin efficacy in the treatment of type 2 diabetes: A meta-analysis of randomised controlled trials. PLoS Med., 2012, 9(4), e1001204.
[http://dx.doi.org/10.1371/journal.pmed.1001204] [PMID: 22509138]
[17]
Boussageon, R.; Gueyffier, F.; Cornu, C. Metformin as firstline treatment for type 2 diabetes: Are we sure? BMJ, 2016, 352, h6748.
[http://dx.doi.org/10.1136/bmj.h6748] [PMID: 26747716]
[18]
Furchgott, R.F.; Zawadzki, J.V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 1980, 288(5789), 373-376.
[http://dx.doi.org/10.1038/288373a0] [PMID: 6253831]
[19]
Triggle, C.R.; Ding, H.; Marei, I.; Anderson, T.J.; Hollenberg, M.D. Why the endothelium? The endothelium as a target to reduce diabetes-associated vascular disease. Can. J. Physiol. Pharmacol., 2020, 98(7), 415-430.
[http://dx.doi.org/10.1139/cjpp-2019-0677] [PMID: 32150686]
[20]
Verma, S.; Anderson, T.J. Fundamentals of endothelial function for the clinical cardiologist. Circulation, 2002, 105(5), 546-549.
[http://dx.doi.org/10.1161/hc0502.104540] [PMID: 11827916]
[21]
Vita, J.A.; Keaney, J.F., Jr Endothelial function: A barometer for cardiovascular risk? Circulation, 2002, 106(6), 640-642.
[http://dx.doi.org/10.1161/01.CIR.0000028581.07992.56] [PMID: 12163419]
[22]
Anderson, T.J.; Uehata, A.; Gerhard, M.D.; Meredith, I.T.; Knab, S.; Delagrange, D.; Lieberman, E.H.; Ganz, P.; Creager, M.A.; Yeung, A.C. Close relation of endothelial function in the human coronary and peripheral circulations. J. Am. Coll. Cardiol., 1995, 26(5), 1235-1241.
[http://dx.doi.org/10.1016/0735-1097(95)00327-4] [PMID: 7594037]
[23]
Little, P.J.; Askew, C.D.; Xu, S.; Kamato, D. Endothelial dysfunction and cardiovascular disease: History and analysis of the clinical utility of the relationship. Biomedicines, 2021, 9(6), 699.
[http://dx.doi.org/10.3390/biomedicines9060699] [PMID: 34203043]
[24]
Nafisa, A.; Gray, S.G.; Cao, Y.; Wang, T.; Xu, S.; Wattoo, F.H.; Barras, M.; Cohen, N.; Kamato, D.; Little, P.J. Endothelial function and dysfunction: Impact of metformin. Pharmacol. Ther., 2018, 192, 150-162.
[http://dx.doi.org/10.1016/j.pharmthera.2018.07.007] [PMID: 30056057]
[25]
Ding, H.; Ye, K.; Triggle, C.R. Impact of currently used anti-diabetic drugs on myoendothelial communication. Curr. Opin. Pharmacol., 2019, 45, 1-7.
[http://dx.doi.org/10.1016/j.coph.2018.11.002] [PMID: 30502742]
[26]
Ding, Y.; Zhou, Y.; Ling, P.; Feng, X.; Luo, S.; Zheng, X.; Little, P.J.; Xu, S.; Weng, J. Metformin in cardiovascular diabetology: A focused review of its impact on endothelial function. Theranostics, 2021, 11(19), 9376-9396.
[http://dx.doi.org/10.7150/thno.64706] [PMID: 34646376]
[27]
Salvatore, T.; Pafundi, P.C.; Galiero, R.; Rinaldi, L.; Caturano, A.; Vetrano, E.; Aprea, C.; Albanese, G.; Di Martino, A.; Ricozzi, C.; Imbriani, S.; Sasso, F.C. Can metformin exert as an active drug on endothelial dysfunction in diabetic subjects? Biomedicines, 2020, 9(1), 3.
[http://dx.doi.org/10.3390/biomedicines9010003] [PMID: 33375185]
[28]
Mather, K.J.; Verma, S.; Anderson, T.J. Improved endothelial function with metformin in type 2 diabetes mellitus. J. Am. Coll. Cardiol., 2001, 37(5), 1344-1350.
[http://dx.doi.org/10.1016/S0735-1097(01)01129-9] [PMID: 11300445]
[29]
Vitale, C.; Mercuro, G.; Cornoldi, A.; Fini, M.; Volterrani, M.; Rosano, G.M. Metformin improves endothelial function in patients with metabolic syndrome. J. Intern. Med., 2005, 258(3), 250-256.
[http://dx.doi.org/10.1111/j.1365-2796.2005.01531.x] [PMID: 16115299]
[30]
de Jager, J.; Kooy, A.; Lehert, P.; Wulffelé, M.G.; van der Kolk, J.; Bets, D.; Verburg, J.; Donker, A.J.; Stehouwer, C.D. Long term treatment with metformin in patients with type 2 diabetes and risk of vitamin B-12 deficiency: Randomised placebo controlled trial. BMJ, 2010, 340, c2181.
[http://dx.doi.org/10.1136/bmj.c2181] [PMID: 20488910]
[31]
de Jager, J.; Kooy, A.; Schalkwijk, C.; van der Kolk, J.; Lehert, P.; Bets, D.; Wulffelé, M.G.; Donker, A.J.; Stehouwer, C.D. Long-term effects of metformin on endothelial function in type 2 diabetes: A randomized controlled trial. J. Intern. Med., 2014, 275(1), 59-70.
[http://dx.doi.org/10.1111/joim.12128] [PMID: 23981104]
[32]
Sirtori, C.R.; Franceschini, G.; Gianfranceschi, G.; Sirtori, M.; Montanari, G.; Bosisio, E.; Mantero, E.; Bondioli, A. Metformin improves peripheral vascular flow in nonhyperlipidemic patients with arterial disease. J. Cardiovasc. Pharmacol., 1984, 6(5), 914-923.
[http://dx.doi.org/10.1097/00005344-198409000-00027] [PMID: 6209500]
[33]
Sirtori, C.R.; Franceschini, G.; Galli-Kienle, M.; Cighetti, G.; Galli, G.; Bondioli, A.; Conti, F. Disposition of metformin (N,N-dimethylbiguanide) in man. Clin. Pharmacol. Ther., 1978, 24(6), 683-693.
[http://dx.doi.org/10.1002/cpt1978246683] [PMID: 710026]
[34]
de Aguiar, L.G.; Bahia, L.R.; Villela, N.; Laflor, C.; Sicuro, F.; Wiernsperger, N.; Bottino, D.; Bouskela, E. Metformin improves endothelial vascular reactivity in first-degree relatives of type 2 diabetic patients with metabolic syndrome and normal glucose tolerance. Diabetes Care, 2006, 29(5), 1083-1089.
[http://dx.doi.org/10.2337/dc05-2146] [PMID: 16644641]
[35]
Pitocco, D.; Zaccardi, F.; Tarzia, P.; Milo, M.; Scavone, G.; Rizzo, P.; Pagliaccia, F.; Nerla, R.; Di Franco, A.; Manto, A.; Rocca, B.; Lanza, G.A.; Crea, F.; Ghirlanda, G. Metformin improves endothelial function in type 1 diabetic subjects: A pilot, placebo-controlled randomized study. Diabetes Obes. Metab., 2013, 15(5), 427-431.
[http://dx.doi.org/10.1111/dom.12041] [PMID: 23167274]
[36]
Rena, G.; Lang, C.C. Repurposing metformin for cardiovascular disease. Circulation, 2018, 137(5), 422-424.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.031735] [PMID: 29378754]
[37]
Jadhav, S.; Ferrell, W.; Greer, I.A.; Petrie, J.R.; Cobbe, S.M.; Sattar, N. Effects of metformin on microvascular function and exercise tolerance in women with angina and normal coronary arteries: A randomized, double-blind, placebo-controlled study. J. Am. Coll. Cardiol., 2006, 48(5), 956-963.
[http://dx.doi.org/10.1016/j.jacc.2006.04.088] [PMID: 16949486]
[38]
Preiss, D.; Lloyd, S.M.; Ford, I.; McMurray, J.J.; Holman, R.R.; Welsh, P.; Fisher, M.; Packard, C.J.; Sattar, N. Metformin for non-diabetic patients with coronary heart disease (the CAMERA study): A randomised controlled trial. Lancet Diabetes Endocrinol., 2014, 2(2), 116-124.
[http://dx.doi.org/10.1016/S2213-8587(13)70152-9] [PMID: 24622715]
[39]
Luo, F.; Das, A.; Chen, J.; Wu, P.; Li, X.; Fang, Z. Metformin in patients with and without diabetes: A paradigm shift in cardiovascular disease management. Cardiovasc. Diabetol., 2019, 18(1), 54.
[http://dx.doi.org/10.1186/s12933-019-0860-y] [PMID: 31029144]
[40]
Huang, Y.; Smith, C.A.; Chen, G.; Sharma, B.; Miner, A.S.; Barbee, R.W.; Ratz, P.H. The AMP-dependent protein kinase (AMPK) activator A-769662 causes arterial relaxation by reducing cytosolic free calcium independently of an increase in AMPK phosphorylation. Front. Pharmacol., 2017, 8, 756.
[http://dx.doi.org/10.3389/fphar.2017.00756] [PMID: 29093683]
[41]
Sung, J.Y.; Choi, H.C. Metformin-induced AMP-activated protein kinase activation regulates phenylephrine-mediated contraction of rat aorta. Biochem. Biophys. Res. Commun., 2012, 421(3), 599-604.
[http://dx.doi.org/10.1016/j.bbrc.2012.04.052] [PMID: 22525678]
[42]
Mori, A.; Ishikawa, E.; Amano, T.; Sakamoto, K.; Nakahara, T. Anti-diabetic drug metformin dilates retinal blood vessels through activation of AMP-activated protein kinase in rats. Eur. J. Pharmacol., 2017, 798, 66-71.
[http://dx.doi.org/10.1016/j.ejphar.2017.01.003] [PMID: 28087254]
[43]
Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res., 2010, 107(9), 1058-1070.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223545] [PMID: 21030723]
[44]
Bellin, C.; de Wiza, D.H.; Wiernsperger, N.F.; Rösen, P. Generation of reactive oxygen species by endothelial and smooth muscle cells: Influence of hyperglycemia and metformin. Horm. Metab. Res., 2006, 38(11), 732-739.
[http://dx.doi.org/10.1055/s-2006-955084] [PMID: 17111300]
[45]
Ouslimani, N.; Peynet, J.; Bonnefont-Rousselot, D.; Thérond, P.; Legrand, A.; Beaudeux, J-L. Metformin decreases intracellular production of reactive oxygen species in aortic endothelial cells. Metabolism, 2005, 54(6), 829-834.
[http://dx.doi.org/10.1016/j.metabol.2005.01.029] [PMID: 15931622]
[46]
Liu, J.; Aylor, K.W.; Chai, W.; Barrett, E.J.; Liu, Z. Metformin prevents endothelial oxidative stress and microvascular insulin resistance during obesity development in male rats. Am. J. Physiol. Endocrinol. Metab., 2022, 322(3), E293-E306.
[http://dx.doi.org/10.1152/ajpendo.00240.2021] [PMID: 35128961]
[47]
Isoda, K.; Young, J.L.; Zirlik, A.; MacFarlane, L.A.; Tsuboi, N.; Gerdes, N.; Schönbeck, U.; Libby, P. Metformin inhibits proinflammatory responses and nuclear factor-kappaB in human vascular wall cells. Arterioscler. Thromb. Vasc. Biol., 2006, 26(3), 611-617.
[http://dx.doi.org/10.1161/01.ATV.0000201938.78044.75] [PMID: 16385087]
[48]
Arunachalam, G.; Samuel, S.M.; Marei, I.; Ding, H.; Triggle, C.R. Metformin modulates hyperglycaemia-induced endothelial senescence and apoptosis through SIRT1. Br. J. Pharmacol., 2014, 171(2), 523-535.
[http://dx.doi.org/10.1111/bph.12496] [PMID: 24372553]
[49]
Zheng, Z.; Chen, H.; Li, J.; Li, T.; Zheng, B.; Zheng, Y.; Jin, H.; He, Y.; Gu, Q.; Xu, X. Sirtuin 1-mediated cellular metabolic memory of high glucose via the LKB1/AMPK/ROS pathway and therapeutic effects of metformin. Diabetes, 2012, 61(1), 217-228.
[http://dx.doi.org/10.2337/db11-0416] [PMID: 22124463]
[50]
Guarente, L. Sirtuins in aging and disease. Cold Spring Harb. Symp. Quant. Biol., 2007, 72, 483-488.
[http://dx.doi.org/10.1101/sqb.2007.72.024] [PMID: 18419308]
[51]
Sun, C.; Zhang, F.; Ge, X.; Yan, T.; Chen, X.; Shi, X.; Zhai, Q. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab., 2007, 6(4), 307-319.
[http://dx.doi.org/10.1016/j.cmet.2007.08.014] [PMID: 17908559]
[52]
Alcendor, R.R.; Gao, S.; Zhai, P.; Zablocki, D.; Holle, E.; Yu, X.; Tian, B.; Wagner, T.; Vatner, S.F.; Sadoshima, J. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ. Res., 2007, 100(10), 1512-1521.
[http://dx.doi.org/10.1161/01.RES.0000267723.65696.4a] [PMID: 17446436]
[53]
Potente, M.; Ghaeni, L.; Baldessari, D.; Mostoslavsky, R.; Rossig, L.; Dequiedt, F.; Haendeler, J.; Mione, M.; Dejana, E.; Alt, F.W.; Zeiher, A.M.; Dimmeler, S. SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev., 2007, 21(20), 2644-2658.
[http://dx.doi.org/10.1101/gad.435107] [PMID: 17938244]
[54]
Elibol, B.; Kilic, U. High levels of SIRT1 expression as a protective mechanism against disease-related conditions. Front. Endocrinol. (Lausanne), 2018, 9, 614.
[http://dx.doi.org/10.3389/fendo.2018.00614] [PMID: 30374331]
[55]
Zu, Y.; Liu, L.; Lee, M.Y.; Xu, C.; Liang, Y.; Man, R.Y.; Vanhoutte, P.M.; Wang, Y. SIRT1 promotes proliferation and prevents senescence through targeting LKB1 in primary porcine aortic endothelial cells. Circ. Res., 2010, 106(8), 1384-1393.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.215483] [PMID: 20203304]
[56]
Mattagajasingh, I.; Kim, C.S.; Naqvi, A.; Yamamori, T.; Hoffman, T.A.; Jung, S.B.; DeRicco, J.; Kasuno, K.; Irani, K. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc. Natl. Acad. Sci. USA, 2007, 104(37), 14855-14860.
[http://dx.doi.org/10.1073/pnas.0704329104] [PMID: 17785417]
[57]
Mohammed, I.; Hollenberg, M.D.; Ding, H.; Triggle, C.R. A critical review of the evidence that metformin is a putative anti-aging drug that enhances healthspan and extends lifespan. Front. Endocrinol. (Lausanne), 2021, 12, 718942.
[http://dx.doi.org/10.3389/fendo.2021.718942] [PMID: 34421827]
[58]
Venu, V.K.P.; Saifeddine, M.; Mihara, K.; Faiza, M.; Gorobets, E.; Flewelling, A.J.; Derksen, D.J.; Hirota, S.A.; Marei, I.; Al-Majid, D.; Motahhary, M.; Ding, H.; Triggle, C.R.; Hollenberg, M.D. MetfZormin prevents hyperglycemia-associated, oxidative stress-induced vascular endothelial dysfunction: Essential role for the orphan nuclear receptor human nuclear receptor 4A1 (Nur77). Mol. Pharmacol., 2021, 100(5), 428-455.
[http://dx.doi.org/10.1124/molpharm.120.000148] [PMID: 34452975]
[59]
Zhan, Y.Y.; Chen, Y.; Zhang, Q.; Zhuang, J.J.; Tian, M.; Chen, H.Z.; Zhang, L.R.; Zhang, H.K.; He, J.P.; Wang, W.J.; Wu, R.; Wang, Y.; Shi, C.; Yang, K.; Li, A.Z.; Xin, Y.Z.; Li, T.Y.; Yang, J.Y.; Zheng, Z.H.; Yu, C.D.; Lin, S.C.; Chang, C.; Huang, P.Q.; Lin, T.; Wu, Q. The orphan nuclear receptor Nur77 regulates LKB1 localization and activates AMPK. Nat. Chem. Biol., 2012, 8(11), 897-904.
[http://dx.doi.org/10.1038/nchembio.1069] [PMID: 22983157]
[60]
Asahara, T.; Murohara, T.; Sullivan, A.; Silver, M.; van der Zee, R.; Li, T.; Witzenbichler, B.; Schatteman, G.; Isner, J.M. Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997, 275(5302), 964-967.
[http://dx.doi.org/10.1126/science.275.5302.964] [PMID: 9020076]
[61]
Dimmeler, S.; Zeiher, A.M. Vascular repair by circulating endothelial progenitor cells: The missing link in atherosclerosis? J. Mol. Med. (Berl.), 2004, 82(10), 671-677.
[http://dx.doi.org/10.1007/s00109-004-0580-x] [PMID: 15322703]
[62]
Zhang, M.; Malik, A.B.; Rehman, J. Endothelial progenitor cells and vascular repair. Curr. Opin. Hematol., 2014, 21(3), 224-228.
[http://dx.doi.org/10.1097/MOH.0000000000000041] [PMID: 24637956]
[63]
Berezin, A. Epigenetically modified endothelial progenitor cells in heart failure. J. Clin. Epigen., 2016, 2, 13.
[64]
Berezin, A.; Berezin, A. Endothelial progenitor cell dysfunction in diabetes mellitus. New Target Risk Stratificat. Ther., 2019, 6, 27-32.
[65]
Medina, R.J.; Barber, C.L.; Sabatier, F.; Dignat-George, F.; Melero-Martin, J.M.; Khosrotehrani, K.; Ohneda, O.; Randi, A.M.; Chan, J.K.Y.; Yamaguchi, T.; Van Hinsbergh, V.W.M.; Yoder, M.C.; Stitt, A.W. Endothelial progenitors: A consensus statement on nomenclature. Stem Cells Transl. Med., 2017, 6(5), 1316-1320.
[http://dx.doi.org/10.1002/sctm.16-0360] [PMID: 28296182]
[66]
Yoon, C.H.; Hur, J.; Park, K.W.; Kim, J.H.; Lee, C.S.; Oh, I.Y.; Kim, T.Y.; Cho, H.J.; Kang, H.J.; Chae, I.H.; Yang, H.K.; Oh, B.H.; Park, Y.B.; Kim, H.S. Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: The role of angiogenic cytokines and matrix metalloproteinases. Circulation, 2005, 112(11), 1618-1627.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.104.503433] [PMID: 16145003]
[67]
O’Neill, T.J., IV; Wamhoff, B.R.; Owens, G.K.; Skalak, T.C. Mobilization of bone marrow-derived cells enhances the angiogenic response to hypoxia without transdifferentiation into endothelial cells. Circ. Res., 2005, 97(10), 1027-1035.
[http://dx.doi.org/10.1161/01.RES.0000189259.69645.25] [PMID: 16210550]
[68]
Zentilin, L.; Tafuro, S.; Zacchigna, S.; Arsic, N.; Pattarini, L.; Sinigaglia, M.; Giacca, M. Bone marrow mononuclear cells are recruited to the sites of VEGF-induced neovascularization but are not incorporated into the newly formed vessels. Blood, 2006, 107(9), 3546-3554.
[http://dx.doi.org/10.1182/blood-2005-08-3215] [PMID: 16391016]
[69]
Fadini, G.P.; Miorin, M.; Facco, M.; Bonamico, S.; Baesso, I.; Grego, F.; Menegolo, M.; de Kreutzenberg, S.V.; Tiengo, A.; Agostini, C.; Avogaro, A. Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J. Am. Coll. Cardiol., 2005, 45(9), 1449-1457.
[http://dx.doi.org/10.1016/j.jacc.2004.11.067] [PMID: 15862417]
[70]
Li, M.; Ho, J.C.; Lai, K.W.; Au, K.K.; Xu, A.; Cheung, B.M.; Lam, K.S.; Tse, H.F. The decrement in circulating endothelial progenitor cells (EPCs) in type 2 diabetes is independent of the severity of the hypoadiponectemia. Diabetes Metab. Res. Rev., 2011, 27(2), 185-194.
[http://dx.doi.org/10.1002/dmrr.1159] [PMID: 21294240]
[71]
Churdchomjan, W.; Kheolamai, P.; Manochantr, S.; Tapanadechopone, P.; Tantrawatpan, C.; U-Pratya, Y.; Issaragrisil, S. Comparison of endothelial progenitor cell function in type 2 diabetes with good and poor glycemic control. BMC Endocr. Disord., 2010, 10(1), 5.
[http://dx.doi.org/10.1186/1472-6823-10-5] [PMID: 20374643]
[72]
Yuan, Q.; Hu, C.P.; Gong, Z.C.; Bai, Y.P.; Liu, S.Y.; Li, Y.J.; Jiang, J.L. Accelerated onset of senescence of endothelial progenitor cells in patients with type 2 diabetes mellitus: Role of dimethylarginine dimethylaminohydrolase 2 and asymmetric dimethylarginine. Biochem. Biophys. Res. Commun., 2015, 458(4), 869-876.
[http://dx.doi.org/10.1016/j.bbrc.2015.02.050] [PMID: 25701782]
[73]
Reinhard, H.; Jacobsen, P.K.; Lajer, M.; Pedersen, N.; Billestrup, N.; Mandrup-Poulsen, T.; Parving, H.H.; Rossing, P. Multifactorial treatment increases endothelial progenitor cells in patients with type 2 diabetes. Diabetologia, 2010, 53(10), 2129-2133.
[http://dx.doi.org/10.1007/s00125-010-1843-4] [PMID: 20607514]
[74]
Kränkel, N.; Adams, V.; Linke, A.; Gielen, S.; Erbs, S.; Lenk, K.; Schuler, G.; Hambrecht, R. Hyperglycemia reduces survival and impairs function of circulating blood-derived progenitor cells. Arterioscler. Thromb. Vasc. Biol., 2005, 25(4), 698-703.
[http://dx.doi.org/10.1161/01.ATV.0000156401.04325.8f] [PMID: 15662022]
[75]
Tepper, O.M.; Galiano, R.D.; Capla, J.M.; Kalka, C.; Gagne, P.J.; Jacobowitz, G.R.; Levine, J.P.; Gurtner, G.C. Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation, 2002, 106(22), 2781-2786.
[http://dx.doi.org/10.1161/01.CIR.0000039526.42991.93] [PMID: 12451003]
[76]
Chen, Y.H.; Lin, S.J.; Lin, F.Y.; Wu, T.C.; Tsao, C.R.; Huang, P.H.; Liu, P.L.; Chen, Y.L.; Chen, J.W. High glucose impairs early and late endothelial progenitor cells by modifying nitric oxide-related but not oxidative stress-mediated mechanisms. Diabetes, 2007, 56(6), 1559-1568.
[http://dx.doi.org/10.2337/db06-1103] [PMID: 17389326]
[77]
Zhang, J.; Zhang, X.; Li, H.; Cui, X.; Guan, X.; Tang, K.; Jin, C.; Cheng, M. Hyperglycaemia exerts deleterious effects on late endothelial progenitor cell secretion actions. Diab. Vasc. Dis. Res., 2013, 10(1), 49-56.
[http://dx.doi.org/10.1177/1479164112444639] [PMID: 22561229]
[78]
Tura, O.; Skinner, E.M.; Barclay, G.R.; Samuel,, K.; Gallagher, R.C.; Brittan, M.; Hadoke, P.W.; Newby, D.E.; Turner, M.L.; Mills, N.L. Late outgrowth endothelial cells resemble mature endothelial cells and are not derived from bone marrow. Stem Cells, 2013, 31(2), 338-348.
[79]
Ahmed, F.W.; Rider, R.; Glanville, M.; Narayanan, K.; Razvi, S.; Weaver, J.U. Metformin improves circulating endothelial cells and endothelial progenitor cells in type 1 diabetes: MERIT study. Cardiovasc. Diabetol., 2016, 15(1), 116.
[http://dx.doi.org/10.1186/s12933-016-0413-6] [PMID: 27561827]
[80]
Chen, L.L.; Liao, Y.F.; Zeng, T.S.; Yu, F.; Li, H.Q.; Feng, Y. Effects of metformin plus gliclazide compared with metformin alone on circulating endothelial progenitor cell in type 2 diabetic patients. Endocrine, 2010, 38(2), 266-275.
[http://dx.doi.org/10.1007/s12020-010-9383-8] [PMID: 20972736]
[81]
Dore, F.J.; Domingues, C.C.; Ahmadi, N.; Kundu, N.; Kropotova, Y.; Houston, S.; Rouphael, C.; Mammadova, A.; Witkin, L.; Khiyami, A.; Amdur, R.L.; Sen, S. The synergistic effects of saxagliptin and metformin on CD34+ endothelial progenitor cells in early type 2 diabetes patients: A randomized clinical trial. Cardiovasc. Diabetol., 2018, 17(1), 65-65.
[http://dx.doi.org/10.1186/s12933-018-0709-9] [PMID: 29724198]
[82]
Yu, J.W.; Deng, Y.P.; Han, X.; Ren, G.F.; Cai, J.; Jiang, G.J. Metformin improves the angiogenic functions of endothelial progenitor cells via activating AMPK/eNOS pathway in diabetic mice. Cardiovasc. Diabetol., 2016, 15, 1475-2840.
[83]
Han, X.; Tao, Y.; Deng, Y.; Yu, J.; Sun, Y.; Jiang, G. Metformin accelerates wound healing in type 2 diabetic db/db mice. Mol. Med. Rep., 2017, 16(6), 8691-8698.
[http://dx.doi.org/10.3892/mmr.2017.7707] [PMID: 28990070]
[84]
Dallaglio, K.; Bruno, A.; Cantelmo, A.R.; Esposito, A.I.; Ruggiero, L.; Orecchioni, S.; Calleri, A.; Bertolini, F.; Pfeffer, U.; Noonan, D.M.; Albini, A. Paradoxic effects of metformin on endothelial cells and angiogenesis. Carcinogenesis, 2014, 35(5), 1055-1066.
[http://dx.doi.org/10.1093/carcin/bgu001] [PMID: 24419232]
[85]
Li, W.D.; Du, X.L.; Qian, A.M.; Hu, N.; Kong, L.S.; Wei, S.; Li, C.L.; Li, X.Q. Metformin regulates differentiation of bone marrow-derived endothelial progenitor cells via multiple mechanisms. Biochem. Biophys. Res. Commun., 2015, 465(4), 803-809.
[http://dx.doi.org/10.1016/j.bbrc.2015.08.091] [PMID: 26319555]
[86]
Li, W.D.; Li, N.P.; Song, D.D.; Rong, J.J.; Qian, A.M.; Li, X.Q. Metformin inhibits endothelial progenitor cell migration by decreasing matrix metalloproteinases, MMP-2 and MMP-9, via the AMPK/mTOR/autophagy pathway. Int. J. Mol. Med., 2017, 39(5), 1262-1268.
[http://dx.doi.org/10.3892/ijmm.2017.2929] [PMID: 28339020]
[87]
Graham, G.G.; Punt, J.; Arora, M.; Day, R.O.; Doogue, M.P.; Duong, J.K.; Furlong, T.J.; Greenfield, J.R.; Greenup, L.C.; Kirkpatrick, C.M.; Ray, J.E.; Timmins, P.; Williams, K.M. Clinical pharmacokinetics of metformin. Clin. Pharmacokinet., 2011, 50(2), 81-98.
[http://dx.doi.org/10.2165/11534750-000000000-00000] [PMID: 21241070]
[88]
Cabreiro, F.; Au, C.; Leung, K.Y.; Vergara-Irigaray, N.; Cochemé, H.M.; Noori, T.; Weinkove, D.; Schuster, E.; Greene, N.D.; Gems, D. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell, 2013, 153(1), 228-239.
[http://dx.doi.org/10.1016/j.cell.2013.02.035] [PMID: 23540700]
[89]
Chen, J.; Ou, Y.; Li, Y.; Hu, S.; Shao, L.W.; Liu, Y. Metformin extends C. elegans lifespan through lysosomal pathway. eLife, 2017, 6, 6.
[http://dx.doi.org/10.7554/eLife.31268] [PMID: 29027899]
[90]
Espada, L.; Dakhovnik, A.; Chaudhari, P.; Martirosyan, A.; Miek, L.; Poliezhaieva, T.; Schaub, Y.; Nair, A.; Döring, N.; Rahnis, N.; Werz, O.; Koeberle, A.; Kirkpatrick, J.; Ori, A.; Ermolaeva, M.A. Loss of metabolic plasticity underlies metformin toxicity in aged Caenorhabditis elegans. Nat. Metab., 2020, 2(11), 1316-1331.
[http://dx.doi.org/10.1038/s42255-020-00307-1] [PMID: 33139960]
[91]
Anisimov, V.N.; Berstein, L.M.; Popovich, I.G.; Zabezhinski, M.A.; Egormin, P.A.; Piskunova, T.S.; Semenchenko, A.V.; Tyndyk, M.L.; Yurova, M.N.; Kovalenko, I.G.; Poroshina, T.E. If started early in life, metformin treatment increases life span and postpones tumors in female SHR mice. Aging (Albany NY), 2011, 3(2), 148-157.
[http://dx.doi.org/10.18632/aging.100273] [PMID: 21386129]
[92]
Smith, D.L., Jr; Elam, C.F., Jr; Mattison, J.A.; Lane, M.A.; Roth, G.S.; Ingram, D.K.; Allison, D.B. Metformin supplementation and life span in Fischer-344 rats. J. Gerontol. A Biol. Sci. Med. Sci., 2010, 65(5), 468-474.
[http://dx.doi.org/10.1093/gerona/glq033] [PMID: 20304770]
[93]
Strong, R.; Miller, R.A.; Antebi, A.; Astle, C.M.; Bogue, M.; Denzel, M.S.; Fernandez, E.; Flurkey, K.; Hamilton, K.L.; Lamming, D.W.; Javors, M.A.; de Magalhães, J.P.; Martinez, P.A.; McCord, J.M.; Miller, B.F.; Müller, M.; Nelson, J.F.; Ndukum, J.; Rainger, G.E.; Richardson, A.; Sabatini, D.M.; Salmon, A.B.; Simpkins, J.W.; Steegenga, W.T.; Nadon, N.L.; Harrison, D.E. Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an α-glucosidase inhibitor or a Nrf2-inducer. Aging Cell, 2016, 15(5), 872-884.
[http://dx.doi.org/10.1111/acel.12496] [PMID: 27312235]
[94]
Glossmann, H.H.; Lutz, O.M.D. Metformin and aging: A review. Gerontology, 2019, 65(6), 581-590.
[http://dx.doi.org/10.1159/000502257] [PMID: 31522175]
[95]
Pedersen, B.K.; Saltin, B. Exercise as medicine - evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand. J. Med. Sci. Sports, 2015, 25(Suppl. 3), 1-72.
[http://dx.doi.org/10.1111/sms.12581] [PMID: 26606383]
[96]
Leung, F.P.; Yung, L.M.; Laher, I.; Yao, X.; Chen, Z.Y.; Huang, Y. Exercise, vascular wall and cardiovascular diseases: An update (Part 1). Sports Med., 2008, 38(12), 1009-1024.
[http://dx.doi.org/10.2165/00007256-200838120-00005] [PMID: 19026018]
[97]
Narkar, V.A.; Downes, M.; Yu, R.T.; Embler, E.; Wang, Y.X.; Banayo, E.; Mihaylova, M.M.; Nelson, M.C.; Zou, Y.; Juguilon, H.; Kang, H.; Shaw, R.J.; Evans, R.M. AMPK and PPARdelta agonists are exercise mimetics. Cell, 2008, 134(3), 405-415.
[http://dx.doi.org/10.1016/j.cell.2008.06.051] [PMID: 18674809]
[98]
Malin, S.K.; Braun, B. Impact of metformin on exercise-induced metabolic adaptations to lower type 2 diabetes risk. Exerc. Sport Sci. Rev., 2016, 44(1), 4-11.
[http://dx.doi.org/10.1249/JES.0000000000000070] [PMID: 26583801]
[99]
Konopka, A.R.; Laurin, J.L.; Schoenberg, H.M.; Reid, J.J.; Castor, W.M.; Wolff, C.A.; Musci, R.V.; Safairad, O.D.; Linden, M.A.; Biela, L.M.; Bailey, S.M.; Hamilton, K.L.; Miller, B.F. Metformin inhibits mitochondrial adaptations to aerobic exercise training in older adults. Aging Cell, 2019, 18(1), e12880.
[http://dx.doi.org/10.1111/acel.12880] [PMID: 30548390]
[100]
Terada, T.; Boulé, N.G. Does metformin therapy influence the effects of intensive lifestyle intervention? Exploring the interaction between first line therapies in the Look AHEAD trial. Metabolism, 2019, 94, 39-46.
[http://dx.doi.org/10.1016/j.metabol.2019.01.004] [PMID: 30653978]
[101]
Walton, R.G.; Dungan, C.M.; Long, D.E.; Tuggle, S.C.; Kosmac, K.; Peck, B.D.; Bush, H.M.; Villasante Tezanos, A.G.; McGwin, G.; Windham, S.T.; Ovalle, F.; Bamman, M.M.; Kern, P.A.; Peterson, C.A. Metformin blunts muscle hypertrophy in response to progressive resistance exercise training in older adults: A randomized, double-blind, placebo-controlled, multicenter trial: The MASTERS trial. Aging Cell, 2019, 18(6), e13039.
[http://dx.doi.org/10.1111/acel.13039] [PMID: 31557380]
[102]
Malin, S.K.; Gerber, R.; Chipkin, S.R.; Braun, B. Independent and combined effects of exercise training and metformin on insulin sensitivity in individuals with prediabetes. Diabetes Care, 2012, 35(1), 131-136.
[http://dx.doi.org/10.2337/dc11-0925] [PMID: 22040838]
[103]
Gebrie, D.; Getnet, D.; Manyazewal, T. Cardiovascular safety and efficacy of metformin-SGLT2i versus metformin-sulfonylureas in type 2 diabetes: Systematic review and meta-analysis of randomized controlled trials. Sci. Rep., 2021, 11(1), 137.
[http://dx.doi.org/10.1038/s41598-020-80603-8] [PMID: 33420333]
[104]
Zaccardi, F.; Kloecker, D.E.; Buse, J.B.; Mathieu, C.; Khunti, K.; Davies, M.J. Use of metformin and cardiovascular effects of new classes of glucose-lowering agents: A meta-analysis of cardiovascular outcome trials in type 2 diabetes. Diabetes Care, 2021, 44(2), e32-e34.
[http://dx.doi.org/10.2337/dc20-2080] [PMID: 33334809]
[105]
Masson, W.; Lavalle-Cobo, A.; Lobo, M.; Masson, G.; Molinero, G. Novel antidiabetic drugs and risk of cardiovascular events in patients without baseline metformin use: A meta-analysis. Eur. J. Prev. Cardiol., 2021, 28(1), 69-75.
[http://dx.doi.org/10.1093/eurjpc/zwaa074] [PMID: 33606884]
[106]
Lunder, M.; Janić, M.; Japelj, M.; Juretič, A.; Janež, A.; Šabovič, M. Empagliflozin on top of metformin treatment improves arterial function in patients with type 1 diabetes mellitus. Cardiovasc. Diabetol., 2018, 17(1), 153.
[http://dx.doi.org/10.1186/s12933-018-0797-6] [PMID: 30509271]
[107]
Singh, A.K.; Singh, R. Heart failure hospitalization with SGLT-2 inhibitors: A systematic review and meta-analysis of randomized controlled and observational studies. Expert Rev. Clin. Pharmacol., 2019, 12(4), 299-308.
[http://dx.doi.org/10.1080/17512433.2019.1588110] [PMID: 30817235]
[108]
Salvatore, T.; Galiero, R.; Caturano, A.; Vetrano, E.; Rinaldi, L.; Coviello, F.; Di Martino, A.; Albanese, G.; Marfella, R.; Sardu, C.; Sasso, F.C. Effects of metformin in heart failure: From pathophysiological rationale to clinical evidence. Biomolecules, 2021, 11(12), 1834.
[http://dx.doi.org/10.3390/biom11121834] [PMID: 34944478]
[109]
Schernthaner, G. Can glucose-lowering drugs affect the prognosis of COVID-19 in patients with type 2 diabetes? Lancet Diabetes Endocrinol., 2021, 9(5), 251-252.
[http://dx.doi.org/10.1016/S2213-8587(21)00059-0] [PMID: 33798462]
[110]
Wiggers, H.; Køber, L.; Gislason, G.; Schou, M.; Poulsen, M.K.; Vraa, S.; Nielsen, O.W.; Bruun, N.E.; Nørrelund, H.; Hollingdal, M.; Barasa, A.; Bøttcher, M.; Dodt, K.; Hansen, V.B.; Nielsen, G.; Knudsen, A.S.; Lomholdt, J.; Mikkelsen, K.V.; Jonczy, B.; Brønnum-Schou, J.; Poenaru, M.P.; Abdulla, J.; Raymond, I.; Mahboubi, K.; Sillesen, K.; Serup-Hansen, K.; Madsen, J.S.; Kristensen, S.L.; Larsen, A.H.; Bøtker, H.E.; Torp-Petersen, C.; Eiskjær, H.; Møller, J.; Hassager, C.; Steffensen, F.H.; Bibby, B.M.; Refsgaard, J.; Høfsten, D.E.; Mellemkjær, S.; Gustafsson, F. The DANish randomized, double-blind, placebo controlled trial in patients with chronic HEART failure (DANHEART): A 2 × 2 factorial trial of hydralazine-isosorbide dinitrate in patients with chronic heart failure (H-HeFT) and metformin in patients with chronic heart failure and diabetes or prediabetes (Met-HeFT). Am. Heart J., 2021, 231, 137-146.
[http://dx.doi.org/10.1016/j.ahj.2020.09.020] [PMID: 33039340]
[111]
Farmer, R.E.; Beard, I.; Raza, S.I.; Gollop, N.D.; Patel, N.; Tebboth, A.; McGovern, A.P.; Kanumilli, N.; Ternouth, A. Prescribing in type 2 diabetes patients with and without cardiovascular disease history: A descriptive analysis in the UK CPRD. Clin. Ther., 2021, 43(2), 320-335.
[http://dx.doi.org/10.1016/j.clinthera.2020.12.015] [PMID: 33581878]
[112]
Hemmingsen, B.; Schroll, J.B.; Wetterslev, J.; Gluud, C.; Vaag, A.; Sonne, D.P.; Lundstrøm, L.H.; Almdal, T. Sulfonylurea versus metformin monotherapy in patients with type 2 diabetes: A Cochrane systematic review and meta-analysis of randomized clinical trials and trial sequential analysis. CMAJ Open, 2014, 2(3), E162-E175.
[http://dx.doi.org/10.9778/cmajo.20130073] [PMID: 25295236]
[113]
Turner, R.C.; Cull, C.A.; Frighi, V.; Holman, R.R. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: Progressive requirement for multiple therapies (UKPDS 49). JAMA, 1999, 281(21), 2005-2012.
[http://dx.doi.org/10.1001/jama.281.21.2005] [PMID: 10359389]
[114]
De Broe, M.E.; Jouret, F. Does metformin do more benefit or harm in chronic kidney disease patients? Kidney Int., 2020, 98(5), 1098-1101.
[http://dx.doi.org/10.1016/j.kint.2020.04.059] [PMID: 33126974]
[115]
Hanna, R.M.; Rhee, C.M.; Kalantar-Zadeh, K. Metformin in chronic kidney disease: A strong dose of caution. Kidney Int., 2020, 98(5), 1101-1105.
[http://dx.doi.org/10.1016/j.kint.2020.04.060] [PMID: 33126975]
[116]
Corremans, R.; Vervaet, B.A.; D’Haese, P.C.; Neven, E.; Verhulst, A. Metformin: A candidate drug for renal diseases. Int. J. Mol. Sci., 2018, 20(1), 42.
[http://dx.doi.org/10.3390/ijms20010042] [PMID: 30583483]
[117]
Lalau, J-D.; Kajbaf, F.; Bennis, Y.; Hurtel-Lemaire, A-S.; Belpaire, F.; De Broe, M.E. Metformin treatment in patients with type 2 diabetes and chronic kidney disease stages 3A, 3B, or 4. Diabetes Care, 2018, 41(3), 547-553.
[http://dx.doi.org/10.2337/dc17-2231] [PMID: 29305402]
[118]
Salvatore, T.; Pafundi, P.C.; Marfella, R.; Sardu, C.; Rinaldi, L.; Monaco, L.; Ricozzi, C.; Imbriani, S.; Nevola, R.; Adinolfi, L.E.; Sasso, F.C. Metformin lactic acidosis: Should we still be afraid? Diabetes Res. Clin. Pract., 2019, 157, 107879.
[http://dx.doi.org/10.1016/j.diabres.2019.107879] [PMID: 31618624]
[119]
Hung, A.M.; Roumie, C.L.; Greevy, R.A.; Liu, X.; Grijalva, C.G.; Murff, H.J.; Griffin, M.R. Kidney function decline in metformin versus sulfonylurea initiators: Assessment of time-dependent contribution of weight, blood pressure, and glycemic control. Pharmacoepidemiol. Drug Saf., 2013, 22(6), 623-631.
[http://dx.doi.org/10.1002/pds.3432] [PMID: 23592561]
[120]
Crowley, M.J.; Diamantidis, C.J.; McDuffie, J.R.; Cameron, C.B.; Stanifer, J.W.; Mock, C.K.; Wang, X.; Tang, S.; Nagi, A.; Kosinski, A.S.; Williams, J.W., Jr Clinical outcomes of metformin use in populations with chronic kidney disease, congestive heart failure, or chronic liver disease: A systematic review. Ann. Intern. Med., 2017, 166(3), 191-200.
[http://dx.doi.org/10.7326/M16-1901] [PMID: 28055049]
[121]
Stephen, J.; Anderson-Haag, T.L.; Gustafson, S.; Snyder, J.J.; Kasiske, B.L.; Israni, A.K. Metformin use in kidney transplant recipients in the United States: An observational study. Am. J. Nephrol., 2014, 40(6), 546-553.
[http://dx.doi.org/10.1159/000370034] [PMID: 25613554]
[122]
Lin, C-X.; Li, Y.; Liang, S.; Tao, J.; Zhang, L-S.; Su, Y-F.; Huang, Y-X.; Zhao, Z-K.; Liu, S-Y.; Zheng, J-M. Metformin attenuates cyclosporine A-induced renal fibrosis in rats. Transplantation, 2019, 103(10), e285-e296.
[http://dx.doi.org/10.1097/TP.0000000000002864] [PMID: 31335763]
[123]
Neven, E.; Vervaet, B.; Brand, K.; Gottwald-Hostalek, U.; Opdebeeck, B.; De Maré, A.; Verhulst, A.; Lalau, J-D.; Kamel, S.; De Broe, M.E.; D’Haese, P.C. Metformin prevents the development of severe chronic kidney disease and its associated mineral and bone disorder. Kidney Int., 2018, 94(1), 102-113.
[http://dx.doi.org/10.1016/j.kint.2018.01.027] [PMID: 29716795]
[124]
Satriano, J.; Sharma, K.; Blantz, R.C.; Deng, A. Induction of AMPK activity corrects early pathophysiological alterations in the subtotal nephrectomy model of chronic kidney disease. Am. J. Physiol. Renal Physiol., 2013, 305(5), F727-F733.
[http://dx.doi.org/10.1152/ajprenal.00293.2013] [PMID: 23825068]
[125]
Mohamad, H.E.; Asker, M.E.; Keshawy, M.M.; Abdel Aal, S.M.; Mahmoud, Y.K. Infliximab ameliorates tumor necrosis factor-alpha exacerbated renal insulin resistance induced in rats by regulating insulin signaling pathway. Eur. J. Pharmacol., 2020, 872, 172959.
[http://dx.doi.org/10.1016/j.ejphar.2020.172959] [PMID: 32004528]
[126]
Pan, Q.; Lu, X.; Zhao, C.; Liao, S.; Chen, X.; Guo, F.; Yang, C.; Liu, H.F. Metformin: The updated protective property in kidney disease. Aging (Albany NY), 2020, 12(9), 8742-8759.
[http://dx.doi.org/10.18632/aging.103095] [PMID: 32364526]
[127]
Song, A.; Zhang, C.; Meng, X. Mechanism and application of metformin in kidney diseases: An update. Biomed. Pharmacother., 2021, 138, 111454.
[http://dx.doi.org/10.1016/j.biopha.2021.111454] [PMID: 33714781]
[128]
Chen, Y.; Yang, D.; Cheng, B.; Chen, J.; Peng, A.; Yang, C.; Liu, C.; Xiong, M.; Deng, A.; Zhang, Y.; Zheng, L.; Huang, K. Clinical characteristics and outcomes of patients with diabetes and COVID-19 in association with glucose-lowering medication. Diabetes Care, 2020, 43(7), 1399-1407.
[http://dx.doi.org/10.2337/dc20-0660] [PMID: 32409498]
[129]
Fadini, G.P.; Morieri, M.L.; Longato, E.; Avogaro, A. Prevalence and impact of diabetes among people infected with SARS-CoV-2. J. Endocrinol. Invest., 2020, 43(6), 867-869.
[http://dx.doi.org/10.1007/s40618-020-01236-2] [PMID: 32222956]
[130]
Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; Du, B.; Li, L.J.; Zeng, G.; Yuen, K-Y.; Chen, R.C.; Tang, C.L.; Wang, T.; Chen, P.Y.; Xiang, J.; Li, S.Y.; Wang, J.L.; Liang, Z.J.; Peng, Y.X.; Wei, L.; Liu, Y.; Hu, Y.H.; Peng, P.; Wang, J.M.; Liu, J.Y.; Chen, Z.; Li, G.; Zheng, Z.J.; Qiu, S.Q.; Luo, J.; Ye, C.J.; Zhu, S.Y.; Zhong, N.S. 2019 in China. N. Engl. J. Med., 2020, 382(18), 1708-1720.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[131]
Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; Zhang, Y.; Song, J.; Wang, S.; Chao, Y.; Yang, Z.; Xu, J.; Zhou, X.; Chen, D.; Xiong, W.; Xu, L.; Zhou, F.; Jiang, J.; Bai, C.; Zheng, J.; Song, Y. 2019 Pneumonia in Wuhan, China. JAMA Intern. Med., 2020, 180(7), 934-943.
[http://dx.doi.org/10.1001/jamainternmed.2020.0994] [PMID: 32167524]
[132]
Hamer, M.; Gale, C.R.; Kivimäki, M.; Batty, G.D. Overweight, obesity, and risk of hospitalization for COVID-19: A community-based cohort study of adults in the United Kingdom. Proc. Natl. Acad. Sci. USA, 2020, 117(35), 21011-21013.
[http://dx.doi.org/10.1073/pnas.2011086117] [PMID: 32788355]
[133]
Drucker, D.J. Diabetes, obesity, metabolism, and SARS-CoV-2 infection: The end of the beginning. Cell Metab., 2021, 33(3), 479-498.
[http://dx.doi.org/10.1016/j.cmet.2021.01.016] [PMID: 33529600]
[134]
Coppelli, A.; Giannarelli, R.; Aragona, M.; Penno, G.; Falcone, M.; Tiseo, G.; Ghiadoni, L.; Barbieri, G.; Monzani, F.; Virdis, A.; Menichetti, F.; Del Prato, S. Hyperglycemia at hospital admission is associated with severity of the prognosis in patients hospitalized for COVID-19: The pisa COVID-19 study. Diabetes Care, 2020, 43(10), 2345-2348.
[http://dx.doi.org/10.2337/dc20-1380] [PMID: 32788285]
[135]
Mamtani, M.; Kulkarni, H.; Bihari, S.; Prakash, S.; Chavan, S.; Huckson, S.; Pilcher, D. Degree of hyperglycemia independently associates with hospital mortality and length of stay in critically ill, nondiabetic patients: Results from the ANZICS CORE binational registry. J. Crit. Care, 2020, 55, 149-156.
[http://dx.doi.org/10.1016/j.jcrc.2019.11.003] [PMID: 31731174]
[136]
Zhu, L.; She, Z.G.; Cheng, X.; Qin, J.J.; Zhang, X.J.; Cai, J.; Lei, F.; Wang, H.; Xie, J.; Wang, W.; Li, H.; Zhang, P.; Song, X.; Chen, X.; Xiang, M.; Zhang, C.; Bai, L.; Xiang, D.; Chen, M.M.; Liu, Y.; Yan, Y.; Liu, M.; Mao, W.; Zou, J.; Liu, L.; Chen, G.; Luo, P.; Xiao, B.; Zhang, C.; Zhang, Z.; Lu, Z.; Wang, J.; Lu, H.; Xia, X.; Wang, D.; Liao, X.; Peng, G.; Ye, P.; Yang, J.; Yuan, Y.; Huang, X.; Guo, J.; Zhang, B.H.; Li, H. Association of Blood Glucose Control and Outcomes in Patients with COVID-19 and Pre-existing Type 2 Diabetes. Cell Metab., 2020, 31(6), 1068-1077.e3.
[http://dx.doi.org/10.1016/j.cmet.2020.04.021] [PMID: 32369736]
[137]
Ceriello, A. Hyperglycemia and the worse prognosis of COVID-19. Why a fast blood glucose control should be mandatory. Diabetes Res. Clin. Pract., 2020, 163, 108186.
[http://dx.doi.org/10.1016/j.diabres.2020.108186] [PMID: 32360400]
[138]
Reiterer, M.; Rajan, M.; Gómez-Banoy, N.; Lau, J.D.; Gomez-Escobar, L.G.; Ma, L.; Gilani, A.; Alvarez-Mulett, S.; Sholle, E.T.; Chandar, V.; Bram, Y.; Hoffman, K.; Bhardwaj, P.; Piloco, P.; Rubio-Navarro, A.; Uhl, S.; Carrau, L.; Houhgton, S.; Redmond, D.; Shukla, A.P.; Goyal, P.; Brown, K.A.; tenOever, B.R.; Alonso, L.C.; Schwartz, R.E.; Schenck, E.J.; Safford, M.M.; Lo, J.C. Hyperglycemia in acute COVID-19 is characterized by insulin resistance and adipose tissue infectivity by SARS-CoV-2. Cell Metab., 2021, 33(11), 2174-2188.e5.
[http://dx.doi.org/10.1016/j.cmet.2021.09.009] [PMID: 34599884]
[139]
Kim, N.H.; Kim, K.J.; Choi, J.; Kim, S.G. Metabolically unhealthy individuals, either with obesity or not, have a higher risk of critical coronavirus disease 2019 outcomes than metabolically healthy individuals without obesity. Metabolism, 2022, 128, 154894.
[http://dx.doi.org/10.1016/j.metabol.2021.154894] [PMID: 34600905]
[140]
Sanoudou, D.; Hill, M.A.; Belanger, M.J.; Arao, K.; Mantzoros, C.S. Editorial: Obesity, metabolic phenotypes and COVID-19. Metabolism, 2022, 128, 155121.
[http://dx.doi.org/10.1016/j.metabol.2021.155121] [PMID: 35026232]
[141]
Bramante, C.T.; Ingraham, N.E.; Murray, T.A.; Marmor, S.; Hovertsen, S.; Gronski, J.; McNeil, C.; Feng, R.; Guzman, G.; Abdelwahab, N.; King, S.; Tamariz, L.; Meehan, T.; Pendleton, K.M.; Benson, B.; Vojta, D.; Tignanelli, C.J. Metformin and risk of mortality in patients hospitalised with COVID-19: A retrospective cohort analysis. Lancet Healthy Longev., 2021, 2(1), e34-e41.
[http://dx.doi.org/10.1016/S2666-7568(20)30033-7] [PMID: 33521772]
[142]
Lukito, A.A.; Pranata, R.; Henrina, J.; Lim, M.A.; Lawrensia, S.; Suastika, K. The Effect of Metformin Consumption on Mortality in Hospitalized COVID-19 patients: A systematic review and meta-analysis. Diabetes Metab. Syndr., 2020, 14(6), 2177-2183.
[http://dx.doi.org/10.1016/j.dsx.2020.11.006] [PMID: 33395778]
[143]
Crouse, A.; Grimes, T.; Li, P.; Might, M.; Ovalle, F.; Shalev, A. Metformin use is associated with reduced mortality in a diverse population with COVID-19 and diabetes. medRxiv, 2020, 2020, 4020.
[http://dx.doi.org/10.1101/2020.07.29.20164020]
[144]
Wargny, M.; Potier, L.; Gourdy, P.; Pichelin, M.; Amadou, C.; Benhamou, P.Y.; Bonnet, J.B.; Bordier, L.; Bourron, O.; Chaumeil, C.; Chevalier, N.; Darmon, P.; Delenne, B.; Demarsy, D.; Dumas, M.; Dupuy, O.; Flaus-Furmaniuk, A.; Gautier, J.F.; Guedj, A.M.; Jeandidier, N.; Larger, E.; Le Berre, J.P.; Lungo, M.; Montanier, N.; Moulin, P.; Plat, F.; Rigalleau, V.; Robert, R.; Seret-Bégué, D.; Sérusclat, P.; Smati, S.; Thébaut, J.F.; Tramunt, B.; Vatier, C.; Velayoudom, F.L.; Vergès, B.; Winiszewski, P.; Zabulon, A.; Gourraud, P.A.; Roussel, R.; Cariou, B.; Hadjadj, S. Predictors of hospital discharge and mortality in patients with diabetes and COVID-19: Updated results from the nationwide CORONADO study. Diabetologia, 2021, 64(4), 778-794.
[http://dx.doi.org/10.1007/s00125-020-05351-w] [PMID: 33599800]
[145]
Zangiabadian, M.; Nejadghaderi, S.A.; Zahmatkesh, M.M.; Hajikhani, B.; Mirsaeidi, M.; Nasiri, M.J. The efficacy and potential mechanisms of metformin in the treatment of COVID-19 in the diabetics: A systematic review. Front. Endocrinol. (Lausanne), 2021, 12, 645194.
[http://dx.doi.org/10.3389/fendo.2021.645194] [PMID: 33815295]
[146]
Evia-Viscarra, M.L.; Rodea-Montero, E.R.; Apolinar-Jiménez, E.; Muñoz-Noriega, N.; García-Morales, L.M.; Leaños-Pérez, C.; Figueroa-Barrón, M.; Sánchez-Fierros, D.; Reyes-García, J.G. The effects of metformin on inflammatory mediators in obese adolescents with insulin resistance: Controlled randomized clinical trial. J. Pediatr. Endocrinol. Metab., 2012, 25(1-2), 41-49.
[http://dx.doi.org/10.1515/jpem-2011-0469] [PMID: 22570949]
[147]
Cameron, A.R.; Morrison, V.L.; Levin, D.; Mohan, M.; Forteath, C.; Beall, C.; McNeilly, A.D.; Balfour, D.J.; Savinko, T.; Wong, A.K.; Viollet, B.; Sakamoto, K.; Fagerholm, S.C.; Foretz, M.; Lang, C.C.; Rena, G. Anti-inflammatory effects of metformin irrespective of diabetes status. Circ. Res., 2016, 119(5), 652-665.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308445] [PMID: 27418629]
[148]
Zahorec, R. Neutrophil-to-lymphocyte ratio, past, present and future perspectives. Bratisl. Lek Listy, 2021, 122(7), 474-488.
[http://dx.doi.org/10.4149/BLL_2021_078] [PMID: 34161115]
[149]
Gordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K.M.; O’Meara, M.J.; Rezelj, V.V.; Guo, J.Z.; Swaney, D.L.; Tummino, T.A.; Hüttenhain, R.; Kaake, R.M.; Richards, A.L.; Tutuncuoglu, B.; Foussard, H.; Batra, J.; Haas, K.; Modak, M.; Kim, M.; Haas, P.; Polacco, B.J.; Braberg, H.; Fabius, J.M.; Eckhardt, M.; Soucheray, M.; Bennett, M.J.; Cakir, M.; McGregor, M.J.; Li, Q.; Meyer, B.; Roesch, F.; Vallet, T.; Mac Kain, A.; Miorin, L.; Moreno, E.; Naing, Z.Z.C.; Zhou, Y.; Peng, S.; Shi, Y.; Zhang, Z.; Shen, W.; Kirby, I.T.; Melnyk, J.E.; Chorba, J.S.; Lou, K.; Dai, S.A.; Barrio-Hernandez, I.; Memon, D.; Hernandez-Armenta, C.; Lyu, J.; Mathy, C.J.P.; Perica, T.; Pilla, K.B.; Ganesan, S.J.; Saltzberg, D.J.; Rakesh, R.; Liu, X.; Rosenthal, S.B.; Calviello, L.; Venkataramanan, S.; Liboy-Lugo, J.; Lin, Y.; Huang, X-P.; Liu, Y.; Wankowicz, S.A.; Bohn, M.; Safari, M.; Ugur, F.S.; Koh, C.; Savar, N.S.; Tran, Q.D.; Shengjuler, D.; Fletcher, S.J.; O’Neal, M.C.; Cai, Y.; Chang, J.C.J.; Broadhurst, D.J.; Klippsten, S.; Sharp, P.P.; Wenzell, N.A.; Kuzuoglu-Ozturk, D.; Wang, H-Y.; Trenker, R.; Young, J.M.; Cavero, D.A.; Hiatt, J.; Roth, T.L.; Rathore, U.; Subramanian, A.; Noack, J.; Hubert, M.; Stroud, R.M.; Frankel, A.D.; Rosenberg, O.S.; Verba, K.A.; Agard, D.A.; Ott, M.; Emerman, M.; Jura, N.; von Zastrow, M.; Verdin, E.; Ashworth, A.; Schwartz, O.; d’Enfert, C.; Mukherjee, S.; Jacobson, M.; Malik, H.S.; Fujimori, D.G.; Ideker, T.; Craik, C.S.; Floor, S.N.; Fraser, J.S.; Gross, J.D.; Sali, A.; Roth, B.L.; Ruggero, D.; Taunton, J.; Kortemme, T.; Beltrao, P.; Vignuzzi, M.; García-Sastre, A.; Shokat, K.M.; Shoichet, B.K.; Krogan, N.J. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, 583(7816), 459-468.
[http://dx.doi.org/10.1038/s41586-020-2286-9] [PMID: 32353859]
[150]
Kindrachuk, J.; Ork, B.; Hart, B.J.; Mazur, S.; Holbrook, M.R.; Frieman, M.B.; Traynor, D.; Johnson, R.F.; Dyall, J.; Kuhn, J.H.; Olinger, G.G.; Hensley, L.E.; Jahrling, P.B. Antiviral potential of ERK/MAPK and PI3K/AKT/mTOR signaling modulation for Middle East respiratory syndrome coronavirus infection as identified by temporal kinome analysis. Antimicrob. Agents Chemother., 2015, 59(2), 1088-1099.
[http://dx.doi.org/10.1128/AAC.03659-14] [PMID: 25487801]
[151]
Zhang, J.; Dong, J.; Martin, M.; He, M.; Gongol, B.; Marin, T.L.; Chen, L.; Shi, X.; Yin, Y.; Shang, F.; Wu, Y.; Huang, H.Y.; Zhang, J.; Zhang, Y.; Kang, J.; Moya, E.A.; Huang, H.D.; Powell, F.L.; Chen, Z.; Thistlethwaite, P.A.; Yuan, Z.Y.; Shyy, J.Y. AMP-activated protein kinase phosphorylation of angiotensin-converting enzyme 2 in endothelium mitigates pulmonary hypertension. Am. J. Respir. Crit. Care Med., 2018, 198(4), 509-520.
[http://dx.doi.org/10.1164/rccm.201712-2570OC] [PMID: 29570986]
[152]
Kamyshnyi, O.; Matskevych, V.; Lenchuk, T.; Strilbytska, O.; Storey, K.; Lushchak, O. Metformin to decrease COVID-19 severity and mortality: Molecular mechanisms and therapeutic potential. Biomed. Pharmacother., 2021, 144, 112230.
[http://dx.doi.org/10.1016/j.biopha.2021.112230] [PMID: 34628168]
[153]
McFadyen, J.D.; Stevens, H.; Peter, K. The emerging threat of (micro)thrombosis in COVID-19 and its therapeutic implications. Circ. Res., 2020, 127(4), 571-587.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317447] [PMID: 32586214]
[154]
Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H. Endothelial cell infection and endotheliitis in COVID-19. Lancet, 2020, 395(10234), 1417-1418.
[http://dx.doi.org/10.1016/S0140-6736(20)30937-5] [PMID: 32325026]
[155]
Katsiki, N.; Ferrannini, E. Anti-inflammatory properties of antidiabetic drugs: A “promised land” in the COVID-19 era? J. Diabetes Complications, 2020, 34(12), 107723.
[http://dx.doi.org/10.1016/j.jdiacomp.2020.107723] [PMID: 32900588]
[156]
Pollack, R.M.; Donath, M.Y.; LeRoith, D.; Leibowitz, G. Anti-inflammatory agents in the treatment of diabetes and its vascular complications. Diabetes Care, 2016, 39(Suppl. 2), S244-S252.
[http://dx.doi.org/10.2337/dcS15-3015] [PMID: 27440839]
[157]
Pérez-Belmonte, L.M.; Torres-Peña, J.D.; López-Carmona, M.D.; Ayala-Gutiérrez, M.M.; Fuentes-Jiménez, F.; Huerta, L.J.; Muñoz, J.A.; Rubio-Rivas, M.; Madrazo, M.; Garcia, M.G.; Montes, B.V.; Sola, J.F.; Ena, J.; Ferrer, R.G.; Pérez, C.M.; Ripper, C.J.; Lecumberri, J.J.N.; Acedo, I.E.A.; Canteli, S.P.; Cosío, S.F.; Martínez, F.A.; Rodríguez, B.C.; Pérez-Martínez, P.; Ramos-Rincón, J.M.; Gómez-Huelgas, R. Mortality and other adverse outcomes in patients with type 2 diabetes mellitus admitted for COVID-19 in association with glucose-lowering drugs: A nationwide cohort study. BMC Med., 2020, 18(1), 359.
[http://dx.doi.org/10.1186/s12916-020-01832-2] [PMID: 33190637]
[158]
Cariou, B.; Hadjadj, S.; Wargny, M.; Pichelin, M.; Al-Salameh, A.; Allix, I.; Amadou, C.; Arnault, G.; Baudoux, F.; Bauduceau, B.; Borot, S.; Bourgeon-Ghittori, M.; Bourron, O.; Boutoille, D.; Cazenave-Roblot, F.; Chaumeil, C.; Cosson, E.; Coudol, S.; Darmon, P.; Disse, E.; Ducet-Boiffard, A.; Gaborit, B.; Joubert, M.; Kerlan, V.; Laviolle, B.; Marchand, L.; Meyer, L.; Potier, L.; Prevost, G.; Riveline, J-P.; Robert, R.; Saulnier, P-J.; Sultan, A.; Thébaut, J-F.; Thivolet, C.; Tramunt, B.; Vatier, C.; Roussel, R.; Gautier, J-F.; Gourdy, P. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: The CORONADO study. Diabetologia, 2020, 63(8), 1500-1515.
[http://dx.doi.org/10.1007/s00125-020-05180-x] [PMID: 32472191]
[159]
Khunti, K.; Knighton, P.; Zaccardi, F.; Bakhai, C.; Barron, E.; Holman, N.; Kar, P.; Meace, C.; Sattar, N.; Sharp, S.; Wareham, N.J.; Weaver, A.; Woch, E.; Young, B.; Valabhji, J. Prescription of glucose-lowering therapies and risk of COVID-19 mortality in people with type 2 diabetes: A nationwide observational study in England. Lancet Diabetes Endocrinol., 2021, 9(5), 293-303.
[http://dx.doi.org/10.1016/S2213-8587(21)00050-4] [PMID: 33798464]
[160]
Hadjadj, S.; Wargny, M. Glucose-lowering treatments and COVID-19 mortality in T2DM. Nat. Rev. Endocrinol., 2021, 17(7), 387-388.
[http://dx.doi.org/10.1038/s41574-021-00509-x] [PMID: 33981029]
[161]
Santos, A.; Magro, D.O.; Evangelista-Poderoso, R.; Saad, M.J.A. Diabetes, obesity, and insulin resistance in COVID-19: Molecular interrelationship and therapeutic implications. Diabetol. Metab. Syndr., 2021, 13(1), 23.
[http://dx.doi.org/10.1186/s13098-021-00639-2] [PMID: 33648564]
[162]
Stevens, A.; Hamel, J.F.; Toure, A.; Hadjadj, S.; Boels, D. Metformin overdose: A serious iatrogenic complication—Western france poison control centre data analysis. Basic Clin. Pharmacol. Toxicol., 2019, 125(5), 466-473.
[http://dx.doi.org/10.1111/bcpt.13273] [PMID: 31215744]

© 2024 Bentham Science Publishers | Privacy Policy