Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Perspective

Multi or Single-Kinase Inhibitors to Counteract Drug Resistance in Cancer: What is New?

Author(s): Camilla Pecoraro, Daniela Carbone, Stella Maria Cascioferro, Barbara Parrino and Patrizia Diana*

Volume 30, Issue 7, 2023

Published on: 13 September, 2022

Page: [776 - 782] Pages: 7

DOI: 10.2174/0929867329666220729152741

conference banner
[1]
Cohen, P. The origins of protein phosphorylation. Nat. Cell Biol., 2002, 4(5), E127-E130.
[http://dx.doi.org/10.1038/ncb0502-e127] [PMID: 11988757]
[2]
Wijnen, R.; Pecoraro, C.; Carbone, D.; Fiuji, H.; Avan, A.; Peters, G.J.; Giovannetti, E.; Diana, P. Cyclin dependent kinase-1 (CDK-1) inhibition as a novel therapeutic strategy against pancreatic ductal adenocarcinoma (PDAC). Cancers (Basel), 2021, 13(17), 4389.
[http://dx.doi.org/10.3390/cancers13174389] [PMID: 34503199]
[3]
Pecoraro, C.; Faggion, B.; Balboni, B.; Carbone, D.; Peters, G.J.; Diana, P.; Assaraf, Y.G.; Giovannetti, E. GSK3β as a novel promising target to overcome chemoresistance in pancreatic cancer. Drug Resist. Updat., 2021, 58, 100779.
[http://dx.doi.org/10.1016/j.drup.2021.100779] [PMID: 34461526]
[4]
Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science, 2002, 298(5600), 1912-1934.
[http://dx.doi.org/10.1126/science.1075762] [PMID: 12471243]
[5]
Yaish, P.; Gazit, A.; Gilon, C.; Levitzki, A. Blocking of EGF-dependent cell proliferation by EGF receptor kinase inhibitors. Science, 1988, 242(4880), 933-935.
[http://dx.doi.org/10.1126/science.3263702] [PMID: 3263702]
[6]
Capdeville, R.; Buchdunger, E.; Zimmermann, J.; Matter, A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat. Rev. Drug Discov., 2002, 1(7), 493-502.
[http://dx.doi.org/10.1038/nrd839] [PMID: 12120256]
[7]
Wu, P.; Nielsen, T.E.; Clausen, M.H. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol. Sci., 2015, 36(7), 422-439.
[http://dx.doi.org/10.1016/j.tips.2015.04.005] [PMID: 25975227]
[8]
Wu, P.; Nielsen, T.E.; Clausen, M.H. Small-molecule kinase inhibitors: An analysis of FDA-approved drugs. Drug Discov. Today, 2016, 21(1), 5-10.
[http://dx.doi.org/10.1016/j.drudis.2015.07.008] [PMID: 26210956]
[9]
Proschak, E.; Stark, H.; Merk, D. Polypharmacology by design: A medicinal chemist’s perspective on multitargeting compounds. J. Med. Chem., 2019, 62(2), 420-444.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00760] [PMID: 30035545]
[10]
Antolin, A.A.; Workman, P.; Mestres, J.; Al-Lazikani, B. Polypharmacology in precision oncology: Current applications and future prospects. Curr. Pharm. Des., 2016, 22(46), 6935-6945.
[http://dx.doi.org/10.2174/1381612822666160923115828] [PMID: 27669965]
[11]
Cohen, P.; Alessi, D.R. Kinase drug discovery-what’s next in the field? ACS Chem. Biol., 2013, 8(1), 96-104.
[http://dx.doi.org/10.1021/cb300610s] [PMID: 23276252]
[12]
Cohen, P.; Cross, D.; Jänne, P.A. Kinase drug discovery 20 years after imatinib: Progress and future directions. Nat. Rev. Drug Discov., 2021, 20(7), 551-569.
[http://dx.doi.org/10.1038/s41573-021-00195-4] [PMID: 34002056]
[13]
Roskoski, R. Jr Properties of FDA-approved small molecule protein kinase inhibitors: A 2022 update. Pharmacol. Res., 2022, 175, 106037.
[http://dx.doi.org/10.1016/j.phrs.2021.106037] [PMID: 34921994]
[14]
Roskoski, R. Jr Properties of FDA-approved small molecule protein kinase inhibitors: A 2021 update. Pharmacol. Res., 2021, 165, 105463.
[http://dx.doi.org/10.1016/j.phrs.2021.105463] [PMID: 33513356]
[15]
Attwood, M.M.; Fabbro, D.; Sokolov, A.V.; Knapp, S.; Schiöth, H.B. Trends in kinase drug discovery: Targets, indications and inhibitor design. Nat. Rev. Drug Discov., 2021, 20(11), 839-861.
[http://dx.doi.org/10.1038/s41573-021-00252-y] [PMID: 34354255]
[16]
Daniels, M.H.; Malojcic, G.; Clugston, S.L.; Williams, B.; Coeffet-Le Gal, M.; Pan-Zhou, X.R.; Venkatachalan, S.; Harmange, J.C.; Ledeboer, M. Discovery and optimization of highly selective inhibitors of CDK5. J. Med. Chem., 2022, 65(4), 3575-3596.
[http://dx.doi.org/10.1021/acs.jmedchem.1c02069] [PMID: 35143203]
[17]
Tong, L.; Wang, P.; Li, X.; Dong, X.; Hu, X.; Wang, C.; Liu, T.; Li, J.; Zhou, Y. Identification of 2-aminopyrimidine derivatives as FLT3 kinase inhibitors with high selectivity over c-KIT. J. Med. Chem., 2022, 65(4), 3229-3248.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01792] [PMID: 35138851]
[18]
Pecoraro, C.; Parrino, B.; Cascioferro, S.; Puerta, A.; Avan, A.; Peters, G.J.; Diana, P.; Giovannetti, E.; Carbone, D. A new oxadiazole-based topsentin derivative modulates cyclin-dependent kinase 1 expression and exerts cytotoxic effects on pancreatic cancer cells. Molecules, 2021, 27(1), 19.
[http://dx.doi.org/10.3390/molecules27010019] [PMID: 35011251]
[19]
Carbone, D.; Parrino, B.; Cascioferro, S.; Pecoraro, C.; Giovannetti, E.; Di Sarno, V.; Musella, S.; Auriemma, G.; Cirrincione, G.; Diana, P. 1,2,4-oxadiazole topsentin analogs with antiproliferative activity against pancreatic cancer cells, targeting GSK3β kinase. ChemMedChem, 2021, 16(3), 537-554.
[http://dx.doi.org/10.1002/cmdc.202000752] [PMID: 33141472]
[20]
Di Franco, S.; Parrino, B.; Gaggianesi, M.; Pantina, V.D.; Bianca, P.; Nicotra, A.; Mangiapane, L.R.; Lo Iacono, M.; Ganduscio, G.; Veschi, V.; Brancato, O.R.; Glaviano, A.; Turdo, A.; Pillitteri, I.; Colarossi, L.; Cascioferro, S.; Carbone, D.; Pecoraro, C.; Fiori, M.E.; De Maria, R.; Todaro, M.; Screpanti, I.; Cirrincione, G.; Diana, P.; Stassi, G. CHK1 inhibitor sensitizes resistant colorectal cancer stem cells to nortopsentin. iScience, 2021, 24(6), 102664.
[http://dx.doi.org/10.1016/j.isci.2021.102664] [PMID: 34169240]
[21]
Myers, S.H.; Brunton, V.G.; Unciti-Broceta, A. AXL inhibitors in cancer: A medicinal chemistry perspective. J. Med. Chem., 2016, 59(8), 3593-3608.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01273] [PMID: 26555154]
[22]
Roskoski, R. Jr Properties of FDA-approved small molecule protein kinase inhibitors. Pharmacol. Res., 2019, 144, 19-50.
[http://dx.doi.org/10.1016/j.phrs.2019.03.006] [PMID: 30877063]
[23]
Liu, M.; Liu, H.; Chen, J. Mechanisms of the CDK4/6 inhibitor palbociclib (PD 0332991) and its future application in cancer treatment. Oncol. Rep., 2018, 39(3), 901-911.
[http://dx.doi.org/10.3892/or.2018.6221] [PMID: 29399694]
[24]
Tripathy, D.; Bardia, A.; Sellers, W.R. Ribociclib (LEE011): Mechanism of action and clinical impact of this selective cyclin-dependent kinase 4/6 inhibitor in various solid tumors. Clin. Cancer Res., 2017, 23(13), 3251-3262.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-3157] [PMID: 28351928]
[25]
Laderian, B.; Fojo, T. CDK4/6 Inhibition as a therapeutic strategy in breast cancer: Palbociclib, ribociclib, and abemaciclib. Semin. Oncol., 2017, 44(6), 395-403.
[http://dx.doi.org/10.1053/j.seminoncol.2018.03.006] [PMID: 29935901]
[26]
Christensen, J.G.; Zou, H.Y.; Arango, M.E.; Li, Q.; Lee, J.H.; McDonnell, S.R.; Yamazaki, S.; Alton, G.R.; Mroczkowski, B.; Los, G. Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma. Mol. Cancer Ther., 2007, 6(12 Pt 1), 3314-3322.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0365] [PMID: 18089725]
[27]
Shaw, A.T.; Ou, S.H.; Bang, Y.J.; Camidge, D.R.; Solomon, B.J.; Salgia, R.; Riely, G.J.; Varella-Garcia, M.; Shapiro, G.I.; Costa, D.B.; Doebele, R.C.; Le, L.P.; Zheng, Z.; Tan, W.; Stephenson, P.; Shreeve, S.M.; Tye, L.M.; Christensen, J.G.; Wilner, K.D.; Clark, J.W.; Iafrate, A.J. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N. Engl. J. Med., 2014, 371(21), 1963-1971.
[http://dx.doi.org/10.1056/NEJMoa1406766] [PMID: 25264305]
[28]
Finlay, M.R.; Anderton, M.; Ashton, S.; Ballard, P.; Bethel, P.A.; Box, M.R.; Bradbury, R.H.; Brown, S.J.; Butterworth, S.; Campbell, A.; Chorley, C.; Colclough, N.; Cross, D.A.; Currie, G.S.; Grist, M.; Hassall, L.; Hill, G.B.; James, D.; James, M.; Kemmitt, P.; Klinowska, T.; Lamont, G.; Lamont, S.G.; Martin, N.; McFarland, H.L.; Mellor, M.J.; Orme, J.P.; Perkins, D.; Perkins, P.; Richmond, G.; Smith, P.; Ward, R.A.; Waring, M.J.; Whittaker, D.; Wells, S.; Wrigley, G.L. Discovery of a potent and selective EGFR inhibitor (AZD9291) of both sensitizing and T790M resistance mutations that spares the wild type form of the receptor. J. Med. Chem., 2014, 57(20), 8249-8267.
[http://dx.doi.org/10.1021/jm500973a] [PMID: 25271963]
[29]
Sequist, L.V.; Rolfe, L.; Allen, A.R. Rociletinib in EGFR-Mutated Non-Small-Cell Lung Cancer. N. Engl. J. Med., 2015, 373(6), 578-579.
[http://dx.doi.org/10.1056/NEJMc1506831] [PMID: 26244318]
[30]
Wu, Y.L.; Tsuboi, M.; He, J.; John, T.; Grohe, C.; Majem, M.; Goldman, J.W.; Laktionov, K.; Kim, S.W.; Kato, T.; Vu, H.V.; Lu, S.; Lee, K.Y.; Akewanlop, C.; Yu, C.J.; de Marinis, F.; Bonanno, L.; Domine, M.; Shepherd, F.A.; Zeng, L.; Hodge, R.; Atasoy, A.; Rukazenkov, Y.; Herbst, R.S. Osimertinib in resected EGFR-mutated non-small-cell lung cancer. N. Engl. J. Med., 2020, 383(18), 1711-1723.
[http://dx.doi.org/10.1056/NEJMoa2027071] [PMID: 32955177]
[31]
Leonetti, A.; Sharma, S.; Minari, R.; Perego, P.; Giovannetti, E.; Tiseo, M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br. J. Cancer, 2019, 121(9), 725-737.
[http://dx.doi.org/10.1038/s41416-019-0573-8] [PMID: 31564718]
[32]
Engelman, J.A.; Zejnullahu, K.; Mitsudomi, T.; Song, Y.; Hyland, C.; Park, J.O.; Lindeman, N.; Gale, C.M.; Zhao, X.; Christensen, J.; Kosaka, T.; Holmes, A.J.; Rogers, A.M.; Cappuzzo, F.; Mok, T.; Lee, C.; Johnson, B.E.; Cantley, L.C.; Jänne, P.A. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science, 2007, 316(5827), 1039-1043.
[http://dx.doi.org/10.1126/science.1141478] [PMID: 17463250]
[33]
Terrell, E.M.; Morrison, D.K. Ras-mediated activation of the Raf family kinases. Cold Spring Harb. Perspect. Med., 2019, 9(1), a033746.
[http://dx.doi.org/10.1101/cshperspect.a033746] [PMID: 29358316]
[34]
Guo, C.; Chénard-Poirier, M.; Roda, D.; de Miguel, M.; Harris, S.J.; Candilejo, I.M.; Sriskandarajah, P.; Xu, W.; Scaranti, M.; Constantinidou, A.; King, J.; Parmar, M.; Turner, A.J.; Carreira, S.; Riisnaes, R.; Finneran, L.; Hall, E.; Ishikawa, Y.; Nakai, K.; Tunariu, N.; Basu, B.; Kaiser, M.; Lopez, J.S.; Minchom, A.; de Bono, J.S.; Banerji, U. Intermittent schedules of the oral RAF-MEK inhibitor CH5126766/VS-6766 in patients with RAS/RAF-mutant solid tumours and multiple myeloma: A single-centre, open-label, phase 1 dose-escalation and basket dose-expansion study. Lancet Oncol., 2020, 21(11), 1478-1488.
[http://dx.doi.org/10.1016/S1470-2045(20)30464-2] [PMID: 33128873]
[35]
Lu, X.; Smaill, J.B.; Patterson, A.V.; Ding, K. Discovery of cysteine-targeting covalent protein kinase inhibitors. J. Med. Chem., 2022, 65(1), 58-83.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01719] [PMID: 34962782]
[36]
Fasano, M.; Della Corte, C.M.; Califano, R.; Capuano, A.; Troiani, T.; Martinelli, E.; Ciardiello, F.; Morgillo, F. Type III or allosteric kinase inhibitors for the treatment of non-small cell lung cancer. Expert Opin. Investig. Drugs, 2014, 23(6), 809-821.
[http://dx.doi.org/10.1517/13543784.2014.902934] [PMID: 24673358]
[37]
Garnock-Jones, K.P. Cobimetinib: First global approval. Drugs, 2015, 75(15), 1823-1830.
[http://dx.doi.org/10.1007/s40265-015-0477-8] [PMID: 26452567]
[38]
Xing, Y.; Lin, N.U.; Maurer, M.A.; Chen, H.; Mahvash, A.; Sahin, A.; Akcakanat, A.; Li, Y.; Abramson, V.; Litton, J.; Chavez-MacGregor, M.; Valero, V.; Piha-Paul, S.A.; Hong, D.; Do, K.A.; Tarco, E.; Riall, D.; Eterovic, A.K.; Wulf, G.M.; Cantley, L.C.; Mills, G.B.; Doyle, L.A.; Winer, E.; Hortobagyi, G.N.; Gonzalez-Angulo, A.M.; Meric-Bernstam, F. Phase II trial of AKT inhibitor MK-2206 in patients with advanced breast cancer who have tumors with PIK3CA or AKT mutations, and/or PTEN loss/PTEN mutation. Breast Cancer Res., 2019, 21(1), 78.
[http://dx.doi.org/10.1186/s13058-019-1154-8] [PMID: 31277699]
[39]
Lu, X.; Smaill, J.B.; Ding, K. New promise and opportunities for allosteric kinase inhibitors. Angew. Chem. Int. Ed. Engl., 2020, 59(33), 13764-13776.
[http://dx.doi.org/10.1002/anie.201914525]

© 2024 Bentham Science Publishers | Privacy Policy