Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Review Article

The Introduction of Dendrimers as a New Approach to Improve the Performance and Quality of Various Blood Products (Platelets, Plasma and Erythrocytes): A 2010-2022 Review Study

Author(s): Tahereh Zadeh Mehrizi* and Mehdi Shafiee Ardestani

Volume 19, Issue 1, 2023

Published on: 03 September, 2022

Page: [103 - 122] Pages: 20

DOI: 10.2174/1573413718666220728141511

Price: $65

Abstract

Objectives: Platelet-, erythrocyte- and plasma-related products are vital for some patients. The main problems with these products are storage lesions, shelf life limitations, and function and quality maintenance. Dendrimers, a well-known group of polymeric nanoparticles, may help overcome these challenges due to their special properties.

Methods: This review article, for the first time, comprehensively discusses studies from 2010 to 2022 on the compatibility of positive, negative, neutral, and modified charge dendrimers with each blood product. Moreover, it provides information regarding dendrimers' applications for improving the quality and function of blood products.

Results: A total of one hundred and twenty-six studies showed that dendrimers affect blood components depending on their load, size, molecular weight, functional group, concentration, and exposure time. Generally, cationic dendrimers with higher concentrations and molecular weight and larger size showed little hemocompatibility, while anionic or neutral dendrimers with lower concentrations and molecular weight, and small size were more hemocompatible. Further, some modifications of cationic dendrimers were found to improve their compatibility. For erythrocytes, they included PEGylation and thiolation of dendrimers or functionalizing them with cyclic RGD, nmaleyl chitosan, zwitterionic chitosan, prednisolone, or carbohydrates. Additionally, dendrimers functionalized with arginine-birch, lysine-Cbz, polyethylene glycol, polyethylene glycol-cyclic RGD, thiol, TiO2, maltotriose, or streptokinase decreased the platelet toxicity of dendrimers. The dendrimers modified with polyethylene glycol, glucose, and gold nanoparticles showed increased compatibility in the case of albumin products. Moreover, the PAMAM-dendrimer-antibody conjugates had no adverse effect on antibodies. Dendrimers have a wide range of applications, including virus detection kits, synthetic O2 carriers, bacterial nanofilters, drug carriers, anticoagulants, and enhanced blood product storage.

Conclusion: It can be concluded that due to the outstanding properties of different types of dendrimers, particularly their manipulability, nanomaterials can be promising to enhance the quality of blood products. Thus, further research in this area is required.

Keywords: Platelet, Erythrocyte, Dendrimer, PAMAM, Shelf life, Storage

Graphical Abstract

[1]
Greening, D.W.; Glenister, K.M.; Sparrow, R.L.; Simpson, R.J. International blood collection and storage: Clinical use of blood products. J. Proteomics, 2010, 73(3), 386-395.
[http://dx.doi.org/10.1016/j.jprot.2009.07.011] [PMID: 19664733]
[2]
Abonnenc, M.; Tissot, J-D.; Prudent, M. General overview of blood products in vitro quality: Processing and storage lesions. Transfus. Clin. Biol., 2018, 25(4), 269-275.
[http://dx.doi.org/10.1016/j.tracli.2018.08.162] [PMID: 30241785]
[3]
Sobot, D.; Mura, S.; Couvreur, P.; Kobayashi, S.; Müllen, K. Nanoparticles: Blood components interactions. In: Encyclopedia of polymeric nanomaterials; Springer: Berlin, Heidelberg, Berlin, Heidelberg, 2014; pp. 1-10.
[4]
Evtushenko, M.; Wang, K.; Stokes, H.W.; Nair, H. Blood protein purification and simultaneous removal of nonenveloped viruses using tangential-flow preparative electrophoresis. Electrophoresis, 2005, 26(1), 28-34.
[http://dx.doi.org/10.1002/elps.200406150] [PMID: 15624167]
[5]
Mehrizi, T.Z. Hemocompatibility and hemolytic effects of functionalized nanoparticles on red blood cells: a recent review study. Nano, 2021, 16(08), 2130007.
[http://dx.doi.org/10.1142/S1793292021300073]
[6]
Belousov, A.; Malygon, E.; Yavorskiy, V.; Belousova, E. Stabilization of molecular structure membranes of preserved RBCS by means nanotechnology. Ann Med & Surg Case Rep., 2019, 2019(01)
[7]
Shahabi, J.; Shahmabadi, H.E.; Alavi, S.E.; Movahedi, F.; Esfahani, M.K.M.; Mehrizi, T.Z.; Akbarzadeh, A. Effect of gold nanoparticles on properties of nanoliposomal hydroxyurea: An in vitro study. Indian J. Clin. Biochem., 2014, 29(3), 315-320.
[http://dx.doi.org/10.1007/s12291-013-0355-7] [PMID: 24966479]
[8]
Zimrin, A.B.; Hess, J.R. Current issues relating to the transfusion of stored red blood cells. Vox Sang., 2009, 96(2), 93-103.
[http://dx.doi.org/10.1111/j.1423-0410.2008.01117.x] [PMID: 19152602]
[9]
Fatemeh, D.R.A.; Ebrahimi Shahmabadi, H.; Abedi, A.; Alavi, S.E.; Movahedi, F.; Koohi Moftakhari Esfahani, M.; Zadeh Mehrizi, T.; Akbarzadeh, A. Polybutylcyanoacrylate nanoparticles and drugs of the platinum family: Last status. Indian J. Clin. Biochem., 2014, 29(3), 333-338.
[http://dx.doi.org/10.1007/s12291-013-0364-6] [PMID: 24966482]
[10]
Mehrizi, T.Z.; Rezayat, S.M.; Ardestani, M.S.; Shahmabadi, H.E.; Ramezani, A. A review study about the effect of chitosan nanocarrier on improving the efficacy of amphotericin B in the treatment of leishmania from 2010 to 2020. Curr. Drug Deliv., 2021, 18(9), 1234-1243.
[http://dx.doi.org/10.2174/1567201818666210316111941] [PMID: 33726648]
[11]
Zadeh Mehrizi, T.; Pirali Hamedani, M.; Ebrahimi Shahmabadi, H.; Mirzaei, M.; Shafiee Ardestani, M.; Haji Molla Hoseini, M. Effective materials of medicinal plants for leishmania treatment in vivo environment. Faslnamah-i Giyahan-i Daruyi, 2020, 19(74), 39-62.
[http://dx.doi.org/10.29252/jmp.19.74.39]
[12]
Zadeh Mehrizi, T.; Khamesipour, A.; Shafiee Ardestani, M.; Ebrahimi Shahmabadi, H.; Haji Molla Hoseini, M.; Mosaffa, N.; Ramezani, A. Comparative analysis between four model nanoformulations of amphotericin B-chitosan, amphotericin B-dendrimer, betulinic acid-chitosan and betulinic acid-dendrimer for treatment of Leishmania major: Real-time PCR assay plus. Int. J. Nanomedicine, 2019, 14, 7593-7607.
[http://dx.doi.org/10.2147/IJN.S220410] [PMID: 31802863]
[13]
Mehrizi, T.Z.; Ardestani, M.S.; Molla Hoseini, M.H.; Khamesipour, A.; Mosaffa, N.; Ramezani, A. Novel nano-sized chitosan amphotericin B formulation with considerable improvement against Leishmania major. Nanomedicine (Lond.), 2018, 13(24), 3129-3147.
[http://dx.doi.org/10.2217/nnm-2018-0063] [PMID: 30463469]
[14]
Zadeh Mehrizi, T.; Shafiee Ardestani, M.; Haji Molla Hoseini, M.; Khamesipour, A.; Mosaffa, N.; Ramezani, A. Novel nanosized chitosan-betulinic acid against resistant Leishmania major and first clinical observation of such parasite in kidney. Sci. Rep., 2018, 8(1), 11759.
[http://dx.doi.org/10.1038/s41598-018-30103-7] [PMID: 30082741]
[15]
Zadeh Mehrizi, T. Adjuvanticity effects of selenium chelate nanocomplexes on the immunogenicity of hepatitis B vaccine. Thesis, 2013.
[16]
Vasile, C. Polymeric nanomaterials: Recent developments, properties and medical applications. Polymeric nanomaterials in nanotherapeutics, 2019, 1-66.
[17]
Roeven, E.; Scheres, L.; Smulders, M.M.J.; Zuilhof, H. Design, synthesis, and characterization of fully zwitterionic, functionalized dendrimers. ACS Omega, 2019, 4(2), 3000-3011.
[http://dx.doi.org/10.1021/acsomega.8b03521] [PMID: 30847431]
[18]
Lombardo, D.; Calandra, P.; Bellocco, E.; Laganà, G.; Barreca, D.; Magazù, S.; Wanderlingh, U.; Kiselev, M.A. Effect of anionic and cationic polyamidoamine (PAMAM) dendrimers on a model lipid membrane. Biochim. Biophys. Acta, 2016, 1858(11), 2769-2777.
[http://dx.doi.org/10.1016/j.bbamem.2016.08.001] [PMID: 27521487]
[19]
Chitlur, M.; Ware, E.; Kannan, S. Influence of nanopolymers with different end-functionalities on platelet function and the coagulation cascade - an ex-vivo study. Blood (ASH Annual Meeting Abstracts), 2006, 108(Suppl.), 4038.
[http://dx.doi.org/10.1182/blood.V108.11.4038.4038]
[20]
Hsu, H.J.; Bugno, J.; Lee, S.R.; Hong, S. Dendrimer-based nanocarriers: A versatile platform for drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(1), e1409.
[http://dx.doi.org/10.1002/wnan.1409] [PMID: 27126551]
[21]
McCarthy, T.D.; Karellas, P.; Henderson, S.A.; Giannis, M.; O’Keefe, D.F.; Heery, G.; Paull, J.R.; Matthews, B.R.; Holan, G. Dendrimers as drugs: Discovery and preclinical and clinical development of dendrimer-based microbicides for HIV and STI prevention. Mol. Pharm., 2005, 2(4), 312-318.
[http://dx.doi.org/10.1021/mp050023q] [PMID: 16053334]
[22]
Svenson, S.; Tomalia, D.A. Dendrimers in biomedical applications-reflections on the field. Adv. Drug Deliv. Rev., 2012, 64, 102-115.
[http://dx.doi.org/10.1016/j.addr.2012.09.030]
[23]
Rojo, J; Delgado, R Dendrimers and dendritic polymers as antiinfective agents: New antimicrobial strategies for therapeutic drugs. Anti-Infective Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Infective Agents), 2007, 6(3), 151-74.
[24]
Soddu, L.; Trinh, D.N.; Dunne, E.; Kenny, D.; Bernardini, G.; Kokalari, I.; Marucco, A.; Monopoli, M.P.; Fenoglio, I. Identification of physicochemical properties that modulate nanoparticle aggregation in blood. Beilstein J. Nanotechnol., 2020, 11(1), 550-567.
[http://dx.doi.org/10.3762/bjnano.11.44] [PMID: 32280579]
[25]
Yaddanapudi, S.; Yaddanapudi, L. Indications for blood and blood product transfusion. Indian J. Anaesth., 2014, 58(5), 538-542.
[http://dx.doi.org/10.4103/0019-5049.144648] [PMID: 25535414]
[26]
Hess, J.R. Red cell storage. J. Proteomics, 2010, 73(3), 368-373.
[http://dx.doi.org/10.1016/j.jprot.2009.11.005] [PMID: 19914410]
[27]
Ziemba, B.; Matuszko, G.; Bryszewska, M.; Klajnert, B. Influence of dendrimers on red blood cells. Cell. Mol. Biol. Lett., 2012, 17(1), 21-35.
[http://dx.doi.org/10.2478/s11658-011-0033-9] [PMID: 22086186]
[28]
Maiti, P.K. Çaǧın, T.; Wang, G.; Goddard, W.A. Structure of PAMAM dendrimers: Generations 1 through 11. Macromolecules, 2004, 37(16), 6236-6254.
[http://dx.doi.org/10.1021/ma035629b]
[29]
Maiti, P.K. Çaǧın, T.; Lin, S-T.; Goddard, W.A. Effect of solvent and pH on the structure of PAMAM dendrimers. Macromolecules, 2005, 38(3), 979-991.
[http://dx.doi.org/10.1021/ma049168l]
[30]
Jevprasesphant, R.; Penny, J.; Jalal, R.; Attwood, D.; McKeown, N.B.; D’Emanuele, A. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int. J. Pharm., 2003, 252(1-2), 263-266.
[http://dx.doi.org/10.1016/S0378-5173(02)00623-3] [PMID: 12550802]
[31]
Domański, D.M.; Klajnert, B.; Bryszewska, M. Influence of PAMAM dendrimers on human red blood cells. Bioelectrochemistry, 2004, 63(1-2), 189-191.
[http://dx.doi.org/10.1016/j.bioelechem.2003.09.023] [PMID: 15110271]
[32]
Fu, Y.; Hu, R.; Li, C.; Wang, Q.; Liu, Z.; Xue, W. Effects of poly (amidoamine) dendrimers on the structure and function of key blood components. J. Bioact. Compat. Polym., 2014, 29(2), 165-179.
[http://dx.doi.org/10.1177/0883911514521921]
[33]
Aisina, R.; Mukhametova, L.; Ivanova, E. Influence cationic and anionic PAMAM dendrimers of low generation on selected hemostatic parameters in vitro. Mater. Sci. Eng. C, 2020, 109, 110605.
[http://dx.doi.org/10.1016/j.msec.2019.110605] [PMID: 32228918]
[34]
Han, M-H.; Chen, J.; Wang, J.; Chen, S-L.; Wang, X-T. Blood compatibility of polyamidoamine dendrimers and erythrocyte protection. J. Biomed. Nanotechnol., 2010, 6(1), 82-92.
[http://dx.doi.org/10.1166/jbn.2010.1096] [PMID: 20499836]
[35]
Santos, S.D.; Xavier, M.; Leite, D.M.; Moreira, D.A.; Custódio, B.; Torrado, M.; Castro, R.; Leiro, V.; Rodrigues, J.; Tomás, H.; Pêgo, A.P. PAMAM dendrimers: Blood-brain barrier transport and neuronal uptake after focal brain ischemia. J. Control. Release, 2018, 291, 65-79.
[http://dx.doi.org/10.1016/j.jconrel.2018.10.006] [PMID: 30308255]
[36]
Jiang, Y-Y.; Tang, G-T.; Zhang, L-H.; Kong, S-Y.; Zhu, S-J.; Pei, Y-Y. PEGylated PAMAM dendrimers as a potential drug delivery carrier: in vitro and in vivo comparative evaluation of covalently conjugated drug and noncovalent drug inclusion complex. J. Drug Target., 2010, 18(5), 389-403.
[http://dx.doi.org/10.3109/10611860903494203] [PMID: 20055559]
[37]
Li, G.; Zhang, Y.; Tang, W.; Zheng, J. Comprehensive investigation of in vitro hemocompatibility of surface modified polyamidoamine nanocarrier. Clin. Hemorheol. Microcirc., 2020, 74(3), 267-279.
[http://dx.doi.org/10.3233/CH-190641] [PMID: 31476147]
[38]
Wang, W.; Xiong, W.; Zhu, Y.; Xu, H.; Yang, X. Protective effect of PEGylation against poly(amidoamine) dendrimer-induced hemolysis of human red blood cells. J. Biomed. Mater. Res. B Appl. Biomater., 2010, 93(1), 59-64.
[http://dx.doi.org/10.1002/jbm.b.31558] [PMID: 20186802]
[39]
Liu, Y.; Pang, Y.; Toh, M.R.; Chiu, G.N. Dual-functionalized poly(amidoamine) dendrimers with poly(ethylene glycol) conjugation and thiolation improved blood compatibility. J. Pharm. Pharmacol., 2015, 67(11), 1492-1502.
[http://dx.doi.org/10.1111/jphp.12457] [PMID: 26303576]
[40]
Zhou, Y.; Li, J.; Lu, F.; Deng, J.; Zhang, J.; Fang, P.; Peng, X.; Zhou, S.F. A study on the hemocompatibility of dendronized chitosan derivatives in red blood cells. Drug Des. Devel. Ther., 2015, 9, 2635-2645.
[PMID: 25999697]
[41]
Sarkar, K.; Chatterjee, A.; Chakraborti, G.; Kundu, P.P. Blood compatible N-maleyl chitosan-graft-PAMAM copolymer for enhanced gene transfection. Carbohydr. Polym., 2013, 98(1), 596-606.
[http://dx.doi.org/10.1016/j.carbpol.2013.06.035] [PMID: 23987387]
[42]
Liu, K.C.; Yeo, Y. Zwitterionic chitosan-polyamidoamine dendrimer complex nanoparticles as a pH-sensitive drug carrier. Mol. Pharm., 2013, 10(5), 1695-1704.
[http://dx.doi.org/10.1021/mp300522p] [PMID: 23510114]
[43]
Kaur, D.; Jain, K.; Mehra, N.K.; Kesharwani, P.; Jain, N.K. A review on comparative study of PPI and PAMAM dendrimers. J. Nanopart. Res., 2016, 18(6), 1-14.
[http://dx.doi.org/10.1007/s11051-016-3423-0]
[44]
Mishra, V.; Gupta, U.; Jain, N.K. Influence of different generations of poly(propylene imine) dendrimers on human erythrocytes. Pharmazie, 2010, 65(12), 891-895.
[PMID: 21284258]
[45]
Kesharwani, P.; Tekade, R.K.; Jain, N.K. Generation dependent cancer targeting potential of poly(propyleneimine) dendrimer. Biomaterials, 2014, 35(21), 5539-5548.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.064] [PMID: 24731713]
[46]
Karthikeyan, R.; Kumar, P.V. Prednisolone conjugated polypropylene imine dendritic architecture confers reducing hemolytic toxicity-a comparative study. Int. J. Drug Dev. Res., 2012, 4(2), 188-194.
[47]
Hashemi, M.; Ayatollahi, S.; Parhiz, H.; Mokhtarzadeh, A.; Javidi, S.; Ramezani, M. PEGylation of polypropylenimine dendrimer with alkylcarboxylate chain linkage to improve DNA delivery and cytotoxicity. Appl. Biochem. Biotechnol., 2015, 177(1), 1-17.
[http://dx.doi.org/10.1007/s12010-015-1723-y] [PMID: 26162520]
[48]
Ziemba, B.; Janaszewska, A.; Ciepluch, K.; Krotewicz, M.; Fogel, W.A.; Appelhans, D.; Voit, B.; Bryszewska, M.; Klajnert, B. In vivo toxicity of poly(propyleneimine) dendrimers. J. Biomed. Mater. Res. A, 2011, 99(2), 261-268.
[http://dx.doi.org/10.1002/jbm.a.33196] [PMID: 21976451]
[49]
Mirzaei, M.; Mohagheghi, M.; Shahbazi-Gahrouei, D.; Khatami, A. Novel nanosized GD 3+-ALGD-G 2-C595: in vivo dual selective MUC-1 positive tumor molecular MR imaging and therapeutic agent. J. Nanomed. Nanotechnol., 2012, 3(7)
[50]
Hashempour Alamdari, N.; Alaei-Beirami, M.; Sadat Shandiz, S.A.; Hejazinia, H.; Rasouli, R.; Saffari, M. Gd3+-asparagine-anionic linear globular dendrimer second-generation G2 complexes: Novel nanobiohybrid theranostics. Contrast Media Mol. Imaging, 2017, 2017, 3625729.
[http://dx.doi.org/10.1155/2017/3625729] [PMID: 29097918]
[51]
Mehrizi, T.Z.; Ardestani, M.S.; Khamesipour, A.; Hoseini, M.H.M.; Mosaffa, N.; Anissian, A.; Ramezani, A. Reduction toxicity of Amphotericin B through loading into a novel nanoformulation of anionic linear globular dendrimer for improve treatment of leishmania major. J. Mater. Sci. Mater. Med., 2018, 29(8), 125.
[http://dx.doi.org/10.1007/s10856-018-6122-9] [PMID: 30056571]
[52]
Mehrizi, T.Z.; Mosaffa, N.; Hoseini, M.H.M.; Ardestani, M.S.; Khamesipour, A.; Shahmabadi, H.E. In vivo therapeutic effects of four synthesized antileishmanial nanodrugs in the treatment of Leishmaniasis. Arch. Clin. Infect. Dis., 2018, 13, e80314.
[53]
Mehrizi, T.Z.; Mosaffa, N.; Khamesipour, A.; Hoseini, M.H.M.; Shahmabadi, H.E.; Ardestani, M.S. A novel nanoformulation for reducing the toxicity and increasing the efficacy of betulinic acid using anionic linear globular dendrimer. J. Nanostruct, 2021, 11(1), 143-152.
[54]
Alavidjeh, M.S.; Haririan, I.; Khorramizadeh, M.R.; Ghane, Z.Z.; Ardestani, M.S.; Namazi, H. Anionic linear-globular dendrimers: Biocompatible hybrid materials with potential uses in nanomedicine. J. Mater. Sci. Mater. Med., 2010, 21(4), 1121-1133.
[http://dx.doi.org/10.1007/s10856-009-3978-8] [PMID: 20082119]
[55]
Tsuchida, E.; Sou, K.; Nakagawa, A.; Sakai, H.; Komatsu, T.; Kobayashi, K. Artificial oxygen carriers, hemoglobin vesicles and albumin-hemes, based on bioconjugate chemistry. Bioconjug. Chem., 2009, 20(8), 1419-1440.
[http://dx.doi.org/10.1021/bc800431d] [PMID: 19206516]
[56]
Shikama, K. The molecular mechanism of autoxidation for myoglobin and hemoglobin: A venerable puzzle. Chem. Rev., 1998, 98(4), 1357-1374.
[http://dx.doi.org/10.1021/cr970042e] [PMID: 11848936]
[57]
Karasugi, K.; Kitagishi, H.; Kano, K. Modification of a dioxygen carrier, hemoCD, with PEGylated dendrons for extension of circulation time in the bloodstream. Bioconjug. Chem., 2012, 23(12), 2365-2376.
[http://dx.doi.org/10.1021/bc300303z] [PMID: 23136812]
[58]
Twyman, L.J.; Ellis, A.; Gittins, P.J. Pyridine encapsulated hyperbranched polymers as mimetic models of haeme containing proteins, that also provide interesting and unusual porphyrin-ligand geometries. Chem. Commun. (Camb.), 2012, 48(1), 154-156.
[http://dx.doi.org/10.1039/C1CC14396D] [PMID: 22039580]
[59]
Sharma, S.; Sharma, P.; Tyler, L.N. Transfusion of blood and blood products: Indications and complications. Am. Fam. Physician, 2011, 83(6), 719-724.
[PMID: 21404983]
[60]
Kor, D.J.; Gajic, O. Blood product transfusion in the critical care setting. Curr. Opin. Crit. Care, 2010, 16(4), 309-316.
[http://dx.doi.org/10.1097/MCC.0b013e32833bc4a4] [PMID: 20543684]
[61]
Hess, J.R. Conventional blood banking and blood component storage regulation: Opportunities for improvement. Blood Transfus., 2010, 8(Suppl. 3), s9-s15.
[PMID: 20606757]
[62]
Mehrizi, T.Z.; Kafiabad, S.A.; Eshghi, P. Effects and treatment applications of polymeric nanoparticles on improving platelets’ storage time: A review of the literature from 2010 to 2020. Blood Res., 2021, 56(4), 215-228.
[http://dx.doi.org/10.5045/br.2021.2021094] [PMID: 34880140]
[63]
Zadeh Mehrizi, T.; Amini Kafiabad, S. Evaluation of the effects of nanoparticles on the therapeutic function of platelet: A review. J. Pharm. Pharmacol., 2021, 74(2), 179-190.
[PMID: 34244798]
[64]
Mehrizi, Z.; Ardestani, S.; Kafiabad, A. A review study of the influences of dendrimer nanoparticles on stored platelet in order to treat patients (2001− 2020). Curr. Nanosci., 2021, 17, 1-15.
[65]
Mehrizi, T.Z. An overview of the latest applications of platelet-derived microparticles and nanoparticles in medical technology 2010-2020. Curr. Mol. Med., 2021, 22(6), 524-539.
[PMID: 34602037]
[66]
Norris, L.A. Blood coagulation. Best Pract. Res. Clin. Obstet. Gynaecol., 2003, 17(3), 369-383.
[http://dx.doi.org/10.1016/S1521-6934(03)00014-2] [PMID: 12787532]
[67]
Mackman, N.; Tilley, R.E.; Key, N.S. Role of the extrinsic pathway of blood coagulation in hemostasis and thrombosis. Arterioscler. Thromb. Vasc. Biol., 2007, 27(8), 1687-1693.
[http://dx.doi.org/10.1161/ATVBAHA.107.141911] [PMID: 17556654]
[68]
Fröhlich, E. Action of nanoparticles on platelet activation and plasmatic coagulation. Curr. Med. Chem., 2016, 23(5), 408-430.
[http://dx.doi.org/10.2174/0929867323666160106151428] [PMID: 26063498]
[69]
Dobrovolskaia, M.A.; Patri, A.K.; Simak, J.; Hall, J.B.; Semberova, J.; De Paoli Lacerda, S.H.; McNeil, S.E. Nanoparticle size and surface charge determine effects of PAMAM dendrimers on human platelets in vitro. Mol. Pharm., 2012, 9(3), 382-393.
[http://dx.doi.org/10.1021/mp200463e] [PMID: 22026635]
[70]
Dobrovolskaia, M.A.; Patri, A.K.; Potter, T.M.; Rodriguez, J.C.; Hall, J.B.; McNeil, S.E. Dendrimer-induced leukocyte procoagulant activity depends on particle size and surface charge. Nanomedicine (Lond.), 2012, 7(2), 245-256.
[http://dx.doi.org/10.2217/nnm.11.105] [PMID: 21957862]
[71]
Watala, C.; Karolczak, K.; Kassassir, H.; Talar, M.; Przygodzki, T.; Maczynska, K.; Labieniec-Watala, M. How do the full-generation poly(amido)amine (PAMAM) dendrimers activate blood platelets? Activation of circulating platelets and formation of “fibrinogen aggregates” in the presence of polycations. Int. J. Pharm., 2016, 503(1-2), 247-261.
[http://dx.doi.org/10.1016/j.ijpharm.2015.08.073] [PMID: 26319628]
[72]
Zadeh Mehrizi, T.; Eshghi, P. Investigation of the effect of nanoparticles on platelet storage duration 2010–2020. Int. Nano Lett., 2021, 1-31.
[73]
Durán-Lara, E.; Guzmán, L.; John, A.; Fuentes, E.; Alarcón, M.; Palomo, I.; Santos, L.S. PAMAM dendrimer derivatives as a potential drug for antithrombotic therapy. Eur. J. Med. Chem., 2013, 69, 601-608.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.047] [PMID: 24095753]
[74]
Li, P.; Zheng, W.; Ma, W.; Li, X.; Li, S.; Zhao, Y. In-situ preparation of amino-terminated dendrimers on TiO2 films by generational growth for potential and efficient surface functionalization. Appl. Surf. Sci., 2018, 459, 438-445.
[http://dx.doi.org/10.1016/j.apsusc.2018.08.044]
[75]
Ziemba, B.; Halets, I.; Shcharbin, D.; Appelhans, D.; Voit, B.; Pieszynski, I.; Bryszewska, M.; Klajnert, B. Influence of fourth generation poly(propyleneimine) dendrimers on blood cells. J. Biomed. Mater. Res. A, 2012, 100(11), 2870-2880.
[http://dx.doi.org/10.1002/jbm.a.34222] [PMID: 22623362]
[76]
Franiak-Pietryga, I. Ziółkowska, E.; Ziemba, B.; Appelhans, D.; Voit, B.; Szewczyk, M.; Góra-Tybor, J.; Robak, T.; Klajnert, B.; Bryszewska, M. The influence of maltotriose-modified poly(propylene imine) dendrimers on the chronic lymphocytic leukemia cells in vitro: Dense shell G4 PPI. Mol. Pharm., 2013, 10(6), 2490-2501.
[http://dx.doi.org/10.1021/mp400142p] [PMID: 23641871]
[77]
Franiak-Pietryga, I.; Ziolkowska, E.; Ziemba, B.; Appelhans, D.; Voit, B.; Gora-Tybor, J. Nanoparticles–a novel approach to chronic lymphocytic leukemia treatment? Blood, 2012, 120(21), 4601.
[http://dx.doi.org/10.1182/blood.V120.21.4601.4601]
[78]
Jiménez, J.; Gómez, R.; Briz, V.; Madrid, R.; Bryszewsk, M.; De La Mata, F. Carbosilane dendrimers as carriers of siRNA. J. Drug Deliv. Sci. Technol., 2012, 22(1), 75-82.
[http://dx.doi.org/10.1016/S1773-2247(12)50007-9]
[79]
Peña-González, C.E.; Pedziwiatr-Werbicka, E.; Shcharbin, D.; Guerrero-Beltrán, C.; Abashkin, V.; Loznikova, S.; Jiménez, J.L.; Muñoz-Fernández, M.Á.; Bryszewska, M.; Gómez, R.; Sánchez-Nieves, J.; de la Mata, F.J. Gold nanoparticles stabilized by cationic carbosilane dendrons: Synthesis and biological properties. Dalton Trans., 2017, 46(27), 8736-8745.
[http://dx.doi.org/10.1039/C6DT03791G] [PMID: 28091639]
[80]
Pedziwiatr-Werbicka, E.; Peña-González, C.; Stasiak, K.; Ionov, M.; Abashkin, V.; Loznikova, S. Toxicity of gold nanoparticles stabilized by cationic carbosilane dendrons. Dalton Trans., 2017, 46(27)
[81]
Barrios-Gumiel, A.; Sánchez-Nieves, J.; Pedziwiatr-Werbicka, E.; Abashkin, V.; Shcharbina, N.; Shcharbin, D. Glińska, S.; Ciepluch, K.; Kuc-Ciepluch, D.; Lach, D.; Bryszewska, M.; Gómez, R.; de la Mata, F.J. Effect of PEGylation on the biological properties of cationic carbosilane dendronized gold nanoparticles. Int. J. Pharm., 2020, 573, 118867.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118867] [PMID: 31765788]
[82]
Fernandes, E.G.R.; de Queiroz, A.A.; Abraham, G.A.; San Román, J. Antithrombogenic properties of bioconjugate streptokinase-polyglycerol dendrimers. J. Mater. Sci. Mater. Med., 2006, 17(2), 105-111.
[http://dx.doi.org/10.1007/s10856-006-6813-5] [PMID: 16502242]
[83]
Wen, J. The chemical modification of hyperbranched polyglycerols for improved bioadhesive and hemostatic properties; University of British Columbia, 2015.
[84]
Greening, D.W.; Sparrow, R.L.; Simpson, R.J. Preparation of platelet concentrates. Serum/Plasma Proteomics; Springer, 2011, pp. 267-278.
[http://dx.doi.org/10.1007/978-1-61779-068-3_18]
[85]
Feng, X.; Meng, X.; Xiao, F.; Aguilar, Z.P.; Xu, H. Vancomycin-dendrimer based multivalent magnetic separation nanoplatforms combined with multiplex quantitative PCR assay for detecting pathogenic bacteria in human blood. Talanta, 2021, 225, 121953.
[http://dx.doi.org/10.1016/j.talanta.2020.121953] [PMID: 33592708]
[86]
He, X.M.; Carter, D.C. Atomic structure and chemistry of human serum albumin. Nature, 1992, 358(6383), 209-215.
[http://dx.doi.org/10.1038/358209a0] [PMID: 1630489]
[87]
Mehrizi, T.Z. Impact of metallic, quantum dots and carbon-based nanoparticles on quality and storage of albumin products for clinical use. Nano, 2021, 2130013.
[http://dx.doi.org/10.1142/S1793292021300139]
[88]
Chanphai, P.; Froehlich, E.; Mandeville, J.S.; Tajmir-Riahi, H.A. Protein conjugation with PAMAM nanoparticles: Microscopic and thermodynamic analysis. Colloids Surf. B Biointerfaces, 2017, 150, 168-174.
[http://dx.doi.org/10.1016/j.colsurfb.2016.11.037] [PMID: 27914253]
[89]
Zhang, H-M.; Lou, K.; Cao, J.; Wang, Y-Q. Interaction of a hydrophobic-functionalized PAMAM dendrimer with bovine serum albumin: Thermodynamic and structural changes. Langmuir, 2014, 30(19), 5536-5544.
[http://dx.doi.org/10.1021/la501129y] [PMID: 24797501]
[90]
Onaș A.M.; Bîru, I.E.; Gârea, S.A.; Iovu, H. Novel bovine serum albumin protein backbone reassembly study: Strongly twisted β-sheet structure promotion upon interaction with GO-PAMAM. Polymers (Basel), 2020, 12(11), 2603.
[http://dx.doi.org/10.3390/polym12112603] [PMID: 33167588]
[91]
Tokarczyk, K.; Jachimska, B. Characterization of G4 PAMAM dendrimer complexes with 5-fluorouracil and their interactions with bovine serum albumin. Colloids Surf. A Physicochem. Eng. Asp., 2019, 561, 357-363.
[http://dx.doi.org/10.1016/j.colsurfa.2018.10.080]
[92]
Ciepluch, K.; Biehl, R.; Bryszewska, M.; Arabski, M. Poly(propylene imine) dendrimers can bind to PEGylated albumin at PEG and albumin surface: Biophysical examination of a PEGylated platform to transport cationic dendritic nanoparticles. Biopolymers, 2020, 111(9), e23386.
[http://dx.doi.org/10.1002/bip.23386] [PMID: 32544981]
[93]
Hatano, K.; Matsuoka, K.; Terunuma, D. Carbosilane glycodendrimers. Chem. Soc. Rev., 2013, 42(11), 4574-4598.
[http://dx.doi.org/10.1039/C2CS35421G] [PMID: 23257960]
[94]
Bravo-Osuna, I.; Vicario-de-la-Torre, M.; Andrés-Guerrero, V.; Sánchez-Nieves, J.; Guzmán-Navarro, M.; de la Mata, F.J.; Gómez, R.; de Las Heras, B.; Argüeso, P.; Ponchel, G.; Herrero-Vanrell, R.; Molina-Martínez, I.T. Novel water-soluble mucoadhesive carbosilane dendrimers for ocular administration. Mol. Pharm., 2016, 13(9), 2966-2976.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00182] [PMID: 27149661]
[95]
Wrobel, D.; Müllerová, M.; Strašák, T. Růžička, K.; Fulem, M.; Kubíková, R.; Bryszewska, M.; Klajnert-Maculewicz, B.; Malý, J. Glucose-modified carbosilane dendrimers: Interaction with model membranes and human serum albumin. Int. J. Pharm., 2020, 579, 119138.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119138] [PMID: 32061725]
[96]
Shcharbin, D.; Pedziwiatr-Werbicka, E.; Serchenya, T.; Cyboran-Mikolajczyk, S.; Prakhira, L.; Abashkin, V.; Dzmitruk, V.; Ionov, M.; Loznikova, S.; Shyrochyna, I.; Sviridov, O.; Peña-González, C.E.; Gumiel, A.B.; Gómez, R.; de la Mata, F.J.; Bryszewska, M. Role of cationic carbosilane dendrons and metallic core of functionalized gold nanoparticles in their interaction with human serum albumin. Int. J. Biol. Macromol., 2018, 118(Pt B), 1773-1780.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.023] [PMID: 29997045]
[97]
Moreno, S.; Szwed, A.; El Brahmi, N.; Milowska, K.; Kurowska, J.; Fuentes-Paniagua, E. Synthesis, characterization and biological properties of new hybrid carbosilane–viologen–phosphorus dendrimers. RSC Advances, 2015, 5(33), 25942-25958.
[http://dx.doi.org/10.1039/C5RA00960J]
[98]
Xu, X.; Ran, Q.; Haag, R.; Ballauff, M.; Dzubiella, J. Charged dendrimers revisited: Effective charge and surface potential of dendritic polyglycerol sulfate. Macromolecules, 2017, 50(12), 4759-4769.
[http://dx.doi.org/10.1021/acs.macromol.7b00742]
[99]
Ran, Q.; Xu, X.; Dey, P.; Yu, S.; Lu, Y.; Dzubiella, J.; Haag, R.; Ballauff, M. Interaction of human serum albumin with dendritic polyglycerol sulfate: Rationalizing the thermodynamics of binding. J. Chem. Phys., 2018, 149(16), 163324.
[http://dx.doi.org/10.1063/1.5030601] [PMID: 30384756]
[100]
Santos, P.P.; da Silva Nunes, A.; Exposito de Queiroz, A.A.A.; Alencar de Queiroz, A.A. Interactions of polyglycerol dendrimers with human serum albumin: Insights from fluorescence spectroscopy and computational modeling analysis. J. Biomater. Sci. Polym. Ed., 2019, 30(17), 1575-1590.
[http://dx.doi.org/10.1080/09205063.2019.1650242] [PMID: 31354070]
[101]
González-García, E.; Gutiérrez Ulloa, C.E.; de la Mata, F.J.; Marina, M.L.; García, M.C. Sulfonate-terminated carbosilane dendron-coated nanotubes: A greener point of view in protein sample preparation. Anal. Bioanal. Chem., 2017, 409(22), 5337-5348.
[http://dx.doi.org/10.1007/s00216-017-0479-3] [PMID: 28687880]
[102]
González-García, E.; Sánchez-Nieves, J.; de la Mata, F.J.; Marina, M.L.; García, M.C. Feasibility of cationic carbosilane dendrimers for sustainable protein sample preparation. Colloids Surf. B Biointerfaces, 2020, 186, 110746.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110746] [PMID: 31877444]
[103]
Strengers, P.F. Evidence-based clinical indications of plasma products and future prospects. Ann. Blood, 2017, 2(9), 2-20.
[http://dx.doi.org/10.21037/aob.2017.12.03]
[104]
Mondal, D.; Sharma, M.; Quental, M.V.; Tavares, A.P.M.; Prasad, K.; Freire, M.G. Suitability of bio-based ionic liquids for the extraction and purification of IgG antibodies. Green Chem., 2016, 18(22), 6071-6081.
[http://dx.doi.org/10.1039/C6GC01482H] [PMID: 28255278]
[105]
Lin, J.; Hua, W.; Zhang, Y.; Li, C.; Xue, W.; Yin, J.; Liu, Z.; Qiu, X. Effect of poly(amidoamine) dendrimers on the structure and activity of immune molecules. Biochim. Biophys. Acta, 2015, 1850(2), 419-425.
[http://dx.doi.org/10.1016/j.bbagen.2014.11.016] [PMID: 25463324]
[106]
Zadeh Mehrizi, T.; Mousavi Hosseini, K. An overview on the investigation of nanomaterials’ effect on plasma components: Immunoglobulins and coagulation factor VIII, 2010–2020 review. Nanoscale Adv., 2021, 3(13), 3730-3745.
[http://dx.doi.org/10.1039/D1NA00119A]
[107]
Marcinkowska, M.; Sobierajska, E.; Stanczyk, M.; Janaszewska, A.; Chworos, A.; Klajnert-Maculewicz, B. Conjugate of PAMAM dendrimer, doxorubicin and monoclonal antibody—trastuzumab: The new approach of a well-known strategy. Polymers (Basel), 2018, 10(2), 187.
[http://dx.doi.org/10.3390/polym10020187] [PMID: 30966223]
[108]
Marcinkowska, M.; Stanczyk, M.; Janaszewska, A.; Sobierajska, E.; Chworos, A.; Klajnert-Maculewicz, B. Multicomponent conjugates of anticancer drugs and monoclonal antibody with PAMAM dendrimers to increase efficacy of HER-2 positive breast cancer therapy. Pharm. Res., 2019, 36(11), 154.
[http://dx.doi.org/10.1007/s11095-019-2683-7] [PMID: 31482205]
[109]
Otis, J.B.; Zong, H.; Kotylar, A.; Yin, A.; Bhattacharjee, S.; Wang, H.; Baker, J.R., Jr; Wang, S.H. Dendrimer antibody conjugate to target and image HER-2 overexpressing cancer cells. Oncotarget, 2016, 7(24), 36002-36013.
[http://dx.doi.org/10.18632/oncotarget.9081] [PMID: 27144519]
[110]
Epstein, J.S. Alternative strategies in assuring blood safety: An overview. Biologicals, 2010, 38(1), 31-35.
[http://dx.doi.org/10.1016/j.biologicals.2009.10.009] [PMID: 20110174]
[111]
de Mendoza, C.; Altisent, C.; Aznar, J.A.; Batlle, J.; Soriano, V. Emerging viral infections -a potential threat for blood supply in the 21st century. AIDS Rev., 2012, 14(4), 279-289.
[PMID: 23258302]
[112]
Roth, W.K.; Weber, M.; Seifried, E. Feasibility and efficacy of routine PCR screening of blood donations for hepatitis C virus, hepatitis B virus, and HIV-1 in a blood-bank setting. Lancet, 1999, 353(9150), 359-363.
[http://dx.doi.org/10.1016/S0140-6736(98)06318-1] [PMID: 9950441]
[113]
Dodd, R.Y. Current viral risks of blood and blood products. Ann. Med., 2000, 32(7), 469-474.
[http://dx.doi.org/10.3109/07853890009002022] [PMID: 11087167]
[114]
Mese, F.; Congur, G.; Erdem, A. Voltammetric and impedimetric detection of DNA hybridization by using dendrimer modified graphite electrodes. J. Electroanal. Chem. (Lausanne), 2014, 719, 92-97.
[http://dx.doi.org/10.1016/j.jelechem.2014.02.007]
[115]
Qiu, J-D.; Huang, H.; Liang, R-P. Biocompatible and label-free amperometric immunosensor for hepatitis B surface antigen using a sensing film composed of poly (allylamine)-branched ferrocene and gold nanoparticles. Mikrochim. Acta, 2011, 174(1), 97-105.
[http://dx.doi.org/10.1007/s00604-011-0585-4]
[116]
Urio, L.J.; Mohamed, M.A.; Mghamba, J.; Abade, A.; Aboud, S. Evaluation of HIV antigen/antibody combination ELISAs for diagnosis of HIV infection in Dar Es Salaam, Tanzania. Pan Afr. Med. J., 2015, 20(1), 196.
[PMID: 26113927]
[117]
Yan, Z.; Gan, N.; Zhang, H.; Wang, D.; Qiao, L.; Cao, Y.; Li, T.; Hu, F. A sandwich-hybridization assay for simultaneous determination of HIV and tuberculosis DNA targets based on signal amplification by quantum dots-PowerVision™ polymer coding nanotracers. Biosens. Bioelectron., 2015, 71, 207-213.
[http://dx.doi.org/10.1016/j.bios.2015.04.010] [PMID: 25911447]
[118]
Farzin, L.; Shamsipur, M.; Samandari, L.; Sheibani, S. HIV biosensors for early diagnosis of infection: The intertwine of nanotechnology with sensing strategies. Talanta, 2020, 206, 120201.
[http://dx.doi.org/10.1016/j.talanta.2019.120201] [PMID: 31514868]
[119]
John, S.V.; Rotherham, L.S.; Khati, M.; Mamba, B.B.; Arotiba, O.A. Towards HIV detection: Novel poly (propylene imine) dendrimer-streptavidin platform for electrochemical DNA and gp120 aptamer biosensors. Int. J. Electrochem. Sci., 2014, 9, 5425-5437.
[120]
Arora, D; Maheshwari, M; Arora, B Rapid point-of-care testing for detection of HIV and clinical monitoring. Int. Sch. Res. Notices., 2013, 2013
[http://dx.doi.org/10.1155/2013/287269]
[121]
Chen, G.D.; Alberts, C.J.; Rodriguez, W.; Toner, M. Concentration and purification of human immunodeficiency virus type 1 virions by microfluidic separation of superparamagnetic nanoparticles. Anal. Chem., 2010, 82(2), 723-728.
[http://dx.doi.org/10.1021/ac9024522] [PMID: 19954210]
[122]
Hamley, I.W. Nanotechnology with soft materials. Angew. Chem. Int. Ed., 2003, 42(15), 1692-1712.
[http://dx.doi.org/10.1002/anie.200200546] [PMID: 12707884]
[123]
Choi, Y-W.; Lee, H.; Song, Y.; Sohn, D. Colloidal stability of iron oxide nanoparticles with multivalent polymer surfactants. J. Colloid Interface Sci., 2015, 443, 8-12.
[http://dx.doi.org/10.1016/j.jcis.2014.11.068] [PMID: 25526296]
[124]
Barrios-Gumiel, A.; Sepúlveda-Crespo, D.; Jiménez, J.L.; Gómez, R.; Muñoz-Fernández, M.Á.; de la Mata, F.J. Dendronized magnetic nanoparticles for HIV-1 capture and rapid diagnostic. Colloids Surf. B Biointerfaces, 2019, 181, 360-368.
[http://dx.doi.org/10.1016/j.colsurfb.2019.05.050] [PMID: 31158698]
[125]
Liang, S.; He, G.; Tian, J.; Zhao, Y.; Zhao, S. Fluorescence polarization gene assay for HIV-DNA based on the use of dendrite-modified gold nanoparticles acting as signal amplifiers. Mikrochim. Acta, 2018, 185(2), 119.
[http://dx.doi.org/10.1007/s00604-018-2673-1] [PMID: 29594617]
[126]
Ruiz-Sanchez, A.J.; Parolo, C.; Miller, B.S.; Gray, E.R.; Schlegel, K.; McKendry, R.A. Tuneable plasmonic gold dendrimer nanochains for sensitive disease detection. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(35), 7262-7266.
[http://dx.doi.org/10.1039/C7TB01394A] [PMID: 32264175]
[127]
Oudeng, G.; Benz, M.; Popova, A.A.; Zhang, Y.; Yi, C.; Levkin, P.A.; Yang, M. Droplet microarray based on nanosensing probe patterns for simultaneous detection of multiple HIV retroviral nucleic acids. ACS Appl. Mater. Interfaces, 2020, 12(50), 55614-55623.
[http://dx.doi.org/10.1021/acsami.0c16146] [PMID: 33269927]
[128]
Syamila, N.; Syahir, A.; Sulaiman, Y.; Ikeno, S.; Tan, W.S.; Ahmad, H.; Ahmad Tajudin, A. Bio-nanogate manipulation on electrode surface as an electrochemical immunosensing strategy for detecting anti-hepatitis B surface antigen. Bioelectrochemistry, 2022, 143, 107952.
[http://dx.doi.org/10.1016/j.bioelechem.2021.107952] [PMID: 34600402]
[129]
Babamiri, B.; Hallaj, R.; Salimi, A. Solid surface fluorescence immunosensor for ultrasensitive detection of hepatitis B virus surface antigen using PAMAM/CdTe@CdS QDs nanoclusters. Methods Appl. Fluoresc., 2018, 6(3), 035013.
[http://dx.doi.org/10.1088/2050-6120/aac8f7] [PMID: 29848807]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy