Generic placeholder image

Recent Innovations in Chemical Engineering

Editor-in-Chief

ISSN (Print): 2405-5204
ISSN (Online): 2405-5212

Mini-Review Article

A Review of CO2 Capture by Poly(Ionic liquid)s

Author(s): Rajdip Soni and Rima Biswas*

Volume 15, Issue 2, 2022

Published on: 23 August, 2022

Page: [72 - 85] Pages: 14

DOI: 10.2174/2405520415666220727150202

Price: $65

Abstract

Over the last two decades, Poly(ionic liquid)s (PILs) have undergone extensive research and development. PILs have opened a whole new passage to versatile ionic polymers. It has compelled the chemical industry to rethink its modern ways of carbon capture. PILs have demonstrated excellent CO2 sorption capacities in comparison to their corresponding Ionic Liquids (ILs). The effects of the chemical structures of PILs on CO2 sorption, including the types of anion, cation, and backbone, have been discussed. This review aims to cover details of a large range of PILs along with their physical and structural properties, synthesis procedures, and the absorption power of CO2. Imidazoliumbased PILs are some of the strongest absorbents of CO2. On the other hand, PILs with Amino Acid (AA) anion seem to have a much-improved sorption capacity when compared PILs with the non-AA anionic part. PILs with hexafluorophosphate ion (PF6 -) relatively absorb more CO2 compared to tetra-fluoroborate (BF4 -) based PILs. The solubility of CO2 was increased with increasing pressure and decreased as temperature increased. The inclusion of hydroxyl groups in the polycation increased the interaction with CO2 molecules. The COSMO-RS model was used to understand the molecular-level behavior of PILs in terms of their activity coefficients.

Keywords: Poly(ionic liquid)s, amino acid, ionic liquid, physicochemical properties, CO2 absorption, COSMO-RS method.

« Previous
Graphical Abstract

[1]
Metz B, Davidson O, De Coninck H, Loos M, Meyer L. IPCC special report on carbon dioxide capture and storage. Cambridge: Cambridge University Press 2005.
[2]
Stewart C, Hessami M-A. A study of methods of carbon dioxide capture and sequestration - the sustainability of a pho-tosynthetic bioreactor approach. Energy Convers Manage 2005; 46(3): 403-20.
[http://dx.doi.org/10.1016/j.enconman.2004.03.009]
[3]
Kuppan C, Chavali M. CO2 sequestration: Processes and methodologies.Handbook of Ecomaterials. Springer 2019.
[4]
Shafeeyan MS, Daud WMAW, Shamiri A. A review of mathematical modeling of fixed-bed columns for carbon dioxi-de adsorption. Chem Eng Res Des 2014; 92(5): 961-88.
[http://dx.doi.org/10.1016/j.cherd.2013.08.018]
[5]
Nanda S, Reddy SN, Mitra SK, Kozinski JA. The progressive routes for carbon capture and sequestration. Energy Sci Eng 2016; 4(2): 99-122.
[http://dx.doi.org/10.1002/ese3.117]
[6]
Li B, Duan Y, Luebke D, Morreale B. Advances in CO2 capture technology: A patent review. Appl Energy 2013; 102: 1439-47.
[http://dx.doi.org/10.1016/j.apenergy.2012.09.009]
[7]
Wang Y, Lang X, Fan S. Hydrate capture CO2 from shifted synthesis gas, flue gas and sour natural gas or biogas. J Energy Chem 2013; 22(1): 39-47.
[http://dx.doi.org/10.1016/S2095-4956(13)60004-2]
[8]
Faiz R, Al-Marzouqi M. Insights on natural gas purification: Simultaneous absorption of CO2 and H2S using membrane contactors. Separ Purif Tech 2011; 76(3): 351-61.
[http://dx.doi.org/10.1016/j.seppur.2010.11.005]
[9]
Tan L, Shariff A, Lau K, Bustam M. Factors affecting CO2 absorption efficiency in packed column: A review. J Ind Eng Chem 2012; 18(6): 1874-83.
[http://dx.doi.org/10.1016/j.jiec.2012.05.013]
[10]
Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C. Post-combustion CO2 capture with chemical absorption: A state-of-the-art review. Chem Eng Res Des 2011; 89(9): 1609-24.
[http://dx.doi.org/10.1016/j.cherd.2010.11.005]
[11]
Yu C-H, Huang C-H, Tan C-S. A review of CO2 capture by absorption and adsorption. Aerosol Air Qual Res 2012; 12(5): 745-69.
[http://dx.doi.org/10.4209/aaqr.2012.05.0132]
[12]
Aghaie M, Rezaei N, Zendehboudi S. A systematic review on CO2 capture with ionic liquids: Current status and future prospects. Renew Sustain Energy Rev 2018; 96: 502-25.
[http://dx.doi.org/10.1016/j.rser.2018.07.004]
[13]
Blanchard LA, Hancu D, Beckman EJ, Brennecke JF. Green processing using ionic liquids and CO2. Nature 1999; 399(6731): 28-9.
[http://dx.doi.org/10.1038/19887]
[14]
Ghandi K. A review of ionic liquids, their limits and applications Green Sustain Chem 2014; 4(1)
[http://dx.doi.org/10.4236/gsc.2014.41008]
[15]
Ueno K, Tokuda H, Watanabe M. Ionicity in ionic liquids: Correlation with ionic structure and physicochemical proper-ties. Phys Chem Chem Phys 2010; 12(8): 1649-58.
[http://dx.doi.org/10.1039/b921462n] [PMID: 20145829]
[16]
Zhang X, Liu Z, Wang W. Screening of ionic liquids to capture CO2 by COSMO‐RS and experiments. AIChE J 2008; 54(10): 2717-28.
[http://dx.doi.org/10.1002/aic.11573]
[17]
Hasib-ur-Rahman M Siaj M, Larachi F. Ionic liquids for CO2 capture-development and progress. Chem Eng Process 2010; 49(4): 313-22.
[http://dx.doi.org/10.1016/j.cep.2010.03.008]
[18]
Bates ED, Mayton RD, Ntai I, Davis JH Jr. CO(2) capture by a task-specific ionic liquid. J Am Chem Soc 2002; 124(6): 926-7.
[http://dx.doi.org/10.1021/ja017593d] [PMID: 11829599]
[19]
Shahrom MSR, Wilfred CD, MacFarlane DR, Vijayraghavan R, Chong FK. Amino acid based poly (ionic liquid) mate-rials for CO2 capture: Effect of anion. J Mol Liq 2019; 276: 644-52.
[http://dx.doi.org/10.1016/j.molliq.2018.12.044]
[20]
Xiong YB, Wang H, Wang YJ, Wang RM. Novel imidazolium‐based poly (ionic liquid) s: Preparation, characterization, and absorption of CO2. Polym Adv Technol 2012; 23(5): 835-40.
[http://dx.doi.org/10.1002/pat.1973]
[21]
Bhavsar RS, Kumbharkar SC, Kharul UK. Polymeric ionic liquids (PILs): Effect of anion variation on their CO2 sorption. J Membr Sci 2012; 389: 305-15.
[http://dx.doi.org/10.1016/j.memsci.2011.10.042]
[22]
Welton T. Room-temperature ionic liquids. solvents for synthesis and catalysis. Chem Rev 1999; 99(8): 2071-84.
[http://dx.doi.org/10.1021/cr980032t] [PMID: 11849019]
[23]
Angell CA, Byrne N, Belieres J-P. Parallel developments in aprotic and protic ionic liquids: Physical chemistry and appli-cations. Acc Chem Res 2007; 40(11): 1228-36.
[http://dx.doi.org/10.1021/ar7001842] [PMID: 17979250]
[24]
Dupont J, de Souza RF, Suarez PA. Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev 2002; 102(10): 3667-92.
[http://dx.doi.org/10.1021/cr010338r] [PMID: 12371898]
[25]
Rogers RD, Seddon KR. Ionic liquids - solvents of the future? Science 2003; 302(5646): 792-3.
[http://dx.doi.org/10.1126/science.1090313] [PMID: 14593156]
[26]
Wasserscheid P. Chemistry: Volatile times for ionic liquids. Nature 2006; 439(7078): 797-.
[http://dx.doi.org/10.1038/439797a] [PMID: 16482141]
[27]
Wishart JF, Castner EW Jr. The physical chemistry of ionic liquids. J Phys Chem B 2007; 111(18): 4639-40.
[http://dx.doi.org/10.1021/jp072262u]
[28]
Tang J, Tang H, Sun W, Plancher H, Radosz M, Shen Y. Poly(ionic liquid)s: A new material with enhanced and fast CO2 absorption. Chem Commun (Camb) 2005; (26): 3325-7.
[PMID: 15983662]
[29]
Privalova EI, Karjalainen E, Nurmi M, et al. Imidazolium-based poly(ionic liquid)s as new alternatives for CO2 capture. ChemSusChem 2013; 6(8): 1500-9.
[http://dx.doi.org/10.1002/cssc.201300120] [PMID: 23881741]
[30]
Tang J, Shen Y, Radosz M, Sun W. Isothermal carbon dioxide sorption in poly (ionic liquid)s. Ind Eng Chem Res 2009; 48(20): 9113-8.
[http://dx.doi.org/10.1021/ie900292p]
[31]
Tang J, Tang H, Sun W, Radosz M, Shen Y. Low-pressure CO2 sorption in ammonium-based poly (ionic liquid) s. Polymer (Guildf) 2005; 46(26): 12460-7.
[http://dx.doi.org/10.1016/j.polymer.2005.10.082]
[32]
Shrivastava A. Introduction to plastics engineering. William Andrew 2018.
[http://dx.doi.org/10.1016/B978-0-323-39500-7.00001-0]
[33]
Einloft S, Bernard F, Dalla Vecchia F, Capturing CO. Capturing CO2 with poly (ionic liquid)s. Polymerized Ionic liquids 2017. 2017; 489-514.
[34]
Shaplov AS, Morozova SM, Lozinskaya EI, et al. Turning into poly (ionic liquid)s as a tool for polyimide modification: Synthesis, characterization and CO2 separation properties. Polym Chem 2016; 7(3): 580-91.
[http://dx.doi.org/10.1039/C5PY01553G]
[35]
Tomé LC, Marrucho IM. Ionic liquid-based materials: A platform to design engineered CO2 separation membranes. Chem Soc Rev 2016; 45(10): 2785-824.
[http://dx.doi.org/10.1039/C5CS00510H] [PMID: 26966735]
[36]
Yuan J, Antonietti M. Poly (ionic liquid) s: Polymers expanding classical property profiles. Polymer (Guildf) 2011; 52(7): 1469-82.
[http://dx.doi.org/10.1016/j.polymer.2011.01.043]
[37]
Yuan J, Mecerreyes D, Antonietti M. Poly (ionic liquid)s: An update. Prog Polym Sci 2013; 38(7): 1009-36.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.04.002]
[38]
Sahiner N, Demirci S. Poly ionic liquid cryogel of polyethyleneimine: Synthesis, characterization, and testing in ab-sorption studies. J Appl Polym Sci 2016; 133(22): 22.
[http://dx.doi.org/10.1002/app.43478]
[39]
Pefkianakis EK, Deimede V, Daletou MK, Gourdoupi N, Kallitsis JK. Novel polymer electrolyte membrane, based on pyridine containing poly (ether sulfone), for application in high‐temperature fuel cells. Macromol Rapid Commun 2005; 26(21): 1724-8.
[http://dx.doi.org/10.1002/marc.200500540]
[40]
Tang J, Sun W, Tang H, Radosz M, Shen Y. Enhanced CO2 absorption of poly(ionic liquid)s. Macromolecules 2005; 38(6): 2037-9.
[http://dx.doi.org/10.1021/ma047574z] [PMID: 15983662]
[41]
Tang H, Tang J, Ding S, Radosz M, Shen Y. Atom transfer radical polymerization of styrenic ionic liquid monomers and carbon dioxide absorption of the polymerized ionic liquids. J Polym Sci A Polym Chem 2005; 43(7): 1432-43.
[http://dx.doi.org/10.1002/pola.20600]
[42]
Macedonia MD, Moore DD, Maginn EJ, Olken MM. Adsorption studies of methane, ethane, and argon in the zeolite mordenite: Molecular simulations and experiments. Langmuir 2000; 16(8): 3823-34.
[http://dx.doi.org/10.1021/la9912500]
[43]
Fang W, Luo Z, Jiang J. CO2 capture in poly(ionic liquid) membranes: Atomistic insight into the role of anions. Phys Chem Chem Phys 2013; 15(2): 651-8.
[http://dx.doi.org/10.1039/C2CP42837G] [PMID: 23187744]
[44]
Huang J, Tao CA, An Q, et al. 3D-ordered macroporous poly(ionic liquid) films as multifunctional materials. Chem Commun (Camb) 2010; 46(6): 967-9.
[http://dx.doi.org/10.1039/B921280A] [PMID: 20107666]
[45]
Magalhaes T, Aquino A, Dalla Vecchia F, et al. Syntheses and characterization of new poly (ionic liquid)s designed for CO2 capture. RSC Advances 2014; 4(35): 18164-70.
[http://dx.doi.org/10.1039/c4ra00071d]
[46]
Isik M, Zulfiqar S, Edhaim F, Ruiperez F, Rothenberger A, Mecerreyes D. Sustainable Poly (Ionic Liquids) for CO2 cap-ture based on deep eutectic monomers. ACS Sustain Chem& Eng 2016; 4(12): 7200-8.
[http://dx.doi.org/10.1021/acssuschemeng.6b02137]
[47]
Bernard FL, Polesso BB, Cobalchini FW, et al. Hybrid alkoxysilane-functionalized urethane-imide-based poly (ionic liquids) as a new platform for carbon dioxide capture. Energy Fuels 2017; 31(9): 9840-9.
[http://dx.doi.org/10.1021/acs.energyfuels.7b02027]
[48]
Sang Y, Huang J. Benzimidazole-based hyper-cross-linked poly (ionic liquid) s for efficient CO2 capture and conversion. Chem Eng J 2020; 385123973
[http://dx.doi.org/10.1016/j.cej.2019.123973]
[49]
Klamt A. COSMO-RS for aqueous solvation and interfaces. Fluid Phase Equilib 2016; 407: 152-8.
[http://dx.doi.org/10.1016/j.fluid.2015.05.027]
[50]
Ali E, Hadj-Kali MK, Alnashef I. Modeling of CO2 solubility in selected imidazolium-based ionic liquids. Chem Eng Commun 2017; 204(2): 205-15.
[http://dx.doi.org/10.1080/00986445.2016.1254086]
[51]
Kurnia KA, Pinho SP, Coutinho JAP. Evaluation of the conductor-like screening model for real solvents for the predic-tion of the water activity coefficient at infinite dilution in ionic liquids. Ind Eng Chem Res 2014; 53(31): 12466-75.
[http://dx.doi.org/10.1021/ie5021415]
[52]
Fehrenbacher O, Tavakoli A. Besteuerung der GmbH & Co KG. Springer 2014.
[http://dx.doi.org/10.1007/978-3-658-01010-2]
[53]
Losetty V, Matheswaran P, Wilfred CD. Synthesis, thermophysical properties and COSMO-RS study of DBU based protic ionic liquids. J Chem Thermodyn 2017; 105: 151-8.
[http://dx.doi.org/10.1016/j.jct.2016.10.021]
[54]
Constantinescu D, Klamt A, Geană D. Vapor–liquid equilibrium prediction at high pressures using activity coefficients at infinite dilution from COSMO-type methods. Fluid Phase Equilib 2005; 231(2): 231-8.
[http://dx.doi.org/10.1016/j.fluid.2005.01.014]
[55]
Maiti A. Theoretical screening of ionic liquid solvents for carbon capture. ChemSusChem 2009; 2(7): 628-31.
[http://dx.doi.org/10.1002/cssc.200900086] [PMID: 19551803]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy