Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Current Drug Targeting using siRNA-based Nano Therapeutics for Pulmonary Diseases

Author(s): Venkateshwaran Krishnaswami and Ruckmani Kandasamy*

Volume 28, Issue 28, 2022

Published on: 15 August, 2022

Page: [2279 - 2282] Pages: 4

DOI: 10.2174/1381612828666220727144223

Price: $65

conference banner
Abstract

The importance of siRNA in nano drug delivery systems to target important pulmonary disorders, such as chronic obstructive pulmonary disease (COPD), asthma, lung cancer, and others, is reviewed in this perspective. The great majority of lung illnesses are caused by protein misfolding. As a result, siRNA-based therapies are increasingly being used to target the gene. Given the difficulties of delivering bare siRNA, siRNA protection may ensure its efficacy in gene therapy. These issues could be solved with a nano-based siRNA delivery systems. In this context, a siRNA-based nanocarrier for major pulmonary disorders has been explored.

Keywords: siRNA, targeting, pulmonary, nano therapeutics, lung, chronic obstructive pulmonary disease (COPD).

Next »
[1]
Gandomani SH, Asgari-Tarazoj A, Ghoncheh M, Yousefi SM, Delaram M, Salehiniya H. Lung cancer in the world: The incidence, mortality rate and risk factors. WCRJ 2017; 4(3): e911.
[2]
Mao Y, Yang D, He J, Krasna MJ. Epidemiology of lung cancer. Surg Oncol Clin N Am 2016; 25(3): 439-45.
[http://dx.doi.org/10.1016/j.soc.2016.02.001] [PMID: 27261907]
[3]
Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med 2008; 359(13): 1367-80.
[http://dx.doi.org/10.1056/NEJMra0802714] [PMID: 18815398]
[4]
Hirsch FR, Scagliotti GV, Mulshine JL, et al. Lung cancer: Current therapies and new targeted treatments. Lancet 2017; 389(10066): 299-311.
[http://dx.doi.org/10.1016/S0140-6736(16)30958-8] [PMID: 27574741]
[5]
Soria JC, Marabelle A, Brahmer JR, Gettinger S. Immune checkpoint modulation for non-small cell lung cancer. Clin Cancer Res 2015; 21(10): 2256-62.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2959] [PMID: 25979932]
[6]
Reck M, Heigener DF, Mok T, Soria JC, Rabe KF. Management of non-small-cell lung cancer: Recent developments. Lancet 2013; 382(9893): 709-19.
[http://dx.doi.org/10.1016/S0140-6736(13)61502-0] [PMID: 23972814]
[7]
Nigro E, Imperlini E, Scudiero O, et al. Differentially expressed and activated proteins associated with non small cell lung cancer tissues. Respir Res 2015; 16: 74.
[http://dx.doi.org/10.1186/s12931-015-0234-2] [PMID: 26104294]
[8]
Chiou J, Chang YC, Jan YH, et al. Overexpression of BZW1 is an independent poor prognosis marker and its down-regulation suppresses lung adenocarcinoma metastasis. Sci Rep 2019; 9(1): 14624.
[http://dx.doi.org/10.1038/s41598-019-50874-x] [PMID: 31601833]
[9]
Lokras A, Thakur A, Wadhwa A, Thanki K, Franzyk H, Foged C. Optimizing the intracellular delivery of therapeutic anti-inflammatory tnf-α siRNA to activated macrophages using lipidoid-polymer hybrid nanoparticles. Front Bioeng Biotechnol 2021; 8: 601155.
[http://dx.doi.org/10.3389/fbioe.2020.601155] [PMID: 33520957]
[10]
Vencken S, Foged C, Ramsey JM, et al. Nebulised lipid-polymer hybrid nanoparticles for the delivery of a therapeutic anti-inflammatory microRNA to bronchial epithelial cells. ERJ Open Res 2019; 5(2): 00161-2018.
[http://dx.doi.org/10.1183/23120541.00161-2018] [PMID: 30972350]
[11]
Zhang M, Gao Y, Caja K, Zhao B, Kim JA. Non-viral nanoparticle delivers small interfering RNA to macrophages in vitro and in vivo. PLoS One 2015; 10(3): e0118472.
[http://dx.doi.org/10.1371/journal.pone.0118472] [PMID: 25799489]
[12]
Zhu X, Xu Y, Solis LM, et al. Long-circulating siRNA nanoparticles for validating prohibitin1-targeted non-small cell lung cancer treatment. Proc Natl Acad Sci 2015; 112(25): 7779-84.
[http://dx.doi.org/10.1073/pnas.1505629112] [PMID: 26056316]
[13]
Yang Y, Han Y, Sun Q, et al. Au-siRNA@ aptamer nanocages as a high-efficiency drug and gene delivery system for targeted lung cancer therapy. J Nanobiotechnology 2021; 19(1): 54.
[http://dx.doi.org/10.1186/s12951-020-00759-3] [PMID: 33627152]
[14]
Nascimento AV, Gattacceca F, Singh A, et al. Biodistribution and pharmacokinetics of MAD2 siRNA-loaded EGFR-targeted chitosan nanoparticles in cisplatin sensitive and resistant lung cancer models. Nanomedicine 2016; 11(7): 767-81.
[http://dx.doi.org/10.2217/nnm.16.14] [PMID: 26980454]
[15]
Su WP, Cheng FY, Shieh DB, Yeh CS, Su WC. PLGA nanoparticles codeliver paclitaxel and STAT3 siRNA to overcome cellular resistance in lung cancer cells. Int J Nanomedicine 2012; 7: 4269-83.
[http://dx.doi.org/10.2147/IJN.S33666] [PMID: 22904633]
[16]
Sharifiaghdam M, Shaabani E, Sharifiaghdam Z, et al. Enhanced siRNA delivery and selective apoptosis induction in h1299 cancer cells by layer-by-layer-assembled se nanocomplexes: Toward more efficient cancer therapy. Front Mol Biosci 2021; 8: 639184.
[http://dx.doi.org/10.3389/fmolb.2021.639184] [PMID: 33959633]
[17]
Ma S, Li X, Ran M, et al. Fabricating nanoparticles co-loaded with survivin siRNA and Pt(IV) prodrug for the treatment of platinum-resistant lung cancer. Int J Pharm 2021; 601: 120577.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120577] [PMID: 33839227]
[18]
Frede A, Neuhaus B, Knuschke T, et al. Local delivery of siRNA-loaded calcium phosphate nanoparticles abates pulmonary inflammation. Nanomedicine 2017; 13(8): 2395-403.
[http://dx.doi.org/10.1016/j.nano.2017.08.001] [PMID: 28800875]
[19]
Youngren SR, Tekade RK, Gustilo B, Hoffmann PR, Chougule MB. STAT6 siRNA matrix-loaded gelatin nanocarriers: Formulation, characterization, and ex vivo proof of concept using adenocarcinoma cells. BioMed Res Int 2013; 2013: 858946.
[http://dx.doi.org/10.1155/2013/858946] [PMID: 24191252]
[20]
Yuan X, Li L, Rathinavelu A, et al. SiRNA drug delivery by biodegradable polymeric nanoparticles. J Nanosci Nanotechnol 2006; 6(9-10): 2821-8.
[http://dx.doi.org/10.1166/jnn.2006.436] [PMID: 17048488]
[21]
Devulapally R, Sekar NM, Sekar TV, et al. Polymer nanoparticles mediated codelivery of antimiR-10b and antimiR-21 for achieving triple negative breast cancer therapy. ACS Nano 2015; 9(3): 2290-302.
[http://dx.doi.org/10.1021/nn507465d] [PMID: 25652012]
[22]
Connerty P, Moles E, de Bock CE, et al. Development of siRNA-loaded lipid nanoparticles targeting long non-coding RNA linc01257 as a novel and safe therapeutic approach for t(8;21) pediatric acute myeloid leukemia. Pharmaceutics 2021; 13(10): 1681.
[http://dx.doi.org/10.3390/pharmaceutics13101681] [PMID: 34683974]
[23]
Dim N, Perepelyuk M, Gomes O, et al. Novel targeted siRNA-loaded hybrid nanoparticles: Preparation, characterization and in vitro evaluation. J Nanobiotechnology 2015; 13: 61.
[http://dx.doi.org/10.1186/s12951-015-0124-2] [PMID: 26410728]
[24]
Heidari R, Khosravian P, Mirzaei SA, Elahian F. siRNA delivery using intelligent chitosan-capped mesoporous silica nanoparticles for overcoming multidrug resistance in malignant carcinoma cells. Sci Rep 2021; 11(1): 20531.
[http://dx.doi.org/10.1038/s41598-021-00085-0] [PMID: 34654836]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy