Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Magnetic Nanoparticles Molecularly Imprinted Polymers: A Review

Author(s): Nursyahera Azreen Ramin*, Muggundha Raoov Ramachandran, Noorashikin Md Saleh, Zalilah Murni Mat Ali and Saliza Asman*

Volume 19, Issue 3, 2023

Published on: 09 September, 2022

Page: [372 - 400] Pages: 29

DOI: 10.2174/1573413718666220727111319

Price: $65

Abstract

The molecularly imprinted polymers (MIPs) technology, which has been around since the 1970s, has grown in popularity in recent decades. MIPs have shown to be a useful approach for determining target molecules in complicated matrices containing other structurally similar and related chemicals. Despite MIPs having intrinsic polymer features such as stability, robustness, and low-cost production, traditional MIPs have a number of drawbacks. Surface molecular imprinting appears to be an alternative approach that can address some of the drawbacks of traditional MIP by anchoring shells to the surface of matrix carriers such as nanoparticles. The incorporation of nanoparticles into the polymeric structure of MIPs can improve their properties or provide novel capabilities. Magnetic nanoparticles have been widely explored for their separation and extraction capability. Magnetic components in MIP can help develop a regulated rebinding process, allowing magnetic separation to substitute centrifugation and filtration stages in a simple, costeffective strategy. Polymers are created directly on the surface of a magnetic substrate to create a unique material termed magnetic molecularly imprinted polymer (MMIP). These materials have been widely used to extract molecules from complex matrices in a variety of applications, especially in environmental, food, and biological studies. This paper seeks to summarize and discuss the nanoparticle synthesis and magnetic nanoparticle combination in the MIP preparation. The novel applications of MMIP in environmental, food and biological analyses are also discussed in this paper.

Keywords: Magnetic nanoparticles, surface imprinted polymer, molecularly imprinted polymers, environmental analysis, food analysis

Graphical Abstract

[1]
Fang, L.; Miao, Y.; Wei, D.; Zhang, Y.; Zhou, Y. Efficient removal of norfloxacin in water using magnetic molecularly imprinted polymer. Chemosphere, 2021, 262, 128032.
[http://dx.doi.org/10.1016/j.chemosphere.2020.128032] [PMID: 33182153]
[2]
Cheng, L.; Huang, K.; Cui, H.; Wang, X.; Zhang, H.; Zeng, L.; Zhang, X.; Wang, B.; Zhou, Y.; Jing, T. Coiled molecularly imprinted polymer layer open-tubular capillary tube for detection of parabens in personal care and cosmetic products. Sci. Total Environ., 2020, 706, 135961.
[http://dx.doi.org/10.1016/j.scitotenv.2019.135961] [PMID: 31841851]
[3]
Cui, B.; Liu, P.; Liu, X.; Liu, S.; Zhang, Z. Molecularly imprinted polymers for electrochemical detection and analysis: Progress and perspectives. J. Mater. Res. Technol., 2020, 9(6), 12568-12584.
[http://dx.doi.org/10.1016/j.jmrt.2020.08.052]
[4]
Su, Y.; Xia, S.; Wang, R.; Xiao, L. Phytohormonal quantification based on biological principles. Hormone Metabol. Signal. Plants, 2017, 13, 431-470.
[http://dx.doi.org/10.1016/B978-0-12-811562-6.00013-X]
[5]
Pal, G.; Rai, P.; Pandey, A. Green synthesis of nanoparticles: A greener approach for a cleaner future. In: Green synthesis, characterization and applications of nanoparticles; Elsevier, 2019, pp. 1-26.
[http://dx.doi.org/10.1016/B978-0-08-102579-6.00001-0]
[6]
Kamanina, N. Nanotechnology in optics. CBU Int. Conf. Proc, 2018, 6, 1114-1120.
[http://dx.doi.org/10.12955/cbup.v6.1302]
[7]
Nobile, S.; Nobile, L. Nanotechnology for biomedical applications: Recent advances in neurosciences and bone tissue engineering. Polym. Eng. Sci., 2017, 57(7), 644-650.
[http://dx.doi.org/10.1002/pen.24595]
[8]
Bera, P.; Aruna, S.T. Solution combustion synthesis, characterization, and catalytic properties of oxide materials Nanotechnology in Catalysis: Applications in the Chemical Industry. Energy Develop. Environ. Protect., 2017, pp. 91-118.
[9]
Singh, T.; Shukla, S.; Kumar, P.; Wahla, V.; Bajpai, V.K.; Rather, I.A. Application of nanotechnology in food science: Perception and overview. Front. Microbiol., 2017, 8, 1501.
[http://dx.doi.org/10.3389/fmicb.2017.01501] [PMID: 28824605]
[10]
Taran, M.; Safaei, M.; Karimi, N.; Almasi, A. Benefits and application of nanotechnology in environmental science: An overview. Biointerface Res. Appl. Chem., 2021, 11(1), 7860-7870.
[11]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[12]
Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine. Molecules, 2019, 25(1), 112.
[http://dx.doi.org/10.3390/molecules25010112] [PMID: 31892180]
[13]
Nadaroglu, H. GÜNGÖR, A.A.; Selvi, İ.N. Synthesis of nanoparticles by green synthesis method. Int. J. Innovat. Res. Rev., 2017, 1(1), 6-9.
[14]
Gour, A.; Jain, N.K. Advances in green synthesis of nanoparticles. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 844-851.
[http://dx.doi.org/10.1080/21691401.2019.1577878] [PMID: 30879351]
[15]
Chatterjee, A.; Kwatra, N.; Abraham, J. Nanoparticles fabrication by plant extracts. Phytonanotechnology; Elsevier: Amsterdam, The Netherlands, 2020, pp. 143-157.
[16]
Lateef, A.; Ojo, S.A.; Elegbede, J.A. The emerging roles of arthropods and their metabolites in the green synthesis of metallic nanoparticles. Nanotechnol. Rev., 2016, 5(6), 601-622.
[http://dx.doi.org/10.1515/ntrev-2016-0049]
[17]
Pantidos, N.; Horsfall, L.E. Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J. Nanomed. Nanotechnol., 2014, 5(5), 1.
[http://dx.doi.org/10.4172/2157-7439.1000233]
[18]
Ekmen, E.; Bilici, M.; Turan, E.; Tamer, U.; Zengin, A. Surface molecularly-imprinted magnetic nanoparticles coupled with SERS sensing platform for selective detection of malachite green. Sens. Actuators B Chem., 2020, 325, 128787.
[http://dx.doi.org/10.1016/j.snb.2020.128787]
[19]
Dinali, L.A.F.; de Oliveira, H.L.; Teixeira, L.S.; de Souza Borges, W.; Borges, K.B. Mesoporous molecularly imprinted polymer core@shell hybrid silica nanoparticles as adsorbent in microextraction by packed sorbent for multiresidue determination of pesticides in apple juice. Food Chem., 2021, 345, 128745.
[http://dx.doi.org/10.1016/j.foodchem.2020.128745] [PMID: 33302105]
[20]
Amatatongchai, M.; Sroysee, W.; Sodkrathok, P.; Kesangam, N.; Chairam, S.; Jarujamrus, P. Novel three-Dimensional molecularly imprinted polymer-coated carbon nanotubes (3D-CNTs@MIP) for selective detection of profenofos in food. Anal. Chim. Acta, 2019, 1076, 64-72.
[http://dx.doi.org/10.1016/j.aca.2019.04.075] [PMID: 31203965]
[21]
Harsini, N.N.; Ansari, M.; Kazemipour, M. Synthesis of molecularly imprinted polymer on magnetic core-shell silica nanoparticles for recognition of congo red. Eur.-. Asian J. Anal. Chem., 2018, 13(3), 1-3.
[http://dx.doi.org/10.29333/ejac/85023]
[22]
Díaz-Álvarez, M.; Martín-Esteban, A. Molecularly imprinted polymer-quantum dot materials in optical sensors: An overview of their synthesis and applications. Biosensors (Basel), 2021, 11(3), 79.
[http://dx.doi.org/10.3390/bios11030079] [PMID: 33805669]
[23]
Cao, Y.; Hu, X.; Zhao, T.; Mao, Y.; Fang, G.; Wang, S. A core-shell molecularly imprinted optical sensor based on the upconversion nanoparticles decorated with Zinc-based metal-organic framework for selective and rapid detection of octopamine. Sens. Actuat. B Chem., 2021, 326, 128838.
[http://dx.doi.org/10.1016/j.snb.2020.128838]
[24]
Niu, M.; Pham-Huy, C.; He, H. Core-shell nanoparticles coated with molecularly imprinted polymers: A review. Mikrochim. Acta, 2016, 183(10), 2677-2695.
[http://dx.doi.org/10.1007/s00604-016-1930-4]
[25]
Gao, M.; Gao, Y.; Chen, G.; Huang, X.; Xu, X.; Lv, J.; Wang, J.; Xu, D.; Liu, G. Recent advances and future trends in the detection of contaminants by molecularly imprinted polymers in food samples. Front Chem., 2020, 8, 616326.
[http://dx.doi.org/10.3389/fchem.2020.616326] [PMID: 33335893]
[26]
Jia, C.; Zhang, M.; Zhang, Y.; Ma, Z.B.; Xiao, N.N.; He, X.W.; Li, W.Y.; Zhang, Y.K. Preparation of dual-template epitope imprinted polymers for targeted fluorescence imaging and targeted drug delivery to pancreatic cancer BxPC-3 cells. ACS Appl. Mater. Interfaces, 2019, 11(35), 32431-32440.
[http://dx.doi.org/10.1021/acsami.9b11533] [PMID: 31393695]
[27]
Roychoudhury, A. Yeast-mediated green synthesis of nanoparticles for biological applications. Indian J. Pharmaceut. Biol. Res., 2020, 8(03), 26-31.
[28]
Küünal, S.; Rauwel, P.; Rauwel, E. Plant extract mediated synthesis of nanoparticles.In: Emerging applications of nanoparticles and architecture nanostructures; Elsevier, 2018, pp. 411-446.
[http://dx.doi.org/10.1016/B978-0-323-51254-1.00014-2]
[29]
Naghdi, M.; Taheran, M.; Brar, S.K.; Verma, M.; Surampalli, R.Y.; Valéro, J.R. Green and energy-efficient methods for the production of metallic nanoparticles. Beilstein J. Nanotechnol., 2015, 6(1), 2354-2376.
[http://dx.doi.org/10.3762/bjnano.6.243] [PMID: 26734527]
[30]
Arumugam, A.; Karthikeyan, C.; Haja Hameed, A.S.; Gopinath, K.; Gowri, S.; Karthika, V. Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Mater. Sci. Eng. C, 2015, 49, 408-415.
[http://dx.doi.org/10.1016/j.msec.2015.01.042] [PMID: 25686966]
[31]
Jadoun, S.; Arif, R.; Jangid, N.K.; Meena, R.K. Green synthesis of nanoparticles using plant extracts: A review. Environ. Chem. Lett., 2021, 19(1), 355-374.
[http://dx.doi.org/10.1007/s10311-020-01074-x]
[32]
Ovais, M.; Khalil, A.T.; Ayaz, M.; Ahmad, I.; Nethi, S.K.; Mukherjee, S. Biosynthesis of metal nanoparticles via microbial enzymes: A mechanistic approach. Int. J. Mol. Sci., 2018, 19(12), 4100.
[http://dx.doi.org/10.3390/ijms19124100] [PMID: 30567324]
[33]
Dorcheh, S.K.; Vahabi, K. Biosynthesis of nanoparticles by fungi: large-scale production. Fungal metabolites, 2016, 5, pp.1-20.
[http://dx.doi.org/10.1007/978-3-319-19456-1_8-1]
[34]
Tang, L.; Shi, J.; Wu, H.; Zhang, S.; Liu, H.; Zou, H.; Wu, Y.; Zhao, J.; Jiang, Z. In situ biosynthesis of ultrafine metal nanoparticles within a metal-organic framework for efficient heterogeneous catalysis. Nanotechnology, 2017, 28(36), 365604.
[http://dx.doi.org/10.1088/1361-6528/aa79e1] [PMID: 28617249]
[35]
Baker, S.; Rakshith, D.; Kavitha, K.S.; Santosh, P.; Kavitha, H.U.; Rao, Y.; Satish, S. Plants: Emerging as nanofactories towards facile route in synthesis of nanoparticles. Bioimpacts, 2013, 3(3), 111.
[PMID: 24163802]
[36]
Iravani, S. Bacteria in nanoparticle synthesis: Current status and future prospects. Int. Scholar. Res. Notices, 2014, 2014, 359316.
[http://dx.doi.org/10.1155/2014/359316]
[37]
Fang, X.; Wang, Y.; Wang, Z.; Jiang, Z.; Dong, M. Microorganism assisted synthesized nanoparticles for catalytic applications. Energies, 2019, 12(1), 190.
[http://dx.doi.org/10.3390/en12010190]
[38]
Tsekhmistrenko, S.I.; Bityutskyy, V.S.; Tsekhmistrenko, O.S.; Horalskyi, L.P.; Tymoshok, N.O.; Spivak, M.Y. Bacterial synthesis of nanoparticles: A green approach. Biosyst. Divers., 2020, 28(1), 9-17.
[http://dx.doi.org/10.15421/012002]
[39]
Shankar, P.D.; Shobana, S.; Karuppusamy, I.; Pugazhendhi, A.; Ramkumar, V.S.; Arvindnarayan, S.; Kumar, G. A review on the biosynthesis of metallic nanoparticles (gold and silver) using biocomponents of microalgae: Formation mechanism and applications. Enzyme Microb. Technol., 2016, 95, 28-44.
[http://dx.doi.org/10.1016/j.enzmictec.2016.10.015] [PMID: 27866624]
[40]
Singh, V.K.; Singh, A.K. Role of microbially synthesized nanoparticles in sustainable agriculture and environmental management. In: Role of Plant Growth Promoting Microorganisms in Sustainable Agriculture and Nanotechnology; Woodhead Publishing, 2019, pp. 55-73.
[http://dx.doi.org/10.1016/B978-0-12-817004-5.00004-X]
[41]
Karthik, L.; Kumar, G.; Kirthi, A.V.; Rahuman, A.A.; Bhaskara Rao, K.V. Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess Biosyst. Eng., 2014, 37(2), 261-267.
[http://dx.doi.org/10.1007/s00449-013-0994-3] [PMID: 23771163]
[42]
Divya, M.; Kiran, G.S.; Hassan, S.; Selvin, J. Biogenic synthesis and effect of silver nanoparticles (AgNPs) to combat catheterrelated urinary tract infections. Biocatal. Agric. Biotechnol., 2019, 18, 101037.
[http://dx.doi.org/10.1016/j.bcab.2019.101037]
[43]
Patra, C.R.; Mukherjee, S.; Kotcherlakota, R. Biosynthesized silver nanoparticles: A step forward for cancer theranostics? Nanomedicine (Lond.), 2014, 9(10), 1445-1448.
[http://dx.doi.org/10.2217/nnm.14.89] [PMID: 25253493]
[44]
Rautela, A.; Rani, J.; Das, M.D. Green synthesis of silver nanoparticles from Tectona grandis seeds extract: Characterization and mechanism of antimicrobial action on different microorganisms. J. Anal. Sci. Technol., 2019, 10(1), 1-0.
[http://dx.doi.org/10.1186/s40543-018-0163-z]
[45]
Mughal, B.; Zaidi, S.Z.; Zhang, X.; Hassan, S.U. Biogenic Nanoparticles: Synthesis, Characterisation and Applications. Appl. Sci. (Basel), 2021, 11(6), 2598.
[http://dx.doi.org/10.3390/app11062598]
[46]
Velusamy, P.; Kumar, G.V.; Jeyanthi, V.; Das, J.; Pachaiappan, R. Bio-inspired green nanoparticles: Synthesis, mechanism, and antibacterial application. Toxicol. Res., 2016, 32(2), 95-102.
[http://dx.doi.org/10.5487/TR.2016.32.2.095] [PMID: 27123159]
[47]
Guilger-Casagrande, M.; de Lima, R. Synthesis of silver nanoparticles mediated by fungi: A review. Front. Bioeng. Biotechnol., 2019, 7, 287.
[http://dx.doi.org/10.3389/fbioe.2019.00287] [PMID: 31696113]
[48]
Rajput, S.; Werezuk, R.; Lange, R.M.; McDermott, M.T. Fungal isolate optimized for biogenesis of silver nanoparticles with enhanced colloidal stability. Langmuir, 2016, 32(34), 8688-8697.
[http://dx.doi.org/10.1021/acs.langmuir.6b01813] [PMID: 27466012]
[49]
Molnár, Z.; Bódai, V.; Szakacs, G.; Erdélyi, B.; Fogarassy, Z.; Sáfrán, G.; Varga, T.; Kónya, Z.; Tóth-Szeles, E.; Szűcs, R.; Lagzi, I. Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci. Rep., 2018, 8(1), 3943.
[http://dx.doi.org/10.1038/s41598-018-22112-3] [PMID: 29500365]
[50]
Costa Silva, L.P.; Oliveira, J.P.; Keijok, W.J.; da Silva, A.R.; Aguiar, A.R.; Guimarães, M.C.C.; Ferraz, C.M.; Araújo, J.V.; Tobias, F.L.; Braga, F.R. Extracellular biosynthesis of silver nanoparticles using the cell-free filtrate of nematophagous fungus Duddingtonia flagrans. Int. J. Nanomedicine, 2017, 12, 6373-6381.
[http://dx.doi.org/10.2147/IJN.S137703] [PMID: 28919741]
[51]
Yahyaei, B.; Pourali, P. One step conjugation of some chemotherapeutic drugs to the biologically produced gold nanoparticles and assessment of their anticancer effects. Sci. Rep., 2019, 9(1), 10242.
[http://dx.doi.org/10.1038/s41598-019-46602-0] [PMID: 31308430]
[52]
Silva, L.P.; Bonatto, C.C.; Polez, V.L. Green synthesis of metal nanoparticles by fungi: Current trends and challenges. In: Advances and applications through fungal nanobiotechnology; Springer: Cham, 2016, pp. 71-89.
[53]
Keat, C.L.; Aziz, A.; Eid, A.M.; Elmarzugi, N.A. Biosynthesis of nanoparticles and silver nanoparticles. Bioresour. Bioprocess., 2015, 2(1), 1-1.
[http://dx.doi.org/10.1186/s40643-015-0076-2] [PMID: 25771428]
[54]
Boroumand Moghaddam, A.; Namvar, F.; Moniri, M.; Md Tahir, P.; Azizi, S.; Mohamad, R. Nanoparticles biosynthesized by fungi and yeast: A review of their preparation, properties, and medical applications. Molecules, 2015, 20(9), 16540-16565.
[http://dx.doi.org/10.3390/molecules200916540] [PMID: 26378513]
[55]
Lachance, M.A. Paraphyly and (yeast) classification. Int. J. Syst. Evol. Microbiol., 2016, 66(12), 4924-4929.
[http://dx.doi.org/10.1099/ijsem.0.001474] [PMID: 27604464]
[56]
Ali, M.A.; Ahmed, T.; Wu, W.; Hossain, A.; Hafeez, R.; Islam Masum, M.M.; Wang, Y.; An, Q.; Sun, G.; Li, B. Advancements in plant and microbe-based synthesis of metallic nanoparticles and their antimicrobial activity against plant pathogens. Nanomaterials (Basel), 2020, 10(6), 1146.
[http://dx.doi.org/10.3390/nano10061146] [PMID: 32545239]
[57]
Hulkoti, N.I.; Taranath, T.C. Biosynthesis of nanoparticles using microbes- a review. Colloids Surf. B Biointerfaces, 2014, 121, 474-483.
[http://dx.doi.org/10.1016/j.colsurfb.2014.05.027] [PMID: 25001188]
[58]
Salunke, B.K.; Sawant, S.S.; Lee, S.I.; Kim, B.S. Comparative study of MnO2 nanoparticle synthesis by marine bacterium Saccharophagus degradans and yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 2015, 99(13), 5419-5427.
[http://dx.doi.org/10.1007/s00253-015-6559-4] [PMID: 25846336]
[59]
Rana, A.; Yadav, K.; Jagadevan, S. A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. J. Clean. Prod., 2020, 2020, 122880.
[http://dx.doi.org/10.1016/j.jclepro.2020.122880]
[60]
Faramarzi, S.; Anzabi, Y.; Jafarizadeh-Malmiri, H. Nanobiotechnology approach in intracellular selenium nanoparticle synthesis using Saccharomyces cerevisiae-fabrication and characterization. Arch. Microbiol., 2020, 202(5), 1203-1209.
[http://dx.doi.org/10.1007/s00203-020-01831-0] [PMID: 32077990]
[61]
Hussain, I.; Singh, N.B.; Singh, A.; Singh, H.; Singh, S.C. Green synthesis of nanoparticles and its potential application. Biotechnol. Lett., 2016, 38(4), 545-560.
[http://dx.doi.org/10.1007/s10529-015-2026-7] [PMID: 26721237]
[62]
Devatha, C.P.; Thalla, A.K. Green synthesis of nanomaterials. In: Synthesis of inorganic nanomaterials; Woodhead Publishing, 2018, pp. 169-184.
[http://dx.doi.org/10.1016/B978-0-08-101975-7.00007-5]
[63]
Hashemi, S.F.; Tasharrofi, N.; Saber, M.M. Green synthesis of silver nanoparticles using Teucrium polium leaf extract and assessment of their antitumor effects against MNK45 human gastric cancer cell line. J. Mol. Struct., 2020, 1208, 127889.
[http://dx.doi.org/10.1016/j.molstruc.2020.127889]
[64]
Karthiga, P. Preparation of silver nanoparticles by Garcinia mangostana stem extract and investigation of the antimicrobial properties. Biotechnology Research and Innovation., 2018, 2(1), 30-36.
[http://dx.doi.org/10.1016/j.biori.2017.11.001]
[65]
Benelli, G. Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: A review. Parasitol. Res., 2016, 115(1), 23-34.
[http://dx.doi.org/10.1007/s00436-015-4800-9] [PMID: 26541154]
[66]
Shah, M.; Fawcett, D.; Sharma, S.; Tripathy, S.K.; Poinern, G.E.J. Green synthesis of metallic nanoparticles via biological entities. Materials (Basel), 2015, 8(11), 7278-7308.
[http://dx.doi.org/10.3390/ma8115377] [PMID: 28793638]
[67]
Huq, M.A. Green synthesis of silver nanoparticles using Pseudoduganella eburnea MAHUQ-39 and their antimicrobial mechanisms investigation against drug resistant human pathogens. Int. J. Mol. Sci., 2020, 21(4), 1510.
[http://dx.doi.org/10.3390/ijms21041510] [PMID: 32098417]
[68]
Ameen, F.; AlYahya, S. Govarthanan, M Soil bacteria Cupriavidus sp. mediates the extracellular synthesis of antibacterial silver nanoparticles. J. Mol. Struct., 2020, 1202, 127233.
[http://dx.doi.org/10.1016/j.molstruc.2019.127233]
[69]
Hossain, A.; Hong, X.; Ibrahim, E.; Li, B.; Sun, G.; Meng, Y.; Wang, Y.; An, Q. Green synthesis of silver nanoparticles with culture supernatant of a bacterium Pseudomonas rhodesiae and their antibacterial activity against soft rot pathogen Dickeya dadantii. Molecules, 2019, 24(12), 2303.
[http://dx.doi.org/10.3390/molecules24122303] [PMID: 31234369]
[70]
Ibrahim, E.; Zhang, M.; Zhang, Y.; Hossain, A.; Qiu, W.; Chen, Y.; Wang, Y.; Wu, W.; Sun, G.; Li, B. Green-synthesization of silver nanoparticles using endophytic bacteria isolated from garlic and its antifungal activity against wheat Fusarium head blight pathogen Fusarium graminearum. Nanomaterials (Basel), 2020, 10(2), 219.
[http://dx.doi.org/10.3390/nano10020219] [PMID: 32012732]
[71]
Ahmed, T.; Shahid, M.; Noman, M.; Niazi, M.B.K.; Mahmood, F.; Manzoor, I.; Zhang, Y.; Li, B.; Yang, Y.; Yan, C.; Chen, J. Silver nanoparticles synthesized by using Bacillus cereus SZT1 ameliorated the damage of bacterial leaf blight pathogen in rice. Pathogens, 2020, 9(3), 160.
[http://dx.doi.org/10.3390/pathogens9030160] [PMID: 32110981]
[72]
Rahdar, A.; Beyzaei, H.; Askari, F.; Kyzas, G.Z. Gum-based cerium oxide nanoparticles for antimicrobial assay. Appl. Phys., A Mater. Sci. Process., 2020, 126(5), 1-9.
[http://dx.doi.org/10.1007/s00339-020-03507-4]
[73]
Patil, M.P.; Kang, M.J.; Niyonizigiye, I.; Singh, A.; Kim, J.O.; Seo, Y.B.; Kim, G.D. Extracellular synthesis of gold nanoparticles using the marine bacterium Paracoccus haeundaensis BC74171T and evaluation of their antioxidant activity and antiproliferative effect on normal and cancer cell lines. Colloids Surf. B Biointerfaces, 2019, 183, 110455.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110455] [PMID: 31493630]
[74]
Mahdi, Z.S.; Talebnia Roshan, F.; Nikzad, M.; Ezoji, H. Biosynthesis of zinc oxide nanoparticles using bacteria: A study on the characterization and application for electrochemical determination of bisphenol A. Inorg. Nano-Metal Chem., 2021, 51(9), 1249-1257.
[75]
Dhandapani, P.; Prakash, A.A.; AlSalhi, M.S.; Maruthamuthu, S.; Devanesan, S.; Rajasekar, A. Ureolytic bacteria mediated synthesis of hairy ZnO nanostructure as photocatalyst for decolorization of dyes. Mater. Chem. Phys., 2020, 243, 122619.
[http://dx.doi.org/10.1016/j.matchemphys.2020.122619]
[76]
Rauf, M.A.; Owais, M.; Rajpoot, R.; Ahmad, F.; Khan, N.; Zubair, S. Biomimetically synthesized ZnO nanoparticles attain potent antibacterial activity against less susceptible S. aureus skin infection in experimental animals. RSC Advances, 2017, 7(58), 36361-36373.
[http://dx.doi.org/10.1039/C7RA05040B]
[77]
Rad, M.; Taran, M.; Alavi, M. Effect of incubation time, CuSO4 and glucose concentrations on biosynthesis of copper oxide (CuO) nanoparticles with rectangular shape and antibacterial activity: Taguchi method approach. Nano Biomed. Eng., 2018, 10(1), 25-33.
[http://dx.doi.org/10.5101/nbe.v10i1.p25-33]
[78]
Hassan, S.E.; Fouda, A.; Radwan, A.A.; Salem, S.S.; Barghoth, M.G.; Awad, M.A.; Abdo, A.M.; El-Gamal, M.S. Endophytic actinomycetes Streptomyces spp. mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. Eur. J. Biochem., 2019, 24(3), 377-393.
[http://dx.doi.org/10.1007/s00775-019-01654-5] [PMID: 30915551]
[79]
Hassan, S.E.; Salem, S.S.; Fouda, A.; Awad, M.A.; El-Gamal, M.S.; Abdo, A.M. New approach for antimicrobial activity and bio-control of various pathogens by biosynthesized copper nanoparticles using endophytic actinomycetes. J. Radiat. Res. Appl. Sci., 2018, 11(3), 262-270.
[http://dx.doi.org/10.1016/j.jrras.2018.05.003]
[80]
Jubran, A.S.; Al-Zamely, O.M.; Al-Ammar, M.H. A study of iron oxide nanoparticles synthesis by using bacteria. Int. J. Pharm. Quality Assur., 2020, 11(01), 88-92.
[http://dx.doi.org/10.25258/ijpqa.11.1.13]
[81]
El-Moslamy, S.H. Bioprocessing strategies for cost-effective large-scale biogenic synthesis of nano-MgO from endophytic Streptomyces coelicolor strain E72 as an anti-multidrug-resistant pathogens agent. Sci. Rep., 2018, 8(1), 3820.
[http://dx.doi.org/10.1038/s41598-018-22134-x] [PMID: 29491452]
[82]
Saravanan, M.; Arokiyaraj, S.; Lakshmi, T.; Pugazhendhi, A. Synthesis of silver nanoparticles from Phenerochaete chrysosporium (MTCC-787) and their antibacterial activity against human pathogenic bacteria. Microb. Pathog., 2018, 117, 68-72.
[http://dx.doi.org/10.1016/j.micpath.2018.02.008] [PMID: 29427709]
[83]
Seetharaman, P.K.; Chandrasekaran, R.; Gnanasekar, S.; Chandrakasan, G.; Gupta, M.; Manikandan, D.B. Antimicrobial and larvicidal activity of eco-friendly silver nanoparticles synthesized from endophytic fungi Phomopsis liquidambaris. Biocatal. Agric. Biotechnol., 2018, 16, 22-30.
[http://dx.doi.org/10.1016/j.bcab.2018.07.006]
[84]
Al-Zubaidi, S.; Al-Ayafi, A.; Abdelkader, H. Biosynthesis, characterization and antifungal activity of silver nanoparticles by Aspergillus niger isolate. J. Nanotechnol. Res., 2019, 1(1), 23-36.
[http://dx.doi.org/10.26502/jnr.2688-8521002]
[85]
Almaary, K.S.; Sayed, S.R.M.; Abd-Elkader, O.H.; Dawoud, T.M.; El Orabi, N.F.; Elgorban, A.M. Complete green synthesis of silver-nanoparticles applying seed-borne Penicillium duclauxii. Saudi J. Biol. Sci., 2020, 27(5), 1333-1339.
[http://dx.doi.org/10.1016/j.sjbs.2019.12.022] [PMID: 32346343]
[86]
Elamawi, R.M.; Al-Harbi, R.E.; Hendi, A.A. Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt. J. Biol. Pest Control, 2018, 28(1), 1-11.
[http://dx.doi.org/10.1186/s41938-018-0028-1]
[87]
Bagur, H.; Poojari, C.C.; Melappa, G.; Rangappa, R.; Chandrasekhar, N.; Somu, P. Biogenically synthesized silver nanoparticles using endophyte fungal extract of Ocimum tenuiflorum and evaluation of biomedical properties. J. Cluster Sci., 2020, 31(6), 1241-1255.
[http://dx.doi.org/10.1007/s10876-019-01731-4]
[88]
Clarance, P.; Luvankar, B.; Sales, J.; Khusro, A.; Agastian, P.; Tack, J.C.; Al Khulaifi, M.M.; Al-Shwaiman, H.A.; Elgorban, A.M.; Syed, A.; Kim, H.J. Green synthesis and characterization of gold nanoparticles using endophytic fungi Fusarium solani and its in vitro anticancer and biomedical applications. Saudi J. Biol. Sci., 2020, 27(2), 706-712.
[http://dx.doi.org/10.1016/j.sjbs.2019.12.026] [PMID: 32210692]
[89]
Munawer, U.; Raghavendra, V.B.; Ningaraju, S.; Krishna, K.L.; Ghosh, A.R.; Melappa, G.; Pugazhendhi, A. Biofabrication of gold nanoparticles mediated by the endophytic Cladosporium species: Photodegradation, in vitro anticancer activity and in vivo antitumor studies. Int. J. Pharm., 2020, 588, 119729.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119729] [PMID: 32768527]
[90]
Ganesan, V.; Hariram, M.; Vivekanandhan, S.; Muthuramkumar, S. Periconium sp. (endophytic fungi) extract mediated sol-gel synthesis of ZnO nanoparticles for antimicrobial and antioxidant applications. Mater. Sci. Semicond. Process., 2020, 105, 104739.
[http://dx.doi.org/10.1016/j.mssp.2019.104739]
[91]
Mathur, P.; Saini, S.; Paul, E.; Sharma, C.; Mehtani, P. Endophytic fungi mediated synthesis of iron nanoparticles: Characterization and application in methylene blue decolorization. Curr. Res. Green Sustain. Chem., 2021, 4, 100053.
[http://dx.doi.org/10.1016/j.crgsc.2020.100053]
[92]
Schuster, S.; Su Yien Ting, A. Decolourisation of triphenylmethane dyes by biogenically synthesised iron nanoparticles from fungal extract. Mycology, 2021, 13(1), 56-67.
[http://dx.doi.org/10.1080/21501203.2021.1948928] [PMID: 35186413]
[93]
Abbas, H.; Abou Baker, D. Biological evaluation of selenium nanoparticles biosynthesized by Fusarium semitectum as antimicrobial and anticancer agents. Egypt. J. Chem., 2020, 63(4), 1119-1133.
[94]
Lian, S; Diko, CS; Yan, Y; Li, Z; Zhang, H; Ma, Q Characterization of biogenic selenium nanoparticles derived from cell-free extracts of a novel yeast Magnusiomyces ingens. 3 Biotech, 2019, 9(6), 1-8.
[95]
Sandoval Cárdenas, D.I.; Gomez-Ramirez, M.; Rojas-Avelizapa, N.G.; Vidales-Hurtado, M.A. Synthesis of cadmium sulfide nanoparticles by biomass of Fusarium oxysporum f. sp. lycopersici. J. Nano Res., 2017, 46, 179-191.
[96]
Tarver, S.; Gray, D.; Loponov, K.; Das, D.B.; Sun, T.; Sotenko, M. Biomineralization of Pd nanoparticles using Phanerochaete chrysosporium as a sustainable approach to turn platinum group metals (PGMs) wastes into catalysts. Int. Biodeterior. Biodegradation, 2019, 143, 104724.
[http://dx.doi.org/10.1016/j.ibiod.2019.104724]
[97]
Sandhya, J.; Kalaiselvam, S. Biogenic synthesis of magnetic iron oxide nanoparticles using inedible Borassus flabellifer seed coat: Characterization, antimicrobial, antioxidant activity and in vitro cytotoxicity analysis. Mater. Res. Express, 2020, 7(1), 015045.
[http://dx.doi.org/10.1088/2053-1591/ab6642]
[98]
Nnadozie, E.C.; Ajibade, P.A. Green synthesis and characterization of magnetite (Fe3O4) nanoparticles using Chromolaena odorata root extract for smart nanocomposite. Mater. Lett., 2020, 263, 127145.
[http://dx.doi.org/10.1016/j.matlet.2019.127145]
[99]
Dash, A.; Ahmed, M.T.; Selvaraj, R. Mesoporous magnetite nanoparticles synthesis using the Peltophorum pterocarpum pod extract, their antibacterial efficacy against pathogens and ability to remove a pollutant dye. J. Mol. Struct., 2019, 1178, 268-273.
[http://dx.doi.org/10.1016/j.molstruc.2018.10.042]
[100]
Heydari, M.; Yousefi, A.R.; Nikfarjam, N.; Rahdar, A.; Kyzas, G.Z.; Bilal, M. Plant-based nanoparticles prepared from protein containing tribenuron-methyl: Fabrication, characterization, and application. Chem. Biol. Technol. Agric., 2021, 8(1), 1-1.
[http://dx.doi.org/10.1186/s40538-021-00254-3]
[101]
Zangeneh, M.M.; Zangeneh, A. Novel green synthesis of Hibiscus sabdariffa flower extract conjugated gold nanoparticles with excellent anti‐acute myeloid leukemia effect in comparison to daunorubicin in a leukemic rodent model. Appl. Organomet. Chem., 2020, 34(1), e5271.
[http://dx.doi.org/10.1002/aoc.5271]
[102]
Kharey, P.; Dutta, S.B.; Gorey, A.; Manikandan, M.; Kumari, A.; Vasudevan, S. Pimenta dioica mediated biosynthesis of gold nanoparticles and evaluation of its potential for theranostic applications. ChemistrySelect, 2020, 5(26), 7901-7908.
[http://dx.doi.org/10.1002/slct.202001230]
[103]
Hassanisaadi, M.; Bonjar, G.H.S.; Rahdar, A.; Pandey, S.; Hosseinipour, A.; Abdolshahi, R. Environmentally safe biosynthesis of gold nanoparticles using plant water extracts. Nanomaterials (Basel), 2021, 11(8), 2033.
[http://dx.doi.org/10.3390/nano11082033] [PMID: 34443864]
[104]
Aygün, A.; Özdemir, S.; Gülcan, M.; Cellat, K.; Şen, F. Synthesis and characterization of Reishi mushroom-mediated green synthesis of silver nanoparticles for the biochemical applications. J. Pharm. Biomed. Anal., 2020, 178, 112970.
[http://dx.doi.org/10.1016/j.jpba.2019.112970] [PMID: 31722822]
[105]
Odeniyi, M.A.; Okumah, V.C.; Adebayo-Tayo, B.C.; Odeniyi, O.A. Green synthesis and cream formulations of silver nanoparticles of Nauclea latifolia (African peach) fruit extracts and evaluation of antimicrobial and antioxidant activities. Sustain. Chem. Pharm., 2020, 15, 100197.
[http://dx.doi.org/10.1016/j.scp.2019.100197]
[106]
Selvi, A.M.; Palanisamy, S.; Jeyanthi, S.; Vinosha, M.; Mohandoss, S.; Tabarsa, M. Synthesis of Tragia involucrata mediated platinum nanoparticles for comprehensive therapeutic applications: Antioxidant, antibacterial and mitochondria-associated apoptosis in HeLa cells. Process Biochem., 2020, 98, 21-33.
[http://dx.doi.org/10.1016/j.procbio.2020.07.008]
[107]
Aygun, A.; Gülbagca, F.; Ozer, L.Y.; Ustaoglu, B.; Altunoglu, Y.C.; Baloglu, M.C.; Atalar, M.N.; Alma, M.H.; Sen, F. Biogenic platinum nanoparticles using black cumin seed and their potential usage as antimicrobial and anticancer agent. J. Pharm. Biomed. Anal., 2020, 179, 112961.
[http://dx.doi.org/10.1016/j.jpba.2019.112961] [PMID: 31732404]
[108]
Aswini, R.; Murugesan, S.; Kannan, K. Bio-engineered TiO2 nanoparticles using Ledebouria revoluta extract: Larvicidal, histopathological, antibacterial and anticancer activity. Int. J. Environ. Anal. Chem., 2021, 101(15), 2926-2936.
[http://dx.doi.org/10.1080/03067319.2020.1718668]
[109]
Sethy, N.K.; Arif, Z.; Mishra, P.K.; Kumar, P. Green synthesis of TiO2 nanoparticles from Syzygium cumini extract for photo-catalytic removal of lead (Pb) in explosive industrial wastewater. Green Proces. Synthesis, 2020, 9(1), 171-181.
[http://dx.doi.org/10.1515/gps-2020-0018]
[110]
Bayrami, A.; Haghgooie, S.; Pouran, S.R.; Arvanag, F.M.; Habibi-Yangjeh, A. Synergistic antidiabetic activity of ZnO nanoparticles encompassed by Urtica dioica extract. Adv. Powder Technol., 2020, 31(5), 2110-2118.
[http://dx.doi.org/10.1016/j.apt.2020.03.004]
[111]
Kumar, C.R.; Betageri, V.S.; Nagaraju, G.; Suma, B.P.; Kiran, M.S.; Pujar, G.H. One-pot synthesis of ZnO nanoparticles for nitrite sensing, photocatalytic and antibacterial studies. J. Inorg. Organomet. Polym. Mater., 2020, 30(9), 3476-3486.
[http://dx.doi.org/10.1007/s10904-020-01544-3]
[112]
Dong, C.; Shi, H.; Han, Y.; Yang, Y.; Wang, R.; Men, J. Molecularly imprinted polymers by the surface imprinting technique. Eur. Polym. J., 2021, 145, 110231.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.110231]
[113]
Ashley, J.; Shahbazi, M.A.; Kant, K.; Chidambara, V.A.; Wolff, A.; Bang, D.D.; Sun, Y. Molecularly imprinted polymers for sample preparation and biosensing in food analysis: Progress and perspectives. Biosens. Bioelectron., 2017, 91, 606-615.
[http://dx.doi.org/10.1016/j.bios.2017.01.018] [PMID: 28103516]
[114]
Ansari, S. Combination of molecularly imprinted polymers and carbon nanomaterials as a versatile biosensing tool in sample analysis: Recent applications and challenges. Trends Analyt. Chem., 2017, 93, 134-151.
[http://dx.doi.org/10.1016/j.trac.2017.05.015]
[115]
Bitas, D.; Samanidou, V. Molecularly imprinted polymers as extracting media for the chromatographic determination of antibiotics in milk. Molecules, 2018, 23(2), 316.
[http://dx.doi.org/10.3390/molecules23020316] [PMID: 29393877]
[116]
Sharma, G.; Kandasubramanian, B. Molecularly imprinted polymers for selective recognition and extraction of heavy metal ions and toxic dyes. J. Chem. Eng. Data, 2020, 65(2), 396-418.
[http://dx.doi.org/10.1021/acs.jced.9b00953]
[117]
Zarejousheghani, M.; Rahimi, P.; Borsdorf, H.; Zimmermann, S.; Joseph, Y. Molecularly imprinted polymer-based sensors for priority pollutants. Sensors (Basel), 2021, 21(7), 2406.
[http://dx.doi.org/10.3390/s21072406] [PMID: 33807242]
[118]
Włoch, M.; Datta, J. Synthesis and polymerisation techniques of molecularly imprinted polymers. In: Comprehensive Analytical Chemistry; Elsevier, 2019, Vol. 86, pp. 17-40.
[119]
Figueiredo, L.; Erny, G.L.; Santos, L.; Alves, A. Applications of molecularly imprinted polymers to the analysis and removal of personal care products: A review. Talanta, 2016, 146, 754-765.
[http://dx.doi.org/10.1016/j.talanta.2015.06.027] [PMID: 26695327]
[120]
Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev., 2016, 45(8), 2137-2211.
[http://dx.doi.org/10.1039/C6CS00061D] [PMID: 26936282]
[121]
Turiel, E.; Esteban, A.M. Molecularly imprinted polymers. In: Solid-phase extraction; Elsevier, 2020, pp. 215-233.
[http://dx.doi.org/10.1016/B978-0-12-816906-3.00008-X]
[122]
Bakhtiar, S.; Bhawani, S.A.; Shafqat, S.R. Synthesis and characterization of molecular imprinting polymer for the removal of 2-phenylphenol from spiked blood serum and river water. Chem. Biol. Technol. Agric., 2019, 6(1), 1-10.
[http://dx.doi.org/10.1186/s40538-019-0152-5]
[123]
Gong, G.L.; Jia, L.; Li, H. Synthesis and characterization of Epothilone B molecular imprinted polymers. In: Key Engineering Materials; Trans Tech Publications Ltd., 2012, Vol. 501, pp. 37-41.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.501.37]
[124]
Pratama, K.F.; Manik, M.E.R.; Rahayu, D.; Hasanah, A.N. Effect of the molecularly imprinted polymer component ratio on analytical performance. Chem. Pharm. Bull. (Tokyo), 2020, 68(11), 1013-1024.
[http://dx.doi.org/10.1248/cpb.c20-00551] [PMID: 33132368]
[125]
Roland, R.M.; Bhawani, S.A. Synthesis and characterization of molecular imprinting polymer microspheres of piperine: Extraction of piperine from spiked urine. J. Anal. Methods Chem., 2016, 2016, 5671507.
[http://dx.doi.org/10.1155/2016/5671507]
[126]
Roldão, M.V.; Melo, L.P.; Miranda, L.F.; Resende, M.G.; Queiroz, M.E. Development of molecularly imprinted polymers for solid phase extraction of parabens in plasma samples and analysis by UHPLC-MS/MS. J. Braz. Chem. Soc., 2017, 28, 257-265.
[127]
He, S.; Zhang, L.; Bai, S.; Yang, H.; Cui, Z.; Zhang, X. Advances of molecularly imprinted polymers (MIP) and the application in drug delivery. Eur. Polym. J., 2021, 143, 110179.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.110179]
[128]
Wackerlig, J.; Schirhagl, R. Applications of molecularly imprinted polymer nanoparticles and their advances toward industrial use. A review. Anal. Chem., 2016, 88(1), 250-261.
[http://dx.doi.org/10.1021/acs.analchem.5b03804] [PMID: 26539750]
[129]
Canfarotta, F.; Cecchini, A.; Piletsky, S. Nano-sized molecularly imprinted polymers as artificial antibodies.In: Molecularly Imprinted Polymers for Analytical Chemistry Applications; Royal Society of Chemistry, 2018, pp. 1-27.
[http://dx.doi.org/10.1039/9781788010474-00001]
[130]
Zhao, G.; Liu, J.; Liu, M.; Han, X.; Peng, Y.; Tian, X. Synthesis of molecularly imprinted polymer via emulsion polymerization for application in solanesol separation. Appl. Sci. (Basel), 2020, 10(8), 2868.
[http://dx.doi.org/10.3390/app10082868]
[131]
Rodriguez, K.J.; Pellizzoni, M.M.; Chadwick, R.J.; Guo, C.; Bruns, N. Enzyme-initiated free radical polymerizations of vinyl monomers using horseradish peroxidase. Methods Enzymol., 2019, 627, 249-262.
[http://dx.doi.org/10.1016/bs.mie.2019.08.013] [PMID: 31630743]
[132]
Zhang, F.; Luo, L.; Gong, H.; Chen, C.; Cai, C. A magnetic molecularly imprinted optical chemical sensor for specific recognition of trace quantities of virus. RSC Advances, 2018, 8(56), 32262-32268.
[http://dx.doi.org/10.1039/C8RA06204H]
[133]
Du, L.; Cheng, Z.; Zhu, P.; Chen, Q.; Wu, Y.; Tan, K. Preparation of mesoporous silica nanoparticles molecularly imprinted polymer for efficient separation and enrichment of perfluorooctane sulfonate. J. Sep. Sci., 2018, 41(23), 4363-4369.
[http://dx.doi.org/10.1002/jssc.201800587] [PMID: 30298988]
[134]
Abdel-Haleem, F.M.; Gamal, E.; Rizk, M.S.; Madbouly, A.; El Nashar, R.M.; Anis, B.; Elnabawy, H.M.; Khalil, A.S.G.; Barhoum, A. Molecularly imprinted electrochemical sensor-based Fe2O3@MWCNTs for ivabradine drug determination in pharmaceutical formulation, serum, and urine samples. Front. Bioeng. Biotechnol., 2021, 9, 648704.
[http://dx.doi.org/10.3389/fbioe.2021.648704] [PMID: 33898405]
[135]
Zhao, X.; Chen, L.; Li, B. Magnetic molecular imprinting polymers based on three-dimensional (3D) graphene-carbon nanotube hybrid composites for analysis of melamine in milk powder. Food Chem., 2018, 255, 226-234.
[http://dx.doi.org/10.1016/j.foodchem.2018.02.078] [PMID: 29571470]
[136]
Tan, L.; Guo, M.; Tan, J.; Geng, Y.; Huang, S.; Tang, Y. Development of high-luminescence perovskite quantum dots coated with molecularly imprinted polymers for pesticide detection by slowly hydrolysing the organosilicon monomers in situ. Sens. Actuators B Chem., 2019, 291, 226-234.
[http://dx.doi.org/10.1016/j.snb.2019.04.079]
[137]
Wu, N.; Luo, Z.; Ge, Y.; Guo, P.; Du, K.; Tang, W.; Du, W.; Zeng, A.; Chang, C.; Fu, Q. A novel surface molecularly imprinted polymer as the solid-phase extraction adsorbent for the selective determination of ampicillin sodium in milk and blood samples. J. Pharm. Anal., 2016, 6(3), 157-164.
[http://dx.doi.org/10.1016/j.jpha.2016.01.004] [PMID: 29403976]
[138]
Fresco-Cala, B.; Batista, A.D.; Cárdenas, S. Molecularly imprinted polymer micro-and nano-particles: A review. Molecules, 2020, 25(20), 4740.
[http://dx.doi.org/10.3390/molecules25204740] [PMID: 33076552]
[139]
Zhang, Y.; Zhou, Z.; Zheng, J.; Li, H.; Cui, J.; Liu, S. SiO2-MIP core-shell nanoparticles containing gold nanoclusters for sensitive fluorescence detection of the antibiotic erythromycin. Mikrochim. Acta, 2017, 184(7), 2241-2248.
[http://dx.doi.org/10.1007/s00604-017-2216-1]
[140]
Maciel, E.V.S.; Mejía-Carmona, K.; Jordan-Sinisterra, M.; da Silva, L.F.; Vargas Medina, D.A.; Lanças, F.M. The current role of graphene-based nanomaterials in the sample preparation arena. Front Chem., 2020, 8, 664.
[http://dx.doi.org/10.3389/fchem.2020.00664] [PMID: 32850673]
[141]
Zhao, X.F.; Duan, F.F.; Cui, P.P.; Yang, Y.Z.; Liu, X.G.; Hou, X.L. A molecularly-imprinted polymer decorated on graphene oxide for the selective recognition of quercetin. N. Carbon Mater., 2018, 33(6), 529-543.
[http://dx.doi.org/10.1016/S1872-5805(18)60355-5]
[142]
El-Schich, Z.; Zhang, Y.; Feith, M.; Beyer, S.; Sternbæk, L.; Ohlsson, L.; Stollenwerk, M.; Wingren, A.G. Molecularly imprinted polymers in biological applications. Biotechniques, 2020, 69(6), 406-419.
[http://dx.doi.org/10.2144/btn-2020-0091] [PMID: 33000637]
[143]
Rios, A.; Zougagh, M. Recent advances in magnetic nanomaterials for improving analytical processes. Trends Analyt. Chem., 2016, 84, 72-83.
[http://dx.doi.org/10.1016/j.trac.2016.03.001]
[144]
Cheon, H.J.; Adhikari, M.D.; Chung, M.; Tran, T.D.; Kim, J.; Kim, M.I. Magnetic nanoparticles‐embedded enzyme‐inorganic hybrid nanoflowers with enhanced peroxidase‐like activity and substrate channeling for glucose biosensing. Adv. Healthc. Mater., 2019, 8(9), e1801507.
[http://dx.doi.org/10.1002/adhm.201801507] [PMID: 30848070]
[145]
Bilal, M.; Mehmood, S.; Rasheed, T.; Iqbal, H. Bio-catalysis and biomedical perspectives of magnetic nanoparticles as versatile carriers. Magnetochemistry, 2019, 5(3), 42.
[http://dx.doi.org/10.3390/magnetochemistry5030042]
[146]
Fatima, H.; Kim, K.S. Iron-based magnetic nanoparticles for magnetic resonance imaging. Adv. Powder Technol., 2018, 29(11), 2678-2685.
[http://dx.doi.org/10.1016/j.apt.2018.07.017]
[147]
Wang, W.; Xu, Z.; Zhang, X.; Wimmer, A.; Shi, E.; Qin, Y. Rapid and efficient removal of organic micropollutants from environmental water using a magnetic nanoparticles-attached fluorographene-based sorbent. Chem. Eng. J., 2018, 343, 61-68.
[http://dx.doi.org/10.1016/j.cej.2018.02.101]
[148]
Majidi, S.; Sehrig, F.Z.; Farkhani, S.M.; Goloujeh, M.S.; Akbarzadeh, A. Current methods for synthesis of magnetic nanoparticles. Artif. Cells Nanomed. Biotechnol., 2016, 44(2), 722-734.
[http://dx.doi.org/10.3109/21691401.2014.982802] [PMID: 25435409]
[149]
Kudr, J.; Haddad, Y.; Richtera, L.; Heger, Z.; Cernak, M.; Adam, V.; Zitka, O. Magnetic nanoparticles: From design and synthesis to real world applications. Nanomaterials (Basel), 2017, 7(9), 243.
[http://dx.doi.org/10.3390/nano7090243] [PMID: 28850089]
[150]
Ghazanfari, M.R.; Kashefi, M.; Shams, S.F.; Jaafari, M.R. Perspective of Fe3O4 nanoparticles role in biomedical applications. Biochem. Res. Int., 2016, 2016, 7840161.
[151]
Kandasamy, G.; Maity, D. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int. J. Pharm., 2015, 496(2), 191-218.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.058] [PMID: 26520409]
[152]
Macías-Martínez, B.I.; Cortés-Hernández, D.A.; Zugasti-Cruz, A.; Cruz-Ortíz, B.R.; Múzquiz-Ramos, E.M. Heating ability and hemolysis test of magnetite nanoparticles obtained by a simple co-precipitation method. J. Appl. Res. Technol., 2016, 14(4), 239-244.
[http://dx.doi.org/10.1016/j.jart.2016.05.007]
[153]
Cao, Y.; Sheng, T.; Yang, Z.; Huang, D.; Sheng, L. Synthesis of molecular-imprinting polymer coated magnetic nanocomposites for selective capture and fast removal of environmental tricyclic analogs. Chem. Eng. J., 2021, 2021, 128678.
[http://dx.doi.org/10.1016/j.cej.2021.128678]
[154]
Velásquez, A.A.; Marín, C.C.; Urquijo, J.P. Synthesis and characterization of magnetite-maghemite nanoparticles obtained by the high-energy ball milling method. J. Nanopart. Res., 2018, 20(3), 1-3.
[http://dx.doi.org/10.1007/s11051-018-4166-x]
[155]
Rivera-Chaverra, M.J.; Restrepo-Parra, E.; Acosta-Medina, C.D.; Mello, A.; Ospina, R. Synthesis of oxide iron nanoparticles using laser ablation for possible hyperthermia applications. Nanomaterials (Basel), 2020, 10(11), 2099.
[http://dx.doi.org/10.3390/nano10112099] [PMID: 33113964]
[156]
Berasategi, J.; Gomez, A.; Bou-Ali, M.M.; Gutiérrez, J.; Barandiarán, J.M.; Beketov, I.V. Fe nanoparticles produced by electric explosion of wire for new generation of magneto-rheological fluids. Smart Mater. Struct., 2018, 27(4), 045011.
[http://dx.doi.org/10.1088/1361-665X/aaaded]
[157]
Aghazadeh, M.; Karimzadeh, I.; Ganjali, M.R. Ethylenediaminetetraacetic acid capped superparamagnetic iron oxide (Fe3O4) nanoparticles: A novel preparation method and characterization. J. Magn. Magn. Mater., 2017, 439, 312-319.
[http://dx.doi.org/10.1016/j.jmmm.2017.05.042]
[158]
Natarajan, S.; Harini, K.; Gajula, G.P.; Sarmento, B.; Neves-Petersen, M.T.; Thiagarajan, V. Multifunctional magnetic iron oxide nanoparticles: Diverse synthetic approaches, surface modifications, cytotoxicity towards biomedical and industrial applications. BMC Materials., 2019, 1(1), 1-22.
[http://dx.doi.org/10.1186/s42833-019-0002-6]
[159]
Rashid, H.; Mansoor, M.A.; Haider, B.; Nasir, R.; Abd Hamid, S.B.; Abdulrahman, A. Synthesis and characterization of magnetite nano particles with high selectivity using in situ precipitation method. Sep. Sci. Technol., 2020, 55(6), 1207-1215.
[http://dx.doi.org/10.1080/01496395.2019.1585876]
[160]
Beygi, H.; Babakhani, A. Microemulsion synthesis and magnetic properties of FexNi(1− x) alloy nanoparticles. J. Magn. Magn. Mater., 2017, 421, 177-183.
[http://dx.doi.org/10.1016/j.jmmm.2016.07.071]
[161]
Glasgow, W.; Fellows, B.; Qi, B.; Darroudi, T.; Kitchens, C.; Ye, L. Continuous synthesis of iron oxide (Fe3O4) nanoparticles via thermal decomposition. Particuology, 2016, 26, 47-53.
[http://dx.doi.org/10.1016/j.partic.2015.09.011]
[162]
Fayazzadeh, S.; Khodaei, M.; Arani, M.; Mahdavi, S.R.; Nizamov, T.; Majouga, A. Magnetic properties and magnetic hyperthermia of cobalt ferrite nanoparticles synthesized by hydrothermal method. J. Supercond. Nov. Magn., 2020, 33(7), 2227-2233.
[http://dx.doi.org/10.1007/s10948-020-05490-6]
[163]
Fuentes-García, J.A.; Carvalho Alavarse, A.; Moreno Maldonado, A.C.; Toro-Córdova, A.; Ibarra, M.R.; Goya, G.F. Simple sonochemical method to optimize the heating efficiency of magnetic nanoparticles for magnetic fluid hyperthermia. ACS Omega, 2020, 5(41), 26357-26364.
[http://dx.doi.org/10.1021/acsomega.0c02212] [PMID: 33110963]
[164]
Arifuzzaman, M.; Hossen, M.B.; Harun-Or-Rashid, M.; Rahman, M.L. Structural and magnetic properties of nanocrystalline Ni0.7-xCuxCd0. 3Fe2O4 prepared through Sol-gel method. Mater. Charact., 2021, 171, 110810.
[http://dx.doi.org/10.1016/j.matchar.2020.110810]
[165]
Alaghmandfard, A.; Madaah Hosseini, H.R. A facile, two-step synthesis and characterization of Fe3O4-LCysteine-graphene quantum dots as a multifunctional nanocomposite. Appl. Nanosci., 2021, 11(3), 849-860.
[http://dx.doi.org/10.1007/s13204-020-01642-1] [PMID: 33425639]
[166]
Mosayebi, J.; Kiyasatfar, M.; Laurent, S. Synthesis, functionalization, and design of magnetic nanoparticles for theranostic applications. Adv. Healthc. Mater., 2017, 6(23), 1700306.
[http://dx.doi.org/10.1002/adhm.201700306] [PMID: 28990364]
[167]
Duan, M.; Shapter, J.G.; Qi, W.; Yang, S.; Gao, G. Recent progress in magnetic nanoparticles: Synthesis, properties, and applications. Nanotechnology, 2018, 29(45), 452001.
[http://dx.doi.org/10.1088/1361-6528/aadcec] [PMID: 30142088]
[168]
Gul, S.; Khan, S.B.; Rehman, I.U.; Khan, M.A.; Khan, M.I. A comprehensive review of magnetic nanomaterials modern day theranostics. Front. Mater., 2019, 6, 179.
[http://dx.doi.org/10.3389/fmats.2019.00179]
[169]
Belachew, N.; Devi, D.R.; Basavaiah, K. Facile green synthesis of l-methionine capped magnetite nanoparticles for adsorption of pollutant Rhodamine B. J. Mol. Liq., 2016, 224, 713-720.
[http://dx.doi.org/10.1016/j.molliq.2016.10.089]
[170]
Ganapathe, L.S.; Mohamed, M.A.; Mohamad Yunus, R.; Berhanuddin, D.D. Magnetite (Fe3O4) nanoparticles in biomedical application: From synthesis to surface functionalisation. Magnetochemistry, 2020, 6(4), 68.
[http://dx.doi.org/10.3390/magnetochemistry6040068]
[171]
Huang, S.; Xu, J.; Zheng, J.; Zhu, F.; Xie, L.; Ouyang, G. Synthesis and application of magnetic molecularly imprinted polymers in sample preparation. Anal. Bioanal. Chem., 2018, 410(17), 3991-4014.
[http://dx.doi.org/10.1007/s00216-018-1013-y] [PMID: 29651522]
[172]
Ling, W.; Wang, M.; Xiong, C.; Xie, D.; Chen, Q.; Chu, X. Synthesis, surface modification, and applications of magnetic iron oxide nanoparticles. J. Mater. Res., 2019, 34(11), 1828-1844.
[http://dx.doi.org/10.1557/jmr.2019.129]
[173]
Ansari, S. Application of magnetic molecularly imprinted polymer as a versatile and highly selective tool in food and environmental analysis: Recent developments and trends. Trends Analyt. Chem., 2017, 90, 89-106.
[http://dx.doi.org/10.1016/j.trac.2017.03.001]
[174]
Zhu, N.; Ji, H.; Yu, P.; Niu, J.; Farooq, M.U.; Akram, M.W.; Udego, I.O.; Li, H.; Niu, X. Surface modification of magnetic iron oxide nanoparticles. Nanomaterials (Basel), 2018, 8(10), 810.
[http://dx.doi.org/10.3390/nano8100810] [PMID: 30304823]
[175]
Lorenzo, R.A.; Carro, A.M.; Alvarez-Lorenzo, C.; Concheiro, A. To remove or not to remove? The challenge of extracting the template to make the cavities available in Molecularly Imprinted Polymers (MIPs). Int. J. Mol. Sci., 2011, 12(7), 4327-4347.
[http://dx.doi.org/10.3390/ijms12074327] [PMID: 21845081]
[176]
Ning, F.; Qiu, T.; Wang, Q.; Peng, H.; Li, Y.; Wu, X.; Zhang, Z.; Chen, L.; Xiong, H. Dummy-surface molecularly imprinted polymers on magnetic graphene oxide for rapid and selective quantification of acrylamide in heat-processed (including fried) foods. Food Chem., 2017, 221, 1797-1804.
[http://dx.doi.org/10.1016/j.foodchem.2016.10.101] [PMID: 27979164]
[177]
You, X.; Piao, C.; Chen, L. Preparation of a magnetic molecularly imprinted polymer by atom-transfer radical polymerization for the extraction of parabens from fruit juices. J. Sep. Sci., 2016, 39(14), 2831-2838.
[http://dx.doi.org/10.1002/jssc.201600335] [PMID: 27214157]
[178]
Ma, X.; Lin, H.; He, Y.; She, Y.; Wang, M.; Abd El-Aty, A.M.; Afifi, N.A.; Han, J.; Zhou, X.; Wang, J.; Zhang, J. Magnetic molecularly imprinted polymers doped with graphene oxide for the selective recognition and extraction of four flavonoids from Rhododendron species. J. Chromatogr. A, 2019, 1598, 39-48.
[http://dx.doi.org/10.1016/j.chroma.2019.03.053] [PMID: 30940357]
[179]
Niu, M.; Sun, C.; Zhang, K.; Li, G.; Meriem, F.; Pham-Huy, C. A simple extraction method for norfloxacin from pharmaceutical wastewater with a magnetic core–shell molecularly imprinted polymer with the aid of computer simulation. New J. Chem., 2017, 41(7), 2614-2624.
[http://dx.doi.org/10.1039/C6NJ03901D]
[180]
Huang, D.; Tang, Z.; Peng, Z.; Lai, C.; Zeng, G.; Zhang, C. Fabrication of water-compatible molecularly imprinted polymer based on β-cyclodextrin modified magnetic chitosan and its application for selective removal of bisphenol A from aqueous solution. J. Taiwan Inst. Chem. Eng., 2017, 77, 113-121.
[http://dx.doi.org/10.1016/j.jtice.2017.04.030]
[181]
Moein, M.M.; Abdel-Rehim, A.; Abdel-Rehim, M. Recent applications of molecularly imprinted sol-gel methodology in sample preparation. Molecules, 2019, 24(16), 2889.
[http://dx.doi.org/10.3390/molecules24162889] [PMID: 31395795]
[182]
Kazantzi, V.; Anthemidis, A. Fabric sol–gel phase sorptive extraction technique: A review. Separations, 2017, 4(2), 20.
[http://dx.doi.org/10.3390/separations4020020]
[183]
Sun, L.; Guan, J.; Xu, Q.; Yang, X.; Wang, J.; Hu, X. Synthesis and applications of molecularly imprinted polymers modified TiO2 nanomaterials: A review. Polymers (Basel), 2018, 10(11), 1248.
[http://dx.doi.org/10.3390/polym10111248]
[184]
Asman, S.; Mohamad, S.; Mustafa, M.K. Sol-gel approach in molecular imprinting for crystal violet selective recognition. Sains Malays., 2021, 50(7), 1921-1933.
[http://dx.doi.org/10.17576/jsm-2021-5007-08]
[185]
Samah, N.A.; Sánchez-Martín, M.J.; Sebastián, R.M.; Valiente, M.; López-Mesas, M. Molecularly imprinted polymer for the removal of diclofenac from water: Synthesis and characterization. Sci. Total Environ., 2018, 631-632, 1534-1543.
[http://dx.doi.org/10.1016/j.scitotenv.2018.03.087] [PMID: 29727977]
[186]
Hua, M.Z.; Feng, S.; Wang, S.; Lu, X. Rapid detection and quantification of 2,4-dichlorophenoxyacetic acid in milk using molecularly imprinted polymers-surface-enhanced Raman spectroscopy. Food Chem., 2018, 258, 254-259.
[http://dx.doi.org/10.1016/j.foodchem.2018.03.075] [PMID: 29655731]
[187]
Madikizela, L.M.; Zunngu, S.S.; Mlunguza, N.Y.; Tavengwa, N.T.; Mdluli, P.S.; Chimuka, L. Application of molecularly imprinted polymer designed for the selective extraction of ketoprofen from wastewater. Water S.A., 2018, 44(3), 406-418.
[188]
Hasanah, A.N.; Soni, D.; Pratiwi, R.; Rahayu, D.; Megantara, S. Synthesis of diazepam-imprinted polymers with two functional monomers in chloroform using a bulk polymerization method. J. Chem., 2020, 2020, 7282415.
[http://dx.doi.org/10.1155/2020/7282415]
[189]
Phungpanya, C.; Chaipuang, A.; Machan, T.; Watla‐iad, K.; Thongpoon, C.; Suwantong, O. Synthesis of prednisolone molecularly imprinted polymer nanoparticles by precipitation polymerization. Polym. Adv. Technol., 2018, 29(12), 3075-3084.
[http://dx.doi.org/10.1002/pat.4428]
[190]
Lu, Y.; Zhu, Y.; Zhang, Y.; Wang, K. Synthesizing vitamin E molecularly imprinted polymers via precipitation polymerization. J. Chem. Eng. Data, 2019, 64(3), 1045-1050.
[http://dx.doi.org/10.1021/acs.jced.8b00944]
[191]
Zhai, Y.Y.; Yun, Y.B.; Li, C.L. Preparation of bovine serum albumin molecularly imprinted polymer by precipitation polymerization. J. Dispers. Sci. Technol., 2019, 41(9), 1371-1380.
[http://dx.doi.org/10.1080/01932691.2019.1623687]
[192]
Song, X.; Turiel, E.; He, L.; Martín-Esteban, A. Synthesis of molecularly imprinted polymers for the selective extraction of polymyxins from environmental water samples. Polymers (Basel), 2020, 12(1), 131.
[http://dx.doi.org/10.3390/polym12010131] [PMID: 31935806]
[193]
Zhou, T.; Zhao, Q.; Zhao, L.; Liu, H.; Wang, B.; Huang, N.; Ding, J.; Ding, L.; Li, Y. Molecularly imprinted polymers combined with membrane-protected solid-phase extraction to detect triazines in tea samples. Anal. Bioanal. Chem., 2018, 410(21), 5173-5181.
[http://dx.doi.org/10.1007/s00216-018-1171-y] [PMID: 29943264]
[194]
Sun, Y.; Zhang, Y.; Ju, Z.; Niu, L.; Gong, Z.; Xu, Z. Molecularly imprinted polymers fabricated by Pickering emulsion polymerization for the selective adsorption and separation of quercetin from Spina gleditsiae. New J. Chem., 2019, 43(37), 14747-14755.
[http://dx.doi.org/10.1039/C9NJ03559A]
[195]
Liu, X.; Wu, F.; Au, C.; Tao, Q.; Pi, M.; Zhang, W. Synthesis of molecularly imprinted polymer by suspension polymerization for selective extraction of p‐hydroxybenzoic acid from water. J. Appl. Polym. Sci., 2019, 136(3), 46984.
[http://dx.doi.org/10.1002/app.46984]
[196]
Song, L.; He, J.; Chen, N.; Huang, Z. Combined biocompatible medium with molecularly imprinted polymers for determination of aflatoxins B1 in real sample. J. Sep. Sci., 2019, 42(24), 3679-3687.
[http://dx.doi.org/10.1002/jssc.201900564] [PMID: 31591764]
[197]
Öter, Ç.; Zorer, Ö.S. Molecularly imprinted polymer synthesis and selective solid phase extraction applications for the detection of ziram, a dithiocarbamate fungicide. Chem. Eng. J. Adv., 2021, 100118.
[198]
Li, J.; Zhao, L.; Wei, C.; Sun, Z.; Zhao, S.; Cai, T.; Gong, B. Preparation of restricted access media molecularly imprinted polymers for efficient separation and enrichment ofloxacin in bovine serum samples. J. Sep. Sci., 2019, 42(15), 2491-2499.
[http://dx.doi.org/10.1002/jssc.201900103] [PMID: 31106511]
[199]
Qiu, Y.; Lin, C.; Liu, Y.; Lv, Y.; Liu, M. Functionalization of cellulose as imprinted adsorbent for selective adsorption of matrine. J. Appl. Polym. Sci., 2020, 137(8), 48392.
[http://dx.doi.org/10.1002/app.48392]
[200]
Abdollahi, E.; Khalafi-Nezhad, A.; Mohammadi, A.; Abdouss, M.; Salami-Kalajahi, M. Synthesis of new molecularly imprinted polymer via reversible addition fragmentation transfer polymerization as a drug delivery system. Polymer (Guildf.), 2018, 143, 245-257.
[http://dx.doi.org/10.1016/j.polymer.2018.03.058]
[201]
Meydan, İ.; Bilici, M.; Turan, E.; Zengin, A. Selective extraction and determination of citrinin in rye Samples by a molecularly imprinted polymer (MIP) using reversible addition fragmentation chain transfer precipitation polymerization (RAFTPP) with high-performance liquid chromatography (HPLC) detection. Anal. Lett., 2021, 54(10), 1697-1708.
[http://dx.doi.org/10.1080/00032719.2021.1892125]
[202]
Bitar, M.; Lafarge, C.; Sok, N.; Cayot, P.; Bou-Maroun, E. Molecularly imprinted sol-gel polymers for the analysis of iprodione fungicide in wine: Synthesis in green solvent. Food Chem., 2019, 293, 226-232.
[http://dx.doi.org/10.1016/j.foodchem.2019.04.108] [PMID: 31151605]
[203]
Kalogiouri, N.P.; Tsalbouris, A.; Kabir, A.; Furton, K.G.; Samanidou, V.F. Synthesis and application of molecularly imprinted polymers using sol–gel matrix imprinting technology for the efficient solid-phase extraction of BPA from water. Microchem. J., 2020, 157, 104965.
[http://dx.doi.org/10.1016/j.microc.2020.104965]
[204]
Cheng, G.; Yu, W.; Yang, C.; Li, S.; Wang, X.; Wang, P. Highly selective removal of 2,4‐dinitrophenol by a surface imprinted sol–gel polymer. J. Appl. Polym. Sci., 2020, 137(41), 49236.
[http://dx.doi.org/10.1002/app.49236]
[205]
Chekli, L.; Bayatsarmadi, B.; Sekine, R.; Sarkar, B.; Shen, A.M.; Scheckel, K.G.; Skinner, W.; Naidu, R.; Shon, H.K.; Lombi, E.; Donner, E. Analytical characterisation of nanoscale zero-valent iron: A methodological review. Anal. Chim. Acta, 2016, 903, 13-35.
[http://dx.doi.org/10.1016/j.aca.2015.10.040] [PMID: 26709296]
[206]
Rohman, A.; Windarsih, A.; Lukitaningsih, E.; Rafi, M.; Betania, K.; Fadzillah, N.A. The use of FTIR and Raman spectroscopy in combination with chemometrics for analysis of biomolecules in biomedical fluids: A review. Biomed. Spectrosc. Imaging, 2019, 8(3-4), 55-71.
[http://dx.doi.org/10.3233/BSI-200189]
[207]
Bunaciu, A.A.; Udriştioiu, E.G.; Aboul-Enein, H.Y. X-ray diffraction: Instrumentation and applications. Crit. Rev. Anal. Chem., 2015, 45(4), 289-299.
[http://dx.doi.org/10.1080/10408347.2014.949616] [PMID: 25831472]
[208]
Kwaśniewska, K.; Gadzała-Kopciuch, R.; Buszewski, B. Magnetic molecular imprinted polymers as a tool for isolation and purification of biological samples. Open Chem., 2015, 13(1), 137.
[http://dx.doi.org/10.1515/chem-2015-0137]
[209]
Aylaz, G.; Kuhn, J.; Lau, E.C.; Yeung, C.C.; Roy, V.A.; Duman, M. Recent developments on magnetic molecular imprinted polymers (MMIPs) for sensing, capturing, and monitoring pharmaceutical and agricultural pollutants. J. Chem. Technol. Biotechnol., 2021, 96(5), 1151-1160.
[http://dx.doi.org/10.1002/jctb.6681]
[210]
Zhan, J.; Li, J.; Liu, D.; Liu, C.; Yang, G.; Zhou, Z.; Wang, P. A simple method for the determination of organochlorine pollutants and the enantiomers in oil seeds based on matrix solid-phase dispersion. Food Chem., 2016, 194, 319-324.
[http://dx.doi.org/10.1016/j.foodchem.2015.07.067] [PMID: 26471561]
[211]
Qiao, F.; Gao, M.; Yan, H. Molecularly imprinted ionic liquid magnetic microspheres for the rapid isolation of organochlorine pesticides in environmental water. J. Sep. Sci., 2016, 39(7), 1310-1315.
[http://dx.doi.org/10.1002/jssc.201501165] [PMID: 26791136]
[212]
Chen, M.; Ma, X.; Sheng, J. Preparation of magnetic molecularly imprinted polymer for chlorpyrifos adsorption and enrichment. IOP Conf. Ser, 2017, 269(1), 012061.
[http://dx.doi.org/10.1088/1757-899X/269/1/012061]
[213]
Cristea, C.; Tertis, M.; Galatus, R. Magnetic nanoparticles for antibiotics detection. Nanomaterials (Basel), 2017, 7(6), 119.
[http://dx.doi.org/10.3390/nano7060119] [PMID: 28538684]
[214]
Joshi, A.; Kim, K.H. Recent advances in nanomaterial-based electrochemical detection of antibiotics: Challenges and future perspectives. Biosens. Bioelectron., 2020, 153, 112046.
[http://dx.doi.org/10.1016/j.bios.2020.112046] [PMID: 32056661]
[215]
Qin, S.; Su, L.; Wang, P.; Gao, Y. Rapid and selective extraction of multiple sulfonamides from aqueous samples based on Fe3O4–chitosan molecularly imprinted polymers. Anal. Methods, 2015, 7(20), 8704-8713.
[http://dx.doi.org/10.1039/C5AY01499A]
[216]
Mao, X.; Sun, H.; He, X.; Chen, L.; Zhang, Y. Well-defined sulfamethazine-imprinted magnetic nanoparticles via surface-initiated atom transfer radical polymerization for highly selective enrichment of sulfonamides in food samples. Anal. Methods, 2015, 7(11), 4708-4716.
[http://dx.doi.org/10.1039/C5AY00590F]
[217]
Zhang, Z.; Cao, X.; Zhang, Z.; Yin, J.; Wang, D.; Xu, Y.; Zheng, W.; Li, X.; Zhang, Q.; Liu, L. Synthesis of dummy-template molecularly imprinted polymer adsorbents for solid phase extraction of aminoglycosides antibiotics from environmental water samples. Talanta, 2020, 208, 120385.
[http://dx.doi.org/10.1016/j.talanta.2019.120385] [PMID: 31816798]
[218]
Khan, S.; Wong, A.; Zanoni, M.V.B.; Sotomayor, M.D.P.T. Electrochemical sensors based on biomimetic magnetic molecularly imprinted polymer for selective quantification of methyl green in environmental samples. Mater. Sci. Eng. C, 2019, 103, 109825.
[http://dx.doi.org/10.1016/j.msec.2019.109825] [PMID: 31349512]
[219]
Zhao, M.; Hou, Z.; Lian, Z.; Qin, D.; Ge, C. Direct extraction and detection of malachite green from marine sediments by magnetic nano-sized imprinted polymer coupled with spectrophotometric analysis. Mar. Pollut. Bull., 2020, 158, 111363.
[http://dx.doi.org/10.1016/j.marpolbul.2020.111363] [PMID: 32568079]
[220]
Fu, J.; Chen, L.; Li, J.; Zhang, Z. Current status and challenges of ion imprinting. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(26), 13598-13627.
[http://dx.doi.org/10.1039/C5TA02421H]
[221]
Xie, C.; Wei, S.; Chen, D.; Lan, W.; Yan, Z.; Wang, Z. Preparation of magnetic ion imprinted polymer with waste beer yeast as functional monomer for Cd(ii) adsorption and detection. RSC Advances, 2019, 9(41), 23474-23483.
[http://dx.doi.org/10.1039/C9RA03859K] [PMID: 35530598]
[222]
Dahaghin, Z.; Mousavi, H.Z.; Boutorabi, L. Application of magnetic ion-imprinted polymer as a new environmentally-friendly nonocomposite for a selective adsorption of the trace level of Cu (II) from aqueous solution and different samples. J. Mol. Liq., 2017, 243, 380-386.
[http://dx.doi.org/10.1016/j.molliq.2017.08.018]
[223]
Hua, Y.; Zhang, S.; Min, H.; Li, J.Y.; Wu, X.H.; Sheng, D. Novel magnetic ion-imprinted polymer extraction of trace Ce(III) in environmental and mineral samples and determination by ICP-MS. At. Spectr., 2021, 42(4), 217-226.
[224]
Berardi, C.; Fibbi, D.; Coppini, E.; Renai, L.; Caprini, C.; Scordo, C.V.A.; Checchini, L.; Orlandini, S.; Bruzzoniti, M.C.; Del Bubba, M. Removal efficiency and mass balance of polycyclic aromatic hydrocarbons, phthalates, ethoxylated alkylphenols and alkylphenols in a mixed textile-domestic wastewater treatment plant. Sci. Total Environ., 2019, 674, 36-48.
[http://dx.doi.org/10.1016/j.scitotenv.2019.04.096] [PMID: 31003086]
[225]
Bhogal, S.; Mohiuddin, I.; Kaur, K.; Lee, J.; Brown, R.J.C.; Malik, A.K.; Kim, K.H. Dual-template magnetic molecularly imprinted polymer-based sorbent for simultaneous and selective detection of phenolic endocrine disrupting compounds in foodstuffs. Environ. Pollut., 2021, 275, 116613.
[http://dx.doi.org/10.1016/j.envpol.2021.116613] [PMID: 33609857]
[226]
Karrat, A.; Amine, A. Solid-phase extraction combined with a spectrophotometric method for determination of Bisphenol-A in water samples using magnetic molecularly imprinted polymer. Microchem. J., 2021, 168, 106496.
[http://dx.doi.org/10.1016/j.microc.2021.106496]
[227]
Lan, H.; Gan, N.; Pan, D.; Hu, F.; Li, T.; Long, N.; Shen, H.; Feng, Y. Development of a novel magnetic molecularly imprinted polymer coating using porous zeolite imidazolate framework-8 coated magnetic iron oxide as carrier for automated solid phase microextraction of estrogens in fish and pork samples. J. Chromatogr. A, 2014, 1365, 35-44.
[http://dx.doi.org/10.1016/j.chroma.2014.08.096] [PMID: 25218632]
[228]
Chen, F.; Wang, J.; Lu, R.; Chen, H.; Xie, X. Fast and high-efficiency magnetic surface imprinting based on microwave-accelerated reversible addition fragmentation chain transfer polymerization for the selective extraction of estrogen residues in milk. J. Chromatogr. A, 2018, 1562, 19-26.
[http://dx.doi.org/10.1016/j.chroma.2018.05.047] [PMID: 29807706]
[229]
Hatamluyi, B.; Sadeghian, R.; Malek, F.; Boroushaki, M.T. Improved solid phase extraction for selective and efficient quantification of sunset yellow in different food samples using a novel molecularly imprinted polymer reinforced by Fe3O4@UiO-66-NH2. Food Chem., 2021, 357, 129782.
[http://dx.doi.org/10.1016/j.foodchem.2021.129782] [PMID: 33894570]
[230]
Anirudhan, T.S.; Christa, J.; Deepa, J.R. Extraction of melamine from milk using a magnetic molecularly imprinted polymer. Food Chem., 2017, 227, 85-92.
[http://dx.doi.org/10.1016/j.foodchem.2016.12.090] [PMID: 28274462]
[231]
Pal, S.; Singh, N.; Ansari, K.M. Toxicological effects of patulin mycotoxin on the mammalian system: An overview. Toxicol. Res. (Camb.), 2017, 6(6), 764-771.
[http://dx.doi.org/10.1039/c7tx00138j] [PMID: 30090541]
[232]
Saleh, I.; Goktepe, I. The characteristics, occurrence, and toxicological effects of patulin. Food Chem. Toxicol., 2019, 129, 301-311.
[http://dx.doi.org/10.1016/j.fct.2019.04.036] [PMID: 31029720]
[233]
Fu, H.; Xu, W.; Wang, H.; Liao, S.; Chen, G. Preparation of magnetic molecularly imprinted polymer for selective identification of patulin in juice. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2020, 1145, 122101.
[http://dx.doi.org/10.1016/j.jchromb.2020.122101] [PMID: 32305710]
[234]
Xiao, H.; Cai, L.; Chen, S.; Zhang, Z. Magnetic mesoporous silica/graphene oxide based molecularly imprinted polymers for fast selective separation of bovine hemoglobin. SN Appl. Sci., 2020, 2(4), 1-2.
[http://dx.doi.org/10.1007/s42452-020-2573-y]
[235]
Liu, Y.; Wang, Y.; Dai, Q.; Zhou, Y. Magnetic deep eutectic solvents molecularly imprinted polymers for the selective recognition and separation of protein. Anal. Chim. Acta, 2016, 936, 168-178.
[http://dx.doi.org/10.1016/j.aca.2016.07.003] [PMID: 27566352]
[236]
Xu, K.; Wang, Y.; Wei, X.; Chen, J.; Xu, P.; Zhou, Y. Preparation of magnetic molecularly imprinted polymers based on a deep eutectic solvent as the functional monomer for specific recognition of lysozyme. Mikrochim. Acta, 2018, 185(2), 146.
[http://dx.doi.org/10.1007/s00604-018-2707-8] [PMID: 29594602]
[237]
Sánchez-González, J.; Jesús Tabernero, M.; Bermejo, A.M.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. Development of magnetic molecularly imprinted polymers for solid phase extraction of cocaine and metabolites in urine before high performance liquid chromatography - tandem mass spectrometry. Talanta, 2016, 147, 641-649.
[http://dx.doi.org/10.1016/j.talanta.2015.10.034] [PMID: 26592657]
[238]
Behbahani, M.; Bagheri, S.; Amini, M.M.; Sadeghi Abandansari, H.; Reza Moazami, H.; Bagheri, A. Application of a magnetic molecularly imprinted polymer for the selective extraction and trace detection of lamotrigine in urine and plasma samples. J. Sep. Sci., 2014, 37(13), 1610-1616.
[http://dx.doi.org/10.1002/jssc.201400188] [PMID: 24723562]
[239]
Ilktaç, R.; Gümüş, Z.P. Sensitive and selective determination of imidacloprid with magnetic molecularly imprinted polymer by using LC/Q-TOF/MS. Turk. J. Chem., 2021, 45(4), 1237-1247.
[http://dx.doi.org/10.3906/kim-2101-36] [PMID: 34707447]
[240]
Kumar, N.; Narayanan, N.; Gupta, S. Ultrasonication assisted extraction of chlorpyrifos from honey and brinjal using magnetic molecularly imprinted polymers followed by GLC-ECD analysis. React. Funct. Polym., 2019, 135, 103-112.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2018.12.012]
[241]
Ji, W.; Sun, R.; Duan, W.; Wang, X.; Wang, T.; Mu, Y.; Guo, L. Selective solid phase extraction of chloroacetamide herbicides from environmental water samples by amphiphilic magnetic molecularly imprinted polymers. Talanta, 2017, 170, 111-118.
[http://dx.doi.org/10.1016/j.talanta.2017.04.005] [PMID: 28501146]
[242]
Qin, D.; Wang, J.; Ge, C.; Lian, Z. Fast extraction of chloramphenicol from marine sediments by using magnetic molecularly imprinted nanoparticles. Mikrochim. Acta, 2019, 186(7), 428.
[http://dx.doi.org/10.1007/s00604-019-3548-9] [PMID: 31187284]
[243]
Chen, X.H.; Zhao, Y.G.; Zhang, Y.; Shen, H.Y.; Pan, S.D.; Jin, M.C. Ethylenediamine-functionalized superparamagnetic carbon nanotubes for magnetic molecularly imprinted polymer matrix solid-phase dispersion extraction of 12 fluoroquinolones in river water. Anal. Methods, 2015, 7(14), 5838-5846.
[http://dx.doi.org/10.1039/C5AY00609K]
[244]
Yang, W.; Muhammad, T.; Yigaimu, A.; Muhammad, K.; Chen, L. Preparation of stoichiometric molecularly imprinted polymer coatings on magnetic particles for the selective extraction of auramine O from water. J. Sep. Sci., 2018, 41(22), 4185-4193.
[http://dx.doi.org/10.1002/jssc.201800797] [PMID: 30232831]
[245]
Lin, Z.Z.; Zhang, H.Y.; Peng, A.H.; Lin, Y.D.; Li, L.; Huang, Z.Y. Determination of malachite green in aquatic products based on magnetic molecularly imprinted polymers. Food Chem., 2016, 200, 32-37.
[http://dx.doi.org/10.1016/j.foodchem.2016.01.001] [PMID: 26830557]
[246]
Zhao, B.; He, M.; Chen, B.; Hu, B. Novel ion imprinted magnetic mesoporous silica for selective magnetic solid phase extraction of trace Cd followed by graphite furnace atomic absorption spectrometry detection. Spectrochim. Acta B Spectrosc., 2015, 107, 115-124.
[http://dx.doi.org/10.1016/j.sab.2015.03.005]
[247]
Liu, Z.; Hu, Z.; Liu, Y.; Meng, M.; Ni, L.; Meng, X. Monodisperse magnetic ion imprinted polymeric microparticles prepared by RAFT polymerization based on γ-Fe2O3@meso-SiO2 nanospheres for selective solid-phase extraction of Cu (ii) in water samples. RSC Advances, 2015, 5(65), 52369-52381.
[http://dx.doi.org/10.1039/C5RA07022H]
[248]
Khoddami, N.; Shemirani, F. A new magnetic ion-imprinted polymer as a highly selective sorbent for determination of cobalt in biological and environmental samples. Talanta, 2016, 146, 244-252.
[http://dx.doi.org/10.1016/j.talanta.2015.08.046] [PMID: 26695259]
[249]
Wu, X.; Li, Y.; Zhu, X.; He, C.; Wang, Q.; Liu, S. Dummy molecularly imprinted magnetic nanoparticles for dispersive solid-phase extraction and determination of bisphenol A in water samples and orange juice. Talanta, 2017, 162, 57-64.
[http://dx.doi.org/10.1016/j.talanta.2016.10.007] [PMID: 27837873]
[250]
Yuan, Y.; Liu, Y.; Teng, W.; Tan, J.; Liang, Y.; Tang, Y. Preparation of core-shell magnetic molecular imprinted polymer with binary monomer for the fast and selective extraction of bisphenol A from milk. J. Chromatogr. A, 2016, 1462, 2-7.
[http://dx.doi.org/10.1016/j.chroma.2016.06.045] [PMID: 27497721]
[251]
Huang, Y.; Zhao, T.; He, J. Preparation of magnetic molecularly imprinted polymers for the rapid detection of diethylstilbestrol in milk samples. J. Sci. Food Agric., 2019, 99(9), 4452-4459.
[http://dx.doi.org/10.1002/jsfa.9682] [PMID: 30866048]
[252]
Li, J.; Dong, R.; Wang, X.; Xiong, H.; Xu, S.; Shen, D. One-pot synthesis of magnetic molecularly imprinted microspheres by RAFT precipitation polymerization for the fast and selective removal of 17β-estradiol. RSC Advances, 2015, 5(14), 10611-10618.
[http://dx.doi.org/10.1039/C4RA11177J]
[253]
Zhao, X.; Chen, L. Analysis of melamine in milk powder by using a magnetic molecularly imprinted polymer based on carbon nanotubes with ultra high performance liquid chromatography and tandem mass spectrometry. J. Sep. Sci., 2016, 39(19), 3775-3781.
[http://dx.doi.org/10.1002/jssc.201600625] [PMID: 27504791]
[254]
Xie, X.; Chen, L.; Pan, X.; Wang, S. Synthesis of magnetic molecularly imprinted polymers by reversible addition fragmentation chain transfer strategy and its application in the Sudan dyes residue analysis. J. Chromatogr. A, 2015, 1405, 32-39.
[http://dx.doi.org/10.1016/j.chroma.2015.05.068] [PMID: 26077971]
[255]
Fu, H.; Xu, W.; Wang, H.; Liao, S.; Chen, G. Preparation of magnetic molecularly imprinted polymers for the identification of zearalenone in grains. Anal. Bioanal. Chem., 2020, 412(19), 4725-4737.
[http://dx.doi.org/10.1007/s00216-020-02729-y] [PMID: 32476035]
[256]
Zhang, Y.; Liu, D.; Peng, J.; Cui, Y.; Shi, Y.; He, H. Magnetic hyperbranched molecularly imprinted polymers for selective enrichment and determination of zearalenone in wheat proceeded by HPLC-DAD analysis. Talanta, 2020, 209, 120555.
[http://dx.doi.org/10.1016/j.talanta.2019.120555] [PMID: 31892075]
[257]
Liu, J.M.; Wei, S.Y.; Liu, H.L.; Fang, G.Z.; Wang, S. Preparation and evaluation of core–shell magnetic molecularly imprinted polymers for solid-phase extraction and determination of Sterigmatocystin in food. Polymers (Basel), 2017, 9(10), 1-13.
[http://dx.doi.org/10.3390/polym9100546]
[258]
Laskar, N.; Ghoshal, D.; Gupta, S. Chitosan-based magnetic molecularly imprinted polymer: Synthesis and application in selective recognition of tricyclazole from rice and water samples. Iran. Polym. J., 2021, 30(2), 121-134.
[http://dx.doi.org/10.1007/s13726-020-00878-6]
[259]
Kolaei, M.; Dashtian, K.; Rafiee, Z.; Ghaedi, M. Ultrasonic-assisted magnetic solid phase extraction of morphine in urine samples by new imprinted polymer-supported on MWCNT-Fe3O4-NPs: Central composite design optimization. Ultrason. Sonochem., 2016, 33, 240-248.
[http://dx.doi.org/10.1016/j.ultsonch.2016.05.003] [PMID: 27245975]
[260]
Wang, R.; Cui, Y.; Hu, F.; Liu, W.; Du, Q.; Zhang, Y.; Zha, J.; Huang, T.; Fizir, M.; He, H. Selective recognition and enrichment of carbamazepine in biological samples by magnetic imprinted polymer based on reversible addition-fragmentation chain transfer polymerization. J. Chromatogr. A, 2019, 1591, 62-70.
[http://dx.doi.org/10.1016/j.chroma.2019.01.057] [PMID: 30712819]
[261]
Santos, A.C.; de Araújo, O.R.; Moura, F.A.; Khan, S.; Tanaka, A.A.; Santana, A.E. Development of magnetic nanoparticles modified with new molecularly imprinted polymer (MIPs) for selective analysis of glutathione. Sens. Actuators B Chem., 2021, 130171.
[http://dx.doi.org/10.1016/j.snb.2021.130171]
[262]
Pebdani, A.A.; Shabani, A.M.; Dadfarnia, S. Selective separation and determination of diclofenac via magnetic molecularly imprinted polymer and spectrophotometry. J. Indian Chem. Soc., 2016, 13(1), 155-164.
[263]
Kamari, K.; Taheri, A. Preparation and evaluation of magnetic core–shell mesoporous molecularly imprinted polymers for selective adsorption of amitriptyline in biological samples. J. Taiwan Inst. Chem. Eng., 2018, 86, 230-239.
[http://dx.doi.org/10.1016/j.jtice.2018.02.031]
[264]
Wang, Y.F.; Jin, H.X.; Wang, Y.G.; Yang, L.Y.; OuYang, X.K.; Wu, W.J. Synthesis and characterization of magnetic molecularly imprinted polymer for the enrichment of ofloxacin enantiomers in fish samples. Molecules, 2016, 21(7), 915.
[http://dx.doi.org/10.3390/molecules21070915] [PMID: 27428943]
[265]
Zhang, Y.; Xie, Y.; Zhang, C.; Wu, M.; Feng, S. Preparation of porous magnetic molecularly imprinted polymers for fast and specifically extracting trace norfloxacin residue in pork liver. J. Sep. Sci., 2020, 43(2), 478-485.
[http://dx.doi.org/10.1002/jssc.201900589] [PMID: 31633312]
[266]
Xie, Z.; Chen, Y.; Zhang, L.; Hu, X. Magnetic molecularly imprinted polymer combined with high performance liquid chromatography for selective extraction and determination of the metabolic content of quercetin in rat plasma. J. Biomater. Sci. Polym. Ed., 2020, 31(1), 53-71.
[http://dx.doi.org/10.1080/09205063.2019.1675224] [PMID: 31566488]
[267]
Sheykhaghaei, G.; Hossainisadr, M.; Khanahmadzadeh, S.; Seyedsajadi, M.; Alipouramjad, A. Magnetic molecularly imprinted polymer nanoparticles for selective solid phase extraction and pre-concentration of Tizanidine in human urine. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1011, 1-5.
[http://dx.doi.org/10.1016/j.jchromb.2015.12.013] [PMID: 26744788]
[268]
Safdarian, M.; Ramezani, Z.; Ghadiri, A.A. Facile synthesis of magnetic molecularly imprinted polymer: Perphenazine template and its application in urine and plasma analysis. J. Chromatogr. A, 2016, 1455, 28-36.
[http://dx.doi.org/10.1016/j.chroma.2016.05.083] [PMID: 27302687]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy