Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Butyrate Inhibits Gastric Cancer Cells by Inducing Mitochondriamediated Apoptosis

Author(s): Ke Zhang, Xiawei Ji, Zhengyang Song, Fangquan Wu, Yue Qu, Xiaofeng Jin, Xiangyang Xue, Fangyan Wang* and Yingpeng Huang*

Volume 26, Issue 3, 2023

Published on: 12 October, 2022

Page: [630 - 638] Pages: 9

DOI: 10.2174/1386207325666220720114642

Price: $65

conference banner
Abstract

Background: Gastric cancer (GC) remains a common cause of cancer death in East Asia. Current treatment strategies for GC, including medical and surgical interventions, are suboptimal. Butyrate, a short-chain fatty acid produced by the intestinal flora, has been reported to be able to inhibit gastric carcinogenesis. This study aimed to investigate the effects of butyrate on human GC and its underlying mechanisms.

Materials and Methods: Human GC cell lines BGC-823 and SGC-7901, human GC tissues and adjacent normal tissues were used for this study. Cell proliferation was assessed using CCK-8 and EdU staining. TUNEL fluorescence and Annexin V/PI staining were adopted for qualitative and quantitative evaluation of cell apoptosis, respectively. Reactive oxygen species (ROS) assay was performed to analyse mitochondrial function. Real-time q-PCR and western blot were carried out to examine the expression of apoptosis-related genes and the synthesis of apoptosis-related proteins. The association between G protein-coupled receptor 109a (GPR109a) and GC prognosis was analyzed using data from The Cancer Genome Atlas (TCGA).

Results: CCK-8 and EdU staining confirmed inhibitory activities of butyrate against human GC cells. Annexin V/PI staining and TUNEL fluorescence microscopy showed that butyrate promoted GC cell apoptosis. No difference in the expression of GPR109a was found between GC tissues and adjacent normal tissues, and no direct association between GPR109a and GC prognosis was discovered, suggesting that GPR109a may not be a key factor mediating the apoptosis of GC cells. Butyrate increased the synthesis of caspase 9 and decreased BCL-2, the well-known effector and regulator of mitochondria-mediated apoptosis, and significantly induced mitochondrial ROS.

Conclusion: Collectively, our results suggest that butyrate is able to inhibit the proliferation of GC cells and induce GC apoptosis, possibly via a mitochondrial pathway.

Keywords: Butyrate, gastric cancer, inhibitory effect, mitochondria, apoptosis

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of inci-dence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Guilloteau, P.; Martin, L.; Eeckhaut, V.; Ducatelle, R.; Zabielski, R.; Van Immerseel, F. From the gut to the peripheral tissues: The multiple effects of butyrate. Nutr. Res. Rev., 2010, 23(2), 366-384.
[http://dx.doi.org/10.1017/S0954422410000247] [PMID: 20937167]
[3]
Ma, X.; Zhou, Z.; Zhang, X.; Fan, M.; Hong, Y.; Feng, Y.; Dong, Q.; Diao, H.; Wang, G. Sodium butyrate modulates gut microbiota and immune response in colorectal cancer liver metastatic mice. Cell Biol. Toxicol., 2020, 36(5), 509-515.
[http://dx.doi.org/10.1007/s10565-020-09518-4] [PMID: 32172331]
[4]
Stilling, R.M.; van de Wouw, M.; Clarke, G.; Stanton, C.; Dinan, T.G.; Cryan, J.F. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? Neurochem. Int., 2016, 99, 110-132.
[http://dx.doi.org/10.1016/j.neuint.2016.06.011] [PMID: 27346602]
[5]
Hamer, H.M.; Jonkers, D.; Venema, K.; Vanhoutvin, S.; Troost, F.J.; Brummer, R.J. Review article: The role of butyrate on colonic func-tion. Aliment. Pharmacol. Ther., 2008, 27(2), 104-119.
[http://dx.doi.org/10.1111/j.1365-2036.2007.03562.x] [PMID: 17973645]
[6]
Moniri, N.H.; Farah, Q. Short-chain free-fatty acid G protein-coupled receptors in colon cancer. Biochem. Pharmacol., 2021, 186, 114483.
[http://dx.doi.org/10.1016/j.bcp.2021.114483] [PMID: 33631190]
[7]
Singh, N.; Gurav, A.; Sivaprakasam, S.; Brady, E.; Padia, R.; Shi, H.; Thangaraju, M.; Prasad, P.D.; Manicassamy, S.; Munn, D.H.; Lee, J.R.; Offermanns, S.; Ganapathy, V. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colon-ic inflammation and carcinogenesis. Immunity, 2014, 40(1), 128-139.
[http://dx.doi.org/10.1016/j.immuni.2013.12.007] [PMID: 24412617]
[8]
Sivaprakasam, S.; Prasad, P.D.; Singh, N. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis. Pharmacol. Ther., 2016, 164, 144-151.
[http://dx.doi.org/10.1016/j.pharmthera.2016.04.007] [PMID: 27113407]
[9]
Thangaraju, M.; Cresci, G.A.; Liu, K.; Ananth, S.; Gnanaprakasam, J.P.; Browning, D.D.; Mellinger, J.D.; Smith, S.B.; Digby, G.J.; Lam-bert, N.A.; Prasad, P.D.; Ganapathy, V. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res., 2009, 69(7), 2826-2832.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4466] [PMID: 19276343]
[10]
Jazirehi, A.R. Regulation of apoptosis-associated genes by histone deacetylase inhibitors: Implications in cancer therapy. Anticancer Drugs, 2010, 21(9), 805-813.
[http://dx.doi.org/10.1097/CAD.0b013e32833dad91] [PMID: 20679890]
[11]
Queirós, O.; Preto, A.; Pacheco, A.; Pinheiro, C.; Azevedo-Silva, J.; Moreira, R.; Pedro, M.; Ko, Y.H.; Pedersen, P.L.; Baltazar, F.; Casal, M. Butyrate activates the monocarboxylate transporter MCT4 expression in breast cancer cells and enhances the antitumor activity of 3-bromopyruvate. J. Bioenerg. Biomembr., 2012, 44(1), 141-153.
[http://dx.doi.org/10.1007/s10863-012-9418-3] [PMID: 22350013]
[12]
Verma, S.P.; Agarwal, A.; Das, P. Sodium butyrate induces cell death by autophagy and reactivates a tumor suppressor gene DIRAS1 in renal cell carcinoma cell line UOK146. in vitro Cell. Dev. Biol. Anim., 2018, 54(4), 295-303.
[http://dx.doi.org/10.1007/s11626-018-0239-5] [PMID: 29556894]
[13]
Xi, L.; Chen, G.; Zhou, J.; Xu, G.; Wang, S.; Wu, P.; Zhu, T.; Zhang, A.; Yang, W.; Xu, Q.; Lu, Y.; Ma, D. Inhibition of telomerase en-hances apoptosis induced by sodium butyrate via mitochondrial pathway. Apoptosis, 2006, 11(5), 789-798.
[14]
Fuchs, Y.; Steller, H. Programmed cell death in animal development and disease. Cell, 2011, 147(4), 742-758.
[http://dx.doi.org/10.1016/j.cell.2011.10.033] [PMID: 22078876]
[15]
Hassan, M.; Watari, H.; AbuAlmaaty, A.; Ohba, Y.; Sakuragi, N. Apoptosis and molecular targeting therapy in cancer. BioMed Res. Int., 2014, 2014, 150845.
[http://dx.doi.org/10.1155/2014/150845] [PMID: 25013758]
[16]
Ocker, M.; Höpfner, M. Apoptosis-modulating drugs for improved cancer therapy. European Surg. Res., 2012, 48(3), 111-120.
[17]
Gupta, S.; Kass, G.E.; Szegezdi, E.; Joseph, B. The mitochondrial death pathway: A promising therapeutic target in diseases. J. Cell. Mol. Med., 2009, 13(6), 1004-1033.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00697.x] [PMID: 19220575]
[18]
Iurlaro, R.; Muñoz-Pinedo, C. Cell death induced by endoplasmic reticulum stress. FEBS J., 2016, 283(14), 2640-2652.
[http://dx.doi.org/10.1111/febs.13598] [PMID: 26587781]
[19]
Lee, E.W.; Kim, J.H.; Ahn, Y.H.; Seo, J.; Ko, A.; Jeong, M.; Kim, S.J.; Ro, J.Y.; Park, K.M.; Lee, H.W.; Park, E.J.; Chun, K.H.; Song, J. Ubiquitination and degradation of the FADD adaptor protein regulate death receptor-mediated apoptosis and necroptosis. Nat. Commun., 2012, 3, 978.
[http://dx.doi.org/10.1038/ncomms1981] [PMID: 22864571]
[20]
Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G. Apoptosis as anticancer mechanism: Function and dysfunction of its modu-lators and targeted therapeutic strategies. Aging (Albany NY), 2016, 8(4), 603-619.
[http://dx.doi.org/10.18632/aging.100934] [PMID: 27019364]
[21]
Di Sano, F.; Ferraro, E.; Tufi, R.; Achsel, T.; Piacentini, M.; Cecconi, F. Endoplasmic reticulum stress induces apoptosis by an apopto-some-dependent but caspase 12-independent mechanism. J. Biol. Chem., 2006, 281(5), 2693-2700.
[http://dx.doi.org/10.1074/jbc.M509110200] [PMID: 16317003]
[22]
Chen, M.; Jiang, W.; Xiao, C.; Yang, W.; Qin, Q.; Mao, A.; Tan, Q.; Lian, B.; Wei, C. Sodium butyrate combined with docetaxel for the treatment of lung adenocarcinoma A549 Cells by targeting Gli1. OncoTargets Ther., 2020, 13, 8861-8875.
[http://dx.doi.org/10.2147/OTT.S252323] [PMID: 32982280]
[23]
Sebastián, C.; Mostoslavsky, R. Untangling the fiber yarn: Butyrate feeds warburg to suppress colorectal cancer. Cancer Discov., 2014, 4(12), 1368-1370.
[http://dx.doi.org/10.1158/2159-8290.CD-14-1231] [PMID: 25477104]
[24]
Semaan, J.; El-Hakim, S.; Ibrahim, J.N.; Safi, R.; Elnar, A.A.; El Boustany, C. Comparative effect of sodium butyrate and sodium propio-nate on proliferation, cell cycle and apoptosis in human breast cancer cells MCF-7. Breast Cancer, 2020, 27(4), 696-705.
[http://dx.doi.org/10.1007/s12282-020-01063-6] [PMID: 32095987]
[25]
Elangovan, S.; Pathania, R.; Ramachandran, S.; Ananth, S.; Padia, R.N.; Lan, L.; Singh, N.; Martin, P.M.; Hawthorn, L.; Prasad, P.D.; Ga-napathy, V.; Thangaraju, M. The niacin/butyrate receptor GPR109A suppresses mammary tumorigenesis by inhibiting cell survival. Cancer Res., 2014, 74(4), 1166-1178.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-1451] [PMID: 24371223]
[26]
Bai, Z.; Zhang, Z.; Ye, Y.; Wang, S. Sodium butyrate induces differentiation of gastric cancer cells to intestinal cells via the PTEN/phosphoinositide 3-kinase pathway. Cell Biol. Int., 2010, 34(12), 1141-1145.
[http://dx.doi.org/10.1042/CBI20090481] [PMID: 20718712]
[27]
Litvak, D.A.; Hwang, K.O.; Evers, B.M.; Townsend, C.M., Jr Induction of apoptosis in human gastric cancer by sodium butyrate. Anticancer Res., 2000, 20(2A), 779-784.
[PMID: 10810354]
[28]
Li, Y.; He, P.; Liu, Y.; Qi, M.; Dong, W. Combining sodium butyrate with cisplatin increases the apoptosis of gastric cancer in vivo and in vitro via the mitochondrial apoptosis pathway. Front. Pharmacol., 2021, 12, 708093.
[http://dx.doi.org/10.3389/fphar.2021.708093] [PMID: 34512341]
[29]
Rodrigues, M.F.; Carvalho, É.; Pezzuto, P.; Rumjanek, F.D.; Amoêdo, N.D. Reciprocal modulation of histone deacetylase inhibitors sodi-um butyrate and trichostatin A on the energy metabolism of breast cancer cells. J. Cell. Biochem., 2015, 116(5), 797-808.
[http://dx.doi.org/10.1002/jcb.25036] [PMID: 25510910]
[30]
Li, Q.; Cao, L.; Tian, Y.; Zhang, P.; Ding, C.; Lu, W.; Jia, C.; Shao, C.; Liu, W.; Wang, D.; Ye, H.; Hao, H. Butyrate suppresses the prolif-eration of colorectal cancer cells via targeting pyruvate kinase M2 and metabolic reprogramming. Mol. Cell. Proteomics, 2018, 17(8), 1531-1545.
[http://dx.doi.org/10.1074/mcp.RA118.000752] [PMID: 29739823]
[31]
Ristic, B.; Bhutia, Y.D.; Ganapathy, V. Cell-surface G-protein-coupled receptors for tumor-associated metabolites: A direct link to mito-chondrial dysfunction in cancer. Biochim. Biophys. Acta Rev. Cancer, 2017, 1868(1), 246-257.
[http://dx.doi.org/10.1016/j.bbcan.2017.05.003] [PMID: 28512002]
[32]
Venditti, P.; Di Meo, S. The role of reactive oxygen species in the life cycle of the mitochondrion. Int. J. Mol. Sci., 2020, 21(6), E2173.
[http://dx.doi.org/10.3390/ijms21062173] [PMID: 32245255]
[33]
Bach Knudsen, K.E.; Lærke, H.N.; Hedemann, M.S.; Nielsen, T.S.; Ingerslev, A.K.; Gundelund Nielsen, D.S.; Theil, P.K.; Purup, S.; Hald, S.; Schioldan, A.G.; Marco, M.L.; Gregersen, S.; Hermansen, K. Impact of diet-modulated butyrate production on intestinal barrier func-tion and inflammation. Nutrients, 2018, 10(10), E1499.
[http://dx.doi.org/10.3390/nu10101499] [PMID: 30322146]
[34]
Liu, J.; Wang, F.; Luo, H.; Liu, A.; Li, K.; Li, C.; Jiang, Y. Protective effect of butyrate against ethanol-induced gastric ulcers in mice by promoting the anti-inflammatory, anti-oxidant and mucosal defense mechanisms. Int. Immunopharmacol., 2016, 30, 179-187.
[http://dx.doi.org/10.1016/j.intimp.2015.11.018] [PMID: 26604089]
[35]
Zhou, Y.; Ji, X.; Chen, J.; Fu, Y.; Huang, J.; Guo, R.; Zhou, J.; Cen, J.; Zhang, Q.; Chu, A.; Huang, Y.; Xu, C.; Wang, F. Short-chain fatty acid butyrate: A novel shield against chronic gastric ulcer. Exp. Ther. Med., 2021, 21(4), 329.
[http://dx.doi.org/10.3892/etm.2021.9760] [PMID: 33732302]
[36]
Bergman, E.N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev., 1990, 70(2), 567-590.
[http://dx.doi.org/10.1152/physrev.1990.70.2.567] [PMID: 2181501]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy