Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Targeted Delivery of Doxorubicin as a Potential Chemotherapeutic Agent

Author(s): Tanmay S. Markandeywar, Raj Kumar Narang, Dilpreet Singh and Vineet Kumar Rai*

Volume 20, Issue 7, 2023

Published on: 25 August, 2022

Page: [904 - 918] Pages: 15

DOI: 10.2174/1567201819666220714101952

Price: $65

Abstract

Cancer is the world's fifth-most significant cause of related death and the second most commonly diagnosed malignancy among women and men. Some of its types, like brain cancer, colon cancer, and breast cancer, are threatened and considered fatal. These cancers are more prevalent in developed and underdeveloped countries. Still, doxorubicin is considered a gold standard drug and the only molecule used in multiple types of cancer. However, the toxicity and biopharmaceutical hindrances like poor solubility, poor permeability, and high in vivo fate of drug cause low systematic circulation. The creation of a multifunctional nanocarrier for targeted medication delivery that can transport and accumulate drugs at cancer sites should help to lessen the likelihood of side effects. These nanocarriers improve the targetability of infected tissue and the therapeutic circulation of drugs. Hence, the present review focused on the improved targetability of doxorubicin using different nanocarriers and its possible outcomes in different types of cancer. Moreover, the prior art also discussed various challenges and prospects of improved doxorubicin delivery and its therapeutic outcomes.

Keywords: Doxorubicin, breast cancer, brain cancer, colorectal cancer, cervical cancer, prostate cancer.

[1]
Tacar, O.; Sriamornsak, P.; Dass, C.R. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol., 2013, 65(2), 157-170.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01567.x] [PMID: 23278683]
[2]
Cagel, M.; Grotz, E.; Bernabeu, E.; Moretton, M.A.; Chiappetta, D.A. Doxorubicin: Nanotechnological overviews from bench to bedside. Drug Discov. Today, 2017, 22(2), 270-281.
[http://dx.doi.org/10.1016/j.drudis.2016.11.005] [PMID: 27890669]
[3]
Mehra, N.K.; Jain, K.; Jain, N.K. Chapter 14 Multifunctional carbon nanotubes in cancer therapy and imaging. In: Grumezescu, A.M.; Ed Nanobiomaterials in Medical Imaging; William Andrew Publishing: Norwich, NY, 2016; pp. 421-453.
[4]
Rivankar, S. An overview of doxorubicin formulations in cancer therapy. J. Cancer Res. Ther., 2014, 10(4), 853-858.
[http://dx.doi.org/10.4103/0973-1482.139267] [PMID: 25579518]
[5]
Thorn, C.F.; Oshiro, C.; Marsh, S.; Hernandez-Boussard, T.; McLeod, H.; Klein, T.E.; Altman, R.B. Doxorubicin pathways: Pharmacodynamics and adverse effects. Pharmacogenet. Genomics, 2011, 21(7), 440-446.
[http://dx.doi.org/10.1097/FPC.0b013e32833ffb56] [PMID: 21048526]
[6]
Geldenhuys, W.; Wehrung, D.; Groshev, A.; Hirani, A.; Sutariya, V. Brain-targeted delivery of doxorubicin using glutathione-coated nanoparticles for brain cancers. Pharm. Dev. Technol., 2015, 20(4), 497-506.
[http://dx.doi.org/10.3109/10837450.2014.892130] [PMID: 24597667]
[7]
Chen, Z.; Zhai, M.; Xie, X.; Zhang, Y.; Ma, S.; Li, Z. Apoferritin Nanocage for Brain Targeted Doxorubicin Delivery. Mol. Pharm., 2017, 14(9), 3087-3097.
[8]
Li, S.; Amat, D.; Peng, Z.; Vanni, S.; Raskin, S.; De Angulo, G.; Othman, A.M.; Graham, R.M.; Leblanc, R.M. Transferrin conjugated nontoxic carbon dots for doxorubicin delivery to target pediatric brain tumor cells. Nanoscale, 2016, 8(37), 16662-16669.
[http://dx.doi.org/10.1039/C6NR05055G] [PMID: 27714111]
[9]
Luo, M.; Lewik, G.; Ratcliffe, J.C.; Choi, C.H.J. Systematic evaluation of transferrin-modified porous silicon nanoparticles for targeted delivery of doxorubicin to glioblastoma. ACS Appl. Mater. Interfaces, 2019, 11(37), 33637-33649.
[10]
Lakkadwala, S.; Dos Santos Rodrigues, B.; Sun, C.; Singh, J. Biodistribution of TAT or QLPVM coupled to receptor targeted liposomes for delivery of anticancer therapeutics to brain in vitro and in vivo. Nanomedicine , 2020, 23, 102112.
[http://dx.doi.org/10.1016/j.nano.2019.102112] [PMID: 31669083]
[11]
Siminzar, P.; Omidi, Y. Targeted delivery of doxorubicin by magnetic mesoporous silica nanoparticles armed with mucin-1 aptamer. J. Drug Target., 2020, 28(1), 92-101.
[http://dx.doi.org/10.1080/1061186X.2019.1616745]
[12]
Gao, Y.; Xie, X.; Li, F.; Lu, Y.; Li, T.; Lian, S.; Zhang, Y.; Zhang, H.; Mei, H.; Jia, L. A novel nanomissile targeting two biomarkers and accurately bombing CTCs with doxorubicin. Nanoscale, 2017, 9(17), 5624-5640.
[http://dx.doi.org/10.1039/C7NR00273D] [PMID: 28422250]
[13]
Xia, Y.; Xu, T.; Zhao, M.; Hua, L.; Chen, Y.; Wang, C.; Tang, Y.; Zhu, B. Delivery of doxorubicin for human cervical carcinoma targeting therapy by folic acid-modified selenium nanoparticles. Int. J. Mol. Sci., 2018, 19(11), 3582.
[http://dx.doi.org/10.3390/ijms19113582] [PMID: 30428576]
[14]
IARC WBc. 2018. Available from: http://gcoiarcfr/today/data/factsheets/cancers/20-Breast-factsheetpdf
[15]
Nath, S.; Mukherjee, P. MUC1: A multifaceted oncoprotein with a key role in cancer progression. Trends Mol. Med., 2014, 20(6), 332-342.
[http://dx.doi.org/10.1016/j.molmed.2014.02.007] [PMID: 24667139]
[16]
Jing, X.; Liang, H.; Hao, C.; Yang, X.; Cui, X. Overexpression of MUC1 predicts poor prognosis in patients with breast cancer. Oncol. Rep., 2019, 41(2), 801-810.
[PMID: 30483806]
[17]
Iqbal, N.; Iqbal, N. Human epidermal growth factor receptor 2 (HER2) in cancers: Overexpression and therapeutic implications. Mol. Biol. Int., 2014, 2014, 852748.
[http://dx.doi.org/10.1155/2014/852748] [PMID: 25276427]
[18]
[19]
Pirahanchi, Y. Jessu, R; Aeddula. NR StatPearls Publishing, 2020, LLC, 2020.
[20]
Khajah, M.A.; Mathew, P.M.; Luqmani, Y.A. Na+/K+ ATPase activity promotes invasion of endocrine resistant breast cancer cells. PLoS One, 2018, 13(3), e0193779.
[21]
Wen, S.; Zhu, D.; Huang, P. Targeting cancer cell mitochondria as a therapeutic approach. Future Med. Chem., 2013, 5(1), 53-67.
[http://dx.doi.org/10.4155/fmc.12.190] [PMID: 23256813]
[22]
Cui, Q.; Wen, S.; Huang, P. Targeting cancer cell mitochondria as a therapeutic approach: Recent updates. Future Med. Chem., 2017, 9(9), 929-949.
[http://dx.doi.org/10.4155/fmc-2017-0011] [PMID: 28636410]
[23]
Fernández, M.; Javaid, F.; Chudasama, V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem. Sci. (Camb.), 2017, 9(4), 790-810.
[http://dx.doi.org/10.1039/C7SC04004K] [PMID: 29675145]
[24]
Hartmann, L.C.; Keeney, G.L.; Lingle, W.L.; Christianson, T.J.; Varghese, B.; Hillman, D.; Oberg, A.L.; Low, P.S. Folate receptor overexpression is associated with poor outcome in breast cancer. Int. J. Cancer, 2007, 121(5), 938-942.
[http://dx.doi.org/10.1002/ijc.22811] [PMID: 17487842]
[25]
Shao, W.; Brown, M. Advances in estrogen receptor biology: Prospects for improvements in targeted breast cancer therapy. Breast Cancer Res., 2004, 6(1), 39-52.
[http://dx.doi.org/10.1186/bcr742] [PMID: 14680484]
[26]
Saha Roy, S.; Vadlamudi, R.K. Role of estrogen receptor signaling in breast cancer metastasis. Int. J. Breast Cancer, 2012, 2012, 654698.
[http://dx.doi.org/10.1155/2012/654698] [PMID: 22295247]
[27]
Wardell, S.E.; Norris, J.D.; McDonnell, D.P. Targeting mutant estrogen receptors. eLife, 2019, 8, e44181.
[http://dx.doi.org/10.7554/eLife.44181] [PMID: 30648967]
[28]
Fuqua, S.A.; Cui, Y. Targeting the estrogen receptor in clinical breast cancer. Breast Dis., 2002, 15(1), 3-11.
[http://dx.doi.org/10.3233/BD-2002-15102] [PMID: 15687641]
[29]
Azevedo, R; Gaiteiro, C; Peixoto, A; Relvas-Santos, M; Lima, L; Santos, LL CD44 glycoprotein in cancer: A molecular conundrum hampering clinical applications. 2018, 15-22.
[30]
Underhill, C. CD44: The hyaluronan receptor. J. Cell Sci., 1992, 103(Pt 2), 293-298.
[http://dx.doi.org/10.1242/jcs.103.2.293] [PMID: 1282514]
[31]
Chowdhury, N.; Chaudhry, S.; Hall, N.; Olverson, G.; Zhang, Q-J.; Mandal, T.; Dash, S.; Kundu, A. Targeted delivery of doxorubicin liposomes for Her-2+ breast cancer treatment. AAPS PharmSciTech, 2020, 21(6), 202.
[http://dx.doi.org/10.1208/s12249-020-01743-8] [PMID: 32696338]
[32]
Araste, F.; Abnous, K.; Hashemi, M.; Dehshahri, A.; Detampel, P.; Alibolandi, M. Na(+)/K(+) ATPase-targeted delivery to metastatic breast cancer models. Eur. J. Pharm. Sci., 2020, 143, 105207.
[33]
Czupiel, P.; Delplace, V.; Shoichet, M. Nanoparticle delivery of a pH-sensitive prodrug of doxorubicin and a mitochondrial targeting VES-H8R8 synergistically kill multi-drug resistant breast cancer cells. Sci. Rep., 2020, 10(1), 8726.
[http://dx.doi.org/10.1038/s41598-020-65450-x] [PMID: 32457422]
[34]
Huang, C-H.; Chuang, T-J.; Ke, C-J.; Yao, C-H. Doxorubicin-gelatin/Fe3O4-alginate dual-layer magnetic nanoparticles as targeted anticancer drug delivery vehicles. Polymers (Basel), 2020, 12(8), 1747.
[http://dx.doi.org/10.3390/polym12081747] [PMID: 32764339]
[35]
Ko, N.R.; Van, S.Y.; Hong, S.H.; Kim, S.Y.; Kim, M.; Lee, J.S.; Lee, S.J.; Lee, Y.K.; Kwon, I.K.; Oh, S.J. Dual pH- and GSH-responsive degradable pegylated graphene quantum dot-based nanoparticles for enhanced HER2-positive breast cancer therapy. Nanomaterials (Basel), 2020, 10(1), E91.
[http://dx.doi.org/10.3390/nano10010091] [PMID: 31906509]
[36]
Zhang, S.Q.; Liu, X.; Sun, Q.X.; Johnson, O.; Yang, T.; Chen, M.L.; Wang, J.H.; Chen, W. CuS@PDA-FA nanocomposites: A dual stimuli-responsive DOX delivery vehicle with ultrahigh loading level for synergistic photothermal-chemotherapies on breast cancer. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(7), 1396-1404.
[http://dx.doi.org/10.1039/C9TB02440A] [PMID: 31971208]
[37]
Feng, C.; Zhang, H.; Chen, J.; Wang, S.; Xin, Y.; Qu, Y.; Zhang, Q.; Ji, W.; Yamashita, F.; Rui, M.; Xu, X. Ratiometric co-encapsulation and co-delivery of doxorubicin and paclitaxel by tumor-targeted lipodisks for combination therapy of breast cancer. Int. J. Pharm., 2019, 560, 191-204.
[http://dx.doi.org/10.1016/j.ijpharm.2019.02.009] [PMID: 30769131]
[38]
Ghosh, M.; Das, P.K. Doxorubicin loaded 17β-estradiol based SWNT dispersions for target specific killing of cancer cells. Colloids Surf. B Biointerfaces, 2016, 142, 367-376.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.005] [PMID: 26970825]
[39]
Shahriari, M.; Taghdisi, S.M.; Abnous, K.; Ramezani, M.; Alibolandi, M. Synthesis of hyaluronic acid-based polymersomes for doxorubicin delivery to metastatic breast cancer. Int. J. Pharm., 2019, 572, 118835.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118835] [PMID: 31726198]
[40]
Naruphontjirakul, P.; Viravaidya-Pasuwat, K. Development of anti-HER2-targeted doxorubicin-core-shell chitosan nanoparticles for the treatment of human breast cancer. Int. J. Nanomedicine, 2019, 14, 4105-4121.
[http://dx.doi.org/10.2147/IJN.S198552] [PMID: 31239670]
[41]
Anti-EGFR immunoliposomes in solid tumors. ClinicalTrials.gov Identifier. NCT01702129, Available from, https://clinicaltrials.gov/ct2/show/NCT01702129
[42]
Mamot, C.; Drummond, D.C.; Greiser, U.; Hong, K.; Kirpotin, D.B.; Marks, J.D.; Park, J.W. Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvIII-overexpressing tumor cells. Cancer Res., 2003, 63(12), 3154-3161.
[PMID: 12810643]
[43]
Liu, Z.; Wang, F.; Chen, X. Integrin alpha(v)beta(3)-targeted cancer therapy. Drug Dev. Res., 2008, 69(6), 329-339.
[http://dx.doi.org/10.1002/ddr.20265] [PMID: 20628538]
[44]
Luria-Pérez, R.; Helguera, G.; Rodríguez, J.A. Antibody-mediated targeting of the transferrin receptor in cancer cells. Bol. Méd. Hosp. Infant. México, 2016, 73(6), 372-379.
[http://dx.doi.org/10.1016/j.bmhimx.2016.11.004] [PMID: 29421281]
[45]
Mo, X.; Liu, E.; Huang, Y. 16 - The intra-brain distribution of brain targeting delivery systems.Brain Targeted Drug Delivery System. In: Gao, H.; Gao, X., Eds.; ; Academic Press: Cambridge, Massachusetts, 2019, pp. 409-438.
[http://dx.doi.org/10.1016/B978-0-12-814001-7.00016-0]
[46]
Alexandru, O.; Horescu, C.; Sevastre, A-S.; Cioc, C.E.; Baloi, C.; Oprita, A.; Dricu, A. Receptor tyrosine kinase targeting in glioblastoma: Performance, limitations and future approaches. Contemp. Oncol. (Pozn.), 2020, 24(1), 55-66.
[http://dx.doi.org/10.5114/wo.2020.94726] [PMID: 32514239]
[47]
Wang, K.; Huang, R.; Wu, C.; Li, G.; Zhao, Z.; Hu, H.; Liu, Y. Receptor tyrosine kinase expression in high-grade gliomas before and after chemoradiotherapy. Oncol. Lett., 2019, 18(6), 6509-6515.
[http://dx.doi.org/10.3892/ol.2019.11017] [PMID: 31807171]
[48]
Byeon, H.J. Thao, le Q.; Lee, S.; Min, S.Y.; Lee, E.S.; Shin, B.S. Doxorubicin-loaded nanoparticles consisted of cationic- and mannose-modified-albumins for dual-targeting in brain tumors. J. Control. Release, 2016, 225, 301-313.
[49]
MacDiarmid, J.A.; Langova, V.; Bailey, D.; Pattison, S.T.; Pattison, S.L.; Christensen, N. Targeted doxorubicin delivery to brain tumors via minicells: Proof of principle using dogs with spontaneously occurring tumors as a model. PLoS One, 2016, 11(4), e0151832.
[50]
Chung, K.; Ullah, I.; Kim, N.; Lim, J.; Shin, J.; Lee, S.C.; Jeon, S.; Kim, S.H.; Kumar, P.; Lee, S.K. Intranasal delivery of cancer-targeting doxorubicin-loaded PLGA nanoparticles arrests glioblastoma growth. J. Drug Target., 2020, 28(6), 617-626.
[http://dx.doi.org/10.1080/1061186X.2019.1706095] [PMID: 31852284]
[51]
De Pasquale, D.; Marino, A.; Tapeinos, C.; Pucci, C.; Rocchiccioli, S.; Michelucci, E.; Finamore, F.; McDonnell, L.; Scarpellini, A.; Lauciello, S.; Prato, M.; Larrañaga, A.; Drago, F.; Ciofani, G. Homotypic targeting and drug delivery in glioblastoma cells through cell membrane-coated boron nitride nanotubes. Mater. Des., 2020, 192, 108742.
[http://dx.doi.org/10.1016/j.matdes.2020.108742] [PMID: 32394995]
[52]
Sharma, P.; Roberts, C.; Herpai, D.; Fokt, I.D.; Priebe, W.; Debinski, W. Drug conjugates for targeting Eph receptors in glioblastoma. Pharmaceuticals (Basel), 2020, 13(4), 77.
[http://dx.doi.org/10.3390/ph13040077] [PMID: 32340173]
[53]
Shaghaghi, B.; Khoee, S.; Bonakdar, S. Preparation of multifunctional Janus nanoparticles on the basis of SPIONs as targeted drug delivery system. Int. J. Pharm., 2019, 559, 1-12.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.020] [PMID: 30664992]
[54]
Luque-Michel, E.; Sebastian, V.; Larrea, A.; Marquina, C.; Blanco-Prieto, M.J. Co-encapsulation of superparamagnetic nanoparticles and doxorubicin in PLGA nanocarriers: Development, characterization and in vitro antitumor efficacy in glioma cells. Eur. J. Pharm. Biopharm., 2019, 145, 65-75.
[http://dx.doi.org/10.1016/j.ejpb.2019.10.004] [PMID: 31628997]
[55]
Skouras, A.; Papadia, K.; Mourtas, S.; Klepetsanis, P.; Antimisiaris, S.G. Multifunctional doxorubicin-loaded magnetoliposomes with active and magnetic targeting properties. Eur. J. Pharm. Sci., 2018, 123, 162-172.
[http://dx.doi.org/10.1016/j.ejps.2018.07.044]
[56]
Babincová, N.; Sourivong, P.; Babinec, P.; Bergemann, C.; Babincová, M.; Durdík, Š. Applications of magnetoliposomes with encapsulated doxorubicin for integrated chemotherapy and hyperthermia of rat C6 glioma. Zeitschrift fur Naturforschung C. J. Biosci., 2018, 73.
[57]
Milanesi, E.; Dobre, M.; Bucuroiu, A.I.; Herlea, V.; Manuc, T.E.; Salvi, A.; De Petro, G.; Manuc, M.; Becheanu, G. MiRNAs-based molecular signature for KRAS mutated and wild type colorectal cancer: An explorative study. J. Immunol. Res., 2020, 2020, 4927120.
[http://dx.doi.org/10.1155/2020/4927120] [PMID: 32676506]
[58]
Mhaidat, N.M.; Alzoubi, K.H.; Khabour, O.F.; Banihani, M.N.; Al-Balas, Q.A.; Swaidan, S. GRP78 regulates sensitivity of human colorectal cancer cells to DNA targeting agents. Cytotechnology, 2016, 68(3), 459-467.
[http://dx.doi.org/10.1007/s10616-014-9799-8] [PMID: 25399254]
[59]
Mhaidat, N.M.; Alzoubi, K.H.; Almomani, N.; Khabour, O.F. Expression of glucose regulated protein 78 (GRP78) determines colorectal cancer response to chemotherapy. Dis. Markers, 2015, 15(2), 197-203.
[http://dx.doi.org/10.3233/CBM-140454] [PMID: 25519021]
[60]
Lee, J.H.; Yoon, Y.M.; Lee, S.H. GRP78 regulates apoptosis, cell survival and proliferation in 5-fluorouracil-resistant SNUC5 colon cancer cells. Anticancer Res., 2017, 37(9), 4943-4951.
[PMID: 28870916]
[61]
Gires, O.; Pan, M.; Schinke, H.; Canis, M.; Baeuerle, P.A. Expression and function of epithelial cell adhesion molecule EpCAM: Where are we after 40 years? Cancer Metastasis Rev., 2020, 39(3), 969-987.
[http://dx.doi.org/10.1007/s10555-020-09898-3] [PMID: 32507912]
[62]
Carreras-Sangrà, N.; Tomé-Amat, J.; García-Ortega, L.; Batt, C.A.; Oñaderra, M.; Martínez-del-Pozo, A.; Gavilanes, J.G.; Lacadena, J. Production and characterization of a colon cancer-specific immunotoxin based on the fungal ribotoxin α-sarcin. Protein Eng. Des. Sel., 2012, 25(8), 425-435.
[http://dx.doi.org/10.1093/protein/gzs032] [PMID: 22718791]
[63]
Garinchesa, P.; Sakamoto, J.; Welt, S.; Real, F.; Rettig, W.; Old, L. Organ-specific expression of the colon cancer antigen A33, a cell surface target for antibody-based therapy. Int. J. Oncol., 1996, 9(3), 465-471.
[http://dx.doi.org/10.3892/ijo.9.3.465] [PMID: 21541536]
[64]
Xiong, M.; Lei, Q.; You, X.; Gao, T.; Song, X.; Xia, Y.; Ye, T.; Zhang, L.; Wang, N.; Yu, L. Mannosylated liposomes improve therapeutic effects of paclitaxel in colon cancer models. J. Microencapsul., 2017, 34(6), 513-521.
[http://dx.doi.org/10.1080/02652048.2017.1339739] [PMID: 28705043]
[65]
Jahagirdar, P.; Lokhande, A.; Dandekar, P.; Devarajan, P. Mannose receptor and targeting strategies. In: Devarajan, P.; Dandekar, P.; D'Souza, A.; Eds. Targeted Intracellular Drug Delivery by Receptor Mediated Endocytosis; Springer: Cham, 2019; pp. 433-456.
[66]
Kang, X-J.; Wang, H-Y.; Peng, H-G.; Chen, B-F.; Zhang, W-Y.; Wu, A-H.; Xu, Q.; Huang, Y.Z. Codelivery of dihydroartemisinin and doxorubicin in mannosylated liposomes for drug-resistant colon cancer therapy. Acta Pharmacol. Sin., 2017, 38(6), 885-896.
[http://dx.doi.org/10.1038/aps.2017.10] [PMID: 28479604]
[67]
Chen, K.; Chen, X. Integrin targeted delivery of chemotherapeutics. Theranostics, 2011, 1, 189-200.
[http://dx.doi.org/10.7150/thno/v01p0189] [PMID: 21547159]
[68]
Wu, P-H.; Opadele, A.E.; Onodera, Y.; Nam, J-M. Targeting integrins in cancer nanomedicine: applications in cancer diagnosis and therapy. Cancers (Basel), 2019, 11(11), 1783.
[http://dx.doi.org/10.3390/cancers11111783] [PMID: 31766201]
[69]
Marelli, U.K.; Rechenmacher, F.; Sobahi, T.R.; Mas-Moruno, C.; Kessler, H. Tumor targeting via integrin ligands. Front. Oncol., 2013, 3, 222.
[http://dx.doi.org/10.3389/fonc.2013.00222] [PMID: 24010121]
[70]
Zhao, L.; Yu, H.; Yi, S.; Peng, X.; Su, P.; Xiao, Z.; Liu, R.; Tang, A.; Li, X.; Liu, F.; Shen, S. The tumor suppressor miR-138-5p targets PD-L1 in colorectal cancer. Oncotarget, 2016, 7(29), 45370-45384.
[http://dx.doi.org/10.18632/oncotarget.9659] [PMID: 27248318]
[71]
Chen, X.Y.; Zhang, J.; Hou, L.D.; Zhang, R.; Chen, W.; Fan, H.N.; Huang, Y.X.; Liu, H.; Zhu, J.S. Upregulation of PD-L1 predicts poor prognosis and is associated with miR-191-5p dysregulation in colon adenocarcinoma. Int. J. Immunopathol. Pharmacol., 2018, 32, 2058738418790318.
[http://dx.doi.org/10.1177/2058738418790318] [PMID: 30045644]
[72]
Shibuya, M. Vascular Endothelial Growth Factor (VEGF) and its Receptor (VEGFR) signaling in angiogenesis: A crucial target for anti- and pro-angiogenic therapies. Genes Cancer, 2011, 2(12), 1097-1105.
[http://dx.doi.org/10.1177/1947601911423031] [PMID: 22866201]
[73]
Daniels, T.R.; Bernabeu, E.; Rodríguez, J.A.; Patel, S.; Kozman, M.; Chiappetta, D.A.; Holler, E.; Ljubimova, J.Y.; Helguera, G.; Penichet, M.L. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim. Biophys. Acta, 2012, 1820(3), 291-317.
[http://dx.doi.org/10.1016/j.bbagen.2011.07.016] [PMID: 21851850]
[74]
Jiang, Y.; Guo, Z.; Fang, J.; Wang, B.; Lin, Z.; Chen, Z-S.; Chen, Y.; Zhang, N.; Yang, X.; Gao, W. A multi-functionalized nanocomposite constructed by gold nanorod core with triple-layer coating to combat multidrug resistant colorectal cancer. Mater. Sci. Eng. C, 2020, 107, 110224.
[http://dx.doi.org/10.1016/j.msec.2019.110224] [PMID: 31761194]
[75]
Ding, G.B.; Sun, J.; Yang, P.; Li, B. A novel doxorubicin prodrug with GRP78 recognition and nucleus-targeting ability for safe and effective cancer therapy. Mol. Pharm., 2018, 15(1), 238-246.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00830]
[76]
Li, Y.; Gao, Y.; Gong, C.; Wang, Z.; Xia, Q.; Gu, F.; Hu, C.; Zhang, L.; Guo, H.; Gao, S. A33 antibody-functionalized exosomes for targeted delivery of doxorubicin against colorectal cancer. Nanomedicine , 2018, 14(7), 1973-1985.
[http://dx.doi.org/10.1016/j.nano.2018.05.020] [PMID: 29935333]
[77]
Cheewatanakornkool, K.; Niratisai, S.; Manchun, S.; Dass, C.R.; Sriamornsak, P. Characterization and in vitro release studies of oral microbeads containing thiolated pectin-doxorubicin conjugates for colorectal cancer treatment. Asian J. Pharm. Sci., 2017, 12(6), 509-520.
[http://dx.doi.org/10.1016/j.ajps.2017.07.005] [PMID: 32104364]
[78]
Gu, X.; Wei, Y.; Fan, Q.; Sun, H.; Cheng, R. Zhong, Z cRGD-decorated biodegradable polytyrosine nanoparticles for robust encapsulation and targeted delivery of doxorubicin to colorectal cancer in vivo. J. Control. Release, 2019, 301, 110-118.
[79]
Emami, F.; Banstola, A.; Vatanara, A.; Lee, S.; Kim, J.O.; Jeong, J-H.; Yook, S. Doxorubicin and anti-PD-L1 antibody conjugated gold nanoparticles for colorectal cancer photochemotherapy. Mol. Pharm., 2019, 16(3), 1184-1199.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01157] [PMID: 30698975]
[80]
Liu, Y.; Zhao, J.; Jiang, J.; Chen, F.; Fang, X. Doxorubicin delivered using nanoparticles camouflaged with mesenchymal stem cell membranes to treat colon cancer. Int. J. Nanomedicine, 2020, 15, 2873-2884.
[http://dx.doi.org/10.2147/IJN.S242787] [PMID: 32368059]
[81]
Thao, Q.; Byeon, H.J.; Lee, C.; Lee, S.; Lee, E.S.; Choi, Y.W.; Choi, H.G.; Park, E.S.; Lee, K.C.; Youn, Y.S. Doxorubicin-bound albumin nanoparticles containing a TRAIL protein for targeted treatment of colon cancer. Pharm. Res., 2016, 33(3), 615-626.
[http://dx.doi.org/10.1007/s11095-015-1814-z] [PMID: 26526555]
[82]
Lee, C.S.; Kim, H.; Yu, J.; Yu, S.H.; Ban, S.; Oh, S.; Jeong, D. Im, J.; Baek, M.J.; Kim, T.H. Doxorubicin-loaded oligonucleotide conjugated gold nanoparticles: A promising in vivo drug delivery system for colorectal cancer therapy. Eur. J. Med. Chem., 2017, 142, 416-423.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.063] [PMID: 28870452]
[83]
Li, M.; Tang, Z.; Zhang, D.; Sun, H.; Liu, H.; Zhang, Y.; Zhang, Y.; Chen, X. Doxorubicin-loaded polysaccharide nanoparticles suppress the growth of murine colorectal carcinoma and inhibit the metastasis of murine mammary carcinoma in rodent models. Biomaterials, 2015, 51, 161-172.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.002] [PMID: 25771007]
[84]
Manchun, S.; Dass, C.R.; Cheewatanakornkool, K.; Sriamornsak, P. Enhanced anti-tumor effect of pH-responsive dextrin nanogels delivering doxorubicin on colorectal cancer. Carbohydr. Polym., 2015, 126, 222-230.
[http://dx.doi.org/10.1016/j.carbpol.2015.03.018] [PMID: 25933543]
[85]
Hu, Y.; Wu, C.; Zhu, C.; Fu, Q.; Guo, J.; Deng, L.; He, Y.; Yang, D.; Cheng, Y.; Gao, X. Enhanced uptake and improved anti-tumor efficacy of doxorubicin loaded fibrin gel with liposomal apatinib in colorectal cancer. Int. J. Pharm., 2018, 552(1-2), 319-327.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.013] [PMID: 30308269]
[86]
Wei, Y.; Gu, X.; Sun, Y.; Meng, F.; Storm, G.; Zhong, Z. Transferrin-binding peptide functionalized polymersomes mediate targeted doxorubicin delivery to colorectal cancer in vivo. J. Control. Release, 2020, 319, 407-415.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.012] [PMID: 31923538]
[87]
Ilbasmis-Tamer, S.; Unsal, H.; Tugcu-Demiroz, F.; Kalaycioglu, G.D.; Degim, I.T.; Aydogan, N. Stimuli-responsive lipid nanotubes in gel formulations for the delivery of doxorubicin. Colloids Surf. B Biointerfaces, 2016, 143, 406-414.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.070] [PMID: 27037777]
[88]
Andhari, S.S.; Wavhale, R.D.; Dhobale, K.D.; Tawade, B.V.; Chate, G.P.; Patil, Y.N.; Khandare, J.J.; Banerjee, S.S. Self-propelling targeted magneto-nanobots for deep tumor penetration and pH-responsive intracellular drug delivery. Sci. Rep., 2020, 10(1), 4703.
[http://dx.doi.org/10.1038/s41598-020-61586-y] [PMID: 32170128]
[90]
Saha, S.; Majumdar, R.; Hussain, A.; Dighe, R. Chakravarty, A Biotin-conjugated tumour-targeting photocytotoxic iron(III) complexes. Philos. Trans.- A Math. Phys. Eng. Sci., 2013, 371, 20120190.
[91]
Andersson, J.; Rosestedt, M.; Asplund, V.; Yavari, N.; Orlova, A. In vitro modeling of HER2-targeting therapy in disseminated prostate cancer. Int. J. Oncol., 2014, 45(5), 2153-2158.
[http://dx.doi.org/10.3892/ijo.2014.2628] [PMID: 25176024]
[92]
Available from: https://gcoiarcfr/today/online-analysistable? v=2018&mode=cancer&mode_population=continents&populat ion=900&populations=900&key=asr&sex=0&cancer=39&type=1 &statistic=5&prevalence=0&population_group=0&ages_group%5 B%5D=0&ages_group%5B%5D=17&group_cancer=1&include_nmsc=1&include_nmsc_other=1
[93]
Calvo, B.F.; Levine, A.M.; Marcos, M.; Collins, Q.F.; Iacocca, M.V.; Caskey, L.S.; Gregory, C.W.; Lin, Y.; Whang, Y.E.; Earp, H.S.; Mohler, J.L. Human epidermal receptor-2 expression in prostate cancer. Clin. Cancer Res., 2003, 9(3), 1087-1097.
[PMID: 12631612]
[94]
Sharifi, N.; Salmaninejad, A.; Ferdosi, S.; Bajestani, A.N.; Khaleghiyan, M.; Estiar, M.A.; Jamali, M.; Nowroozi, M.R.; Shakoori, A. HER2 gene amplification in patients with prostate cancer: Evaluating a CISH-based method. Oncol. Lett., 2016, 12(6), 4651-4658.
[http://dx.doi.org/10.3892/ol.2016.5235] [PMID: 28105172]
[95]
Li, W.; Qian, L.; Lin, J.; Huang, G.; Hao, N.; Wei, X.; Wang, W.; Liang, J. CD44 regulates prostate cancer proliferation, invasion and migration via PDK1 and PFKFB4. Oncotarget, 2017, 8(39), 65143-65151.
[http://dx.doi.org/10.18632/oncotarget.17821] [PMID: 29029419]
[96]
Senbanjo, L.T.; Chellaiah, M.A. CD44: A multifunctional cell surface adhesion receptor is a regulator of progression and metastasis of cancer cells. Front. Cell Dev. Biol., 2017, 5, 18.
[http://dx.doi.org/10.3389/fcell.2017.00018] [PMID: 28326306]
[97]
Di Stefano, C.; Grazioli, P.; Fontanella, R.A.; De Cesaris, P.; D’Amore, A.; Regno, M.; Starace, D.; Padula, F.; Fiori, M.E.; Canipari, R.; Stoppacciaro, A.; Pesce, M.; Filippini, A.; Campese, A.F.; Ziparo, E.; Riccioli, A. Stem-like and highly invasive prostate cancer cells expressing CD44v8-10 marker originate from CD44-negative cells. Oncotarget, 2018, 9(56), 30905-30918.
[http://dx.doi.org/10.18632/oncotarget.25773] [PMID: 30112117]
[98]
Brockers, K.; Schneider, R. Histone H1, the forgotten histone. Epigenomics, 2019, 11(4), 363-366.
[http://dx.doi.org/10.2217/epi-2019-0018] [PMID: 30793938]
[99]
Zhang, S.; Li, Z-T.; Liu, M.; Wang, J-R.; Xu, M-Q.; Li, Z-Y.; Duan, X.C.; Hao, Y.L.; Zheng, X.C.; Li, H.; Feng, Z.H.; Zhang, X. Anti-tumour activity of low molecular weight heparin doxorubicin nanoparticles for histone H1 high-expressive prostate cancer PC-3M cells. J. Control. Release, 2019, 295, 102-117.
[http://dx.doi.org/10.1016/j.jconrel.2018.12.034] [PMID: 30582952]
[100]
Díaz-Ramos, A.; Roig-Borrellas, A.; García-Melero, A.; López-Alemany, R. α-Enolase, a multifunctional protein: Its role on pathophysiological situations. J. Biomed. Biotechnol., 2012, 2012, 156795.
[http://dx.doi.org/10.1155/2012/156795] [PMID: 23118496]
[101]
Wang, L.; Qu, M.; Huang, S.; Fu, Y.; Yang, L.; He, S.; Li, L.; Zhang, Z.; Lin, Q.; Zhang, L. A novel α-enolase-targeted drug delivery system for high efficacy prostate cancer therapy. Nanoscale, 2018, 10(28), 13673-13683.
[http://dx.doi.org/10.1039/C8NR03297A] [PMID: 29987301]
[102]
Akhtar, N.H.; Pail, O.; Saran, A.; Tyrell, L.; Tagawa, S.T. Prostate-specific membrane antigen-based therapeutics. Adv. Urol., 2012, 2012, 973820.
[http://dx.doi.org/10.1155/2012/973820] [PMID: 21811498]
[103]
Rajasekaran, A.K.; Anilkumar, G.; Christiansen, J.J. Is prostate-specific membrane antigen a multifunctional protein? Am. J. Physiol. Cell Physiol., 2005, 288(5), C975-C981.
[http://dx.doi.org/10.1152/ajpcell.00506.2004] [PMID: 15840561]
[104]
Vinothini, K.; Rajendran, N.K.; Munusamy, M.A.; Alarfaj, A.A.; Rajan, M. Development of biotin molecule targeted cancer cell drug delivery of doxorubicin loaded κ-carrageenan grafted graphene oxide nanocarrier. Mater. Sci. Eng. C, 2019, 100, 676-687.
[http://dx.doi.org/10.1016/j.msec.2019.03.011] [PMID: 30948104]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy