Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Telomere Length as a Marker of Biological Aging: A Critical Review of Recent Literature

Author(s): Stylianos Daios, Antonia Anogeianaki, Georgia Kaiafa, Anastasia Kontana, Stavroula Veneti, Christiana Gogou, Eleni Karlafti, Dimitrios Pilalas, Ilias Kanellos and Christos Savopoulos*

Volume 29, Issue 34, 2022

Published on: 05 August, 2022

Page: [5478 - 5495] Pages: 18

DOI: 10.2174/0929867329666220713123750

Price: $65

Abstract

Introduction: Aging is characterized as a syndrome of deleterious, progressive, universal, and irreversible function changes affecting every structural and functional aspect of the organism and accompanied by a generalized increase in mortality. Although a substantial number of candidates for biomarkers of aging have been proposed, none has been validated or universally accepted. Human telomeres constitute hexameric repetitive DNA sequence nucleoprotein complexes that cap chromosome ends, regulating gene expression and modulating stress-related pathways. Telomere length (TL) shortening is observed both in cellular senescence and advanced age, leading to the investigation of TL as a biomarker for aging and a risk factor indicator for the development and progression of the most common age-related diseases.

Objective: The present review underlines the connection between TL and the pathophysiology of the diseases associated with telomere attrition.

Methods: We performed a structured search of the PubMed database for peer-reviewed research of the literature regarding leukocyte TL and cardiovascular diseases (CVD), more specifically stroke and heart disease, and focused on the relevant articles published during the last 5 years. We also applied Hill’s criteria of causation to strengthen this association.

Results: We analyzed the recent literature regarding TL length, stroke, and CVD. Although approximately one-third of the available studies support the connection, the results of different studies seem to be rather conflicting as a result of different study designs, divergent methods of TL determination, small study samples, and patient population heterogeneity. After applying Hill’s criteria, we can observe that the literature conforms to them weakly, with chronology being the only Hill criterion of causality that probably cannot be contested.

Conclusion: The present review attempted to examine the purported relation between leukocyte TL and age-related diseases such as CVD and more specific stroke and heart disease in view of the best established, comprehensive, medical and epidemiological criteria that have characterized the focused recent relevant research. Although several recommendations have been made that may contribute significantly to the field, a call for novel technical approaches and studies is mandatory to further elucidate the possible association.

Keywords: Telomere length, cardiovascular disease, stroke, heart disease, Hill’s criteria, Alzheimer's disease.

[1]
Strehler, B.L.; Mildvan, A.S. General theory of mortality and aging. Science, 1960, 132, 14-21.
[http://dx.doi.org/10.1126/science.132.3418.14] [PMID: 13835176]
[2]
Blackburn, E.H.; Epel, E.S.; Lin, J. Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science, 2015, 350(6265), 1193-1198.
[http://dx.doi.org/10.1126/science.aab3389] [PMID: 26785477]
[3]
Jose, S.S.; Bendickova, K.; Kepak, T.; Krenova, Z.; Fric, J. Chronic inflammation in immune aging: Role of pattern recognition receptor crosstalk with the telomere complex? Front. Immunol., 2017, 8, 1078.
[http://dx.doi.org/10.3389/fimmu.2017.01078] [PMID: 28928745]
[4]
Zhu, Y.; Liu, X.; Ding, X.; Wang, F.; Geng, X. Telomere and its role in the aging pathways: Telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology, 2019, 20(1), 1-16.
[http://dx.doi.org/10.1007/s10522-018-9769-1] [PMID: 30229407]
[5]
Fabian, D.; Flatt, T. The evolution of aging. Nat. Educ. Knowl., 2011, 2, 9.
[6]
Rose, M.R. Evolutionary Biology of Aging Oxford University Press: New York,, 1992, 15, pp. 189-192.
[7]
von Zglinicki, T.; Martin-Ruiz, C.M. Telomeres as biomarkers for ageing and age-related diseases. Curr. Mol. Med., 2005, 5(2), 197-203.
[http://dx.doi.org/10.2174/1566524053586545] [PMID: 15974873]
[8]
Rietzschel, E.R.; Bekaert, S.; De Meyer, T. Telomeres and atherosclerosis: The attrition of an attractive hypothesis. J. Am. Coll. Cardiol., 2016, 67(21), 2477-2479.
[http://dx.doi.org/10.1016/j.jacc.2016.03.541] [PMID: 27230042]
[9]
De Meyer, T.; De Buyzere, M.L. Telomeres and atherosclerosis: The intricate pursuit of mechanistic insight through epidemiology. Hypertension, 2017, 70(2), 243-244.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.09454] [PMID: 28630208]
[10]
De Meyer, T.; Nawrot, T.; Bekaert, S.; De Buyzere, M.L.; Rietzschel, E.R.; Andrés, V. Telomere length as cardiovascular aging biomarker: JACC review topic of the week. J. Am. Coll. Cardiol., 2018, 72(7), 805-813.
[http://dx.doi.org/10.1016/j.jacc.2018.06.014] [PMID: 30092957]
[11]
Codd, V; Nelson, C.P.; Albrecht, E.; Mangino, M.; Deelen, J.; Buxton, J.L. Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet, 2013, 45, 422-427.
[http://dx.doi.org/10.1038/ng.2528]
[12]
Scheller Madrid, A.; Rode, L.; Nordestgaard, B.G.; Bojesen, S.E. Short telomere length and ischemic heart disease: Observational and genetic studies in 290 022 individuals. Clin. Chem., 2016, 62(8), 1140-1149.
[http://dx.doi.org/10.1373/clinchem.2016.258566] [PMID: 27259814]
[13]
Bekaert, S.; De Meyer, T.; Rietzschel, E.R.; De Buyzere, M.L.; De Bacquer, D.; Langlois, M.; Segers, P.; Cooman, L.; Van Damme, P.; Cassiman, P.; Van Criekinge, W.; Verdonck, P.; De Backer, G.G.; Gillebert, T.C.; Van Oostveldt, P. Telomere length and cardiovascular risk factors in a middle-aged population free of overt cardiovascular disease. Aging Cell, 2007, 6(5), 639-647.
[http://dx.doi.org/10.1111/j.1474-9726.2007.00321.x] [PMID: 17874998]
[14]
De Meyer, T.; Rietzschel, E.R.; De Buyzere, M.L.; Langlois, M.R.; De Bacquer, D.; Segers, P.; Van Damme, P.; De Backer, G.G.; Van Oostveldt, P.; Van Criekinge, W.; Gillebert, T.C.; Bekaert, S. Systemic telomere length and preclinical atherosclerosis: The asklepios study. Eur. Heart J., 2009, 30(24), 3074-3081.
[http://dx.doi.org/10.1093/eurheartj/ehp324] [PMID: 19687155]
[15]
Toupance, S.; Labat, C.; Temmar, M.; Rossignol, P.; Kimura, M.; Aviv, A.; Benetos, A. Short telomeres, but not telomere attrition rates, are associated with carotid atherosclerosis. Hypertension, 2017, 70(2), 420-425.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.09354] [PMID: 28630210]
[16]
De Meyer, T.; Nawrot, T.; Bekaert, S.; De Buyzere, M.L.; Rietzschel, E.R. Andrés, V. Telomere length as cardiovascular aging biomarker. Am. Coll. Cardiol., 2018, 72, 805-813.
[http://dx.doi.org/10.1016/j.jacc.2018.06.014]
[17]
Palm, W.; de Lange, T. How shelterin protects mammalian telomeres. Annu. Rev. Genet., 2008, 42, 301-334.
[http://dx.doi.org/10.1146/annurev.genet.41.110306.130350] [PMID: 18680434]
[18]
Wright, W.E.; Shay, J.W. Telomere biology in aging and cancer. J. Am. Geriatr. Soc., 2005, 53(9)(Suppl.), S292-S294.
[http://dx.doi.org/10.1111/j.1532-5415.2005.53492.x] [PMID: 16131355]
[19]
Blackburn, E.H. Telomeres and telomerase: Their mechanisms of action and the effects of altering their functions. FEBS Lett., 2005, 579(4), 859-862.
[http://dx.doi.org/10.1016/j.febslet.2004.11.036] [PMID: 15680963]
[20]
Chiang, Y.J.; Calado, R.T.; Hathcock, K.S.; Lansdorp, P.M.; Young, N.S.; Hodes, R.J. Telomere length is inherited with resetting of the telomere set-point. Proc. Natl. Acad. Sci. USA, 2010, 107(22), 10148-10153.
[http://dx.doi.org/10.1073/pnas.0913125107] [PMID: 20479226]
[21]
Honig, L.S.; Kang, M.S.; Cheng, R.; Eckfeldt, J.H.; Thyagarajan, B.; Leiendecker-Foster, C.; Province, M.A.; Sanders, J.L.; Perls, T.; Christensen, K.; Lee, J.H.; Mayeux, R.; Schupf, N. Heritability of telomere length in a study of long-lived families. Neurobiol. Aging, 2015, 36(10), 2785-2790.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.06.017] [PMID: 26239175]
[22]
Hu, Y.; Shi, G.; Zhang, L.; Li, F.; Jiang, Y.; Jiang, S.; Ma, W.; Zhao, Y.; Songyang, Z.; Huang, J. Switch telomerase to ALT mechanism by inducing telomeric DNA damages and dysfunction of ATRX and DAXX. Sci. Rep., 2016, 6, 32280.
[http://dx.doi.org/10.1038/srep32280] [PMID: 27578458]
[23]
Jiang, J.; Wang, Y.; Sušac, L.; Chan, H.; Basu, R.; Zhou, Z.H.; Feigon, J. Structure of telomerase with telomeric DNA. Cell, 2018, 173(5), 1179-1190.e13.
[http://dx.doi.org/10.1016/j.cell.2018.04.038] [PMID: 29775593]
[24]
Li, C.C.; Hu, J.; Lu, M.; Zhang, C.Y. Quantum dot-based electrochemical biosensor for stripping voltammetric detection of telomerase at the single-cell level. Biosens. Bioelectron., 2018, 122, 51-57.
[http://dx.doi.org/10.1016/j.bios.2018.09.049] [PMID: 30240966]
[25]
Li, Y.; Pan, G.; Chen, Y.; Yang, Q.; Hao, T.; Zhao, L.; Zhao, L.; Cong, Y.; Diao, A.; Yu, P. Inhibitor of the human telomerase reverse trancriptase (hTERT) gene promoter induces cell apoptosis via a mitochondrial-dependent pathway. Eur. J. Med. Chem., 2018, 145, 370-378.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.077] [PMID: 29335203]
[26]
Martínez, P.; Blasco, M.A. Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat. Rev. Cancer, 2011, 11(3), 161-176.
[http://dx.doi.org/10.1038/nrc3025] [PMID: 21346783]
[27]
Hill, A.B. The environment and disease: Association or causation? Proc. R. Soc. Med., 1965, 58, 295-300.
[http://dx.doi.org/10.1177/003591576505800503] [PMID: 14283879]
[28]
Hayflick, L.; Moorhead, P.S. The serial cultivation of human diploid cell strains. Exp. Cell Res., 1961, 25, 585-621.
[http://dx.doi.org/10.1016/0014-4827(61)90192-6] [PMID: 13905658]
[29]
Harley, C.B.; Futcher, A.B.; Greider, C.W. Telomeres shorten during ageing of human fibroblasts. Nature, 1990, 345(6274), 458-460.
[http://dx.doi.org/10.1038/345458a0] [PMID: 2342578]
[30]
Olovnikov, A.M. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J. Theor. Biol., 1973, 41(1), 181-190.
[http://dx.doi.org/10.1016/0022-5193(73)90198-7] [PMID: 4754905]
[31]
Reichel, W.; Hollander, J.; Clark, J.H.; Strehler, B.L. Lipofuscin pigment accumulation as a function of age and distribution in rodent brain. J. Gerontol., 1968, 23(1), 71-78.
[http://dx.doi.org/10.1093/geronj/23.1.71]
[32]
Khincha, P.P.; Dagnall, C.L.; Hicks, B.; Jones, K.; Aviv, A.; Kimura, M.; Katki, H.; Aubert, G.; Giri, N.; Alter, B.P.; Savage, S.A.; Gadalla, S.M. Correlation of leukocyte telomere length measurement methods in patients with dyskeratosis congenita and in their unaffected relatives. Int. J. Mol. Sci., 2017, 18(8), E1765.
[http://dx.doi.org/10.3390/ijms18081765] [PMID: 28805708]
[33]
Lai, T.P.; Wright, W.E.; Shay, J.W. Comparison of telomere length measurement methods. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2018, 373(1741), 20160451.
[http://dx.doi.org/10.1098/rstb.2016.0451] [PMID: 29335378]
[34]
Martin-Ruiz, C.M.; Baird, D.; Roger, L.; Boukamp, P.; Krunic, D.; Cawthon, R.; Dokter, M.M.; van der Harst, P.; Bekaert, S.; de Meyer, T.; Roos, G.; Svenson, U.; Codd, V.; Samani, N.J.; McGlynn, L.; Shiels, P.G.; Pooley, K.A.; Dunning, A.M.; Cooper, R.; Wong, A.; Kingston, A.; von Zglinicki, T. Reproducibility of telomere length assessment: An international collaborative study. Int. J. Epidemiol., 2015, 44(5), 1673-1683.
[http://dx.doi.org/10.1093/ije/dyu191] [PMID: 25239152]
[35]
Gutierrez-Rodrigues, F.; Santana-Lemos, B.A.; Scheucher, P.S.; Alves-Paiva, R.M.; Calado, R.T. Direct comparison of flow-FISH and qPCR as diagnostic tests for telomere length measurement in humans. PLoS One, 2014, 9(11), e113747.
[http://dx.doi.org/10.1371/journal.pone.0113747] [PMID: 25409313]
[36]
Lee, M.; Napier, C.E.; Yang, S.F.; Arthur, J.W.; Reddel, R.R.; Pickett, H.A. Comparative analysis of whole genome sequencing-based telomere length measurement techniques. Methods, 2017, 114, 4-15.
[http://dx.doi.org/10.1016/j.ymeth.2016.08.008] [PMID: 27565742]
[37]
Stout, S.A.; Lin, J.; Hernandez, N.; Davis, E.P.; Blackburn, E.; Carroll, J.E.; Glynn, L.M. Validation of minimally-invasive sample collection methods for measurement of telomere length. Front. Aging Neurosci., 2017, 9, 397.
[http://dx.doi.org/10.3389/fnagi.2017.00397] [PMID: 29270121]
[38]
Novo, C.L.; Londoño-Vallejo, J.A. Telomeres and the nucleus. Semin. Cancer Biol., 2013, 23(2), 116-124.
[http://dx.doi.org/10.1016/j.semcancer.2012.02.001] [PMID: 22330096]
[39]
Lai, T.P.; Zhang, N.; Noh, J.; Mender, I.; Tedone, E.; Huang, E.; Wright, W.E.; Danuser, G.; Shay, J.W. A method for measuring the distribution of the shortest telomeres in cells and tissues. Nat. Commun., 2017, 8(1), 1356.
[http://dx.doi.org/10.1038/s41467-017-01291-z] [PMID: 29116081]
[40]
Tarik, M.; Ramakrishnan, L.; Sachdev, H.S. Validation of quantitative polymerase chain reaction with Southern blot method for telomere length analysis. Future Sci. OA, 2018, 4(4)
[http://dx.doi.org/10.4155/fsoa-2017-0115]
[41]
Slagboom, P.E.; Droog, S.; Boomsma, D.I. Genetic determination of telomere size in humans: A twin study of three age groups. Am. J. Hum. Genet., 1994, 55(5), 876-882.
[PMID: 7977349]
[42]
Jeanclos, E.; Schork, N.J.; Kyvik, K.O.; Kimura, M.; Skurnick, J.H.; Aviv, A. Telomere length inversely correlates with pulse pressure and is highly familial. Hypertension, 2000, 36(2), 195-200.
[http://dx.doi.org/10.1161/01.HYP.36.2.195] [PMID: 10948077]
[43]
Ettehad, D.; Emdin, C.A.; Kiran, A.; Anderson, S.G.; Callender, T.; Emberson, J.; Chalmers, J.; Rodgers, A.; Rahimi, K. Blood pressure lowering for prevention of cardiovascular disease and death: A systematic review and meta-analysis. Lancet, 2016, 387(10022), 957-967.
[http://dx.doi.org/10.1016/S0140-6736(15)01225-8] [PMID: 26724178]
[44]
Thomopoulos, C.; Parati, G.; Zanchetti, A. Effects of blood pressure lowering on outcome incidence in hypertension: 7. Effects of more vs. less intensive blood pressure lowering and different achieved blood pressure levels - updated overview and meta-analyses of randomized trials. J. Hypertens., 2016, 34(4), 613-622.
[http://dx.doi.org/10.1097/HJH.0000000000000881] [PMID: 26848994]
[45]
Xie, X.; Atkins, E.; Lv, J.; Bennett, A.; Neal, B.; Ninomiya, T.; Woodward, M.; MacMahon, S.; Turnbull, F.; Hillis, G.S.; Chalmers, J.; Mant, J.; Salam, A.; Rahimi, K.; Perkovic, V.; Rodgers, A. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: Updated systematic review and meta-analysis. Lancet, 2016, 387(10017), 435-443.
[http://dx.doi.org/10.1016/S0140-6736(15)00805-3] [PMID: 26559744]
[46]
Tellechea, M.L.; Pirola, C.J. The impact of hypertension on leukocyte telomere length: A systematic review and meta-analysis of human studies. J. Hum. Hypertens., 2017, 31(2), 99-105.
[http://dx.doi.org/10.1038/jhh.2016.45] [PMID: 27357526]
[47]
Shen, Q.; Zhao, X.; Yu, L.; Zhang, Z.; Zhou, D.; Kan, M.; Zhang, D.; Cao, L.; Xing, Q.; Yang, Y.; Xu, H.; He, L.; Liu, Y. Association of leukocyte telomere length with type 2 diabetes in mainland Chinese populations. J. Clin. Endocrinol. Metab., 2012, 97(4), 1371-1374.
[http://dx.doi.org/10.1210/jc.2011-1562] [PMID: 22319045]
[48]
Gardner, J.P.; Li, S.; Srinivasan, S.R.; Chen, W.; Kimura, M.; Lu, X.; Berenson, G.S.; Aviv, A. Rise in insulin resistance is associated with escalated telomere attrition. Circulation, 2005, 111(17), 2171-2177.
[http://dx.doi.org/10.1161/01.CIR.0000163550.70487.0B] [PMID: 15851602]
[49]
Zee, R.Y.; Castonguay, A.J.; Barton, N.S.; Germer, S.; Martin, M. Mean leukocyte telomere length shortening and type 2 diabetes mellitus: A case-control study. Transl. Res., 2010, 155(4), 166-169.
[http://dx.doi.org/10.1016/j.trsl.2009.09.012] [PMID: 20303464]
[50]
Allende, M.; Molina, E.; González-Porras, J.R.; Toledo, E.; Lecumberri, R.; Hermida, J. Short leukocyte telomere length is associated with cardioembolic stroke risk in patients with atrial fibrillation. Stroke, 2016, 47(3), 863-865.
[http://dx.doi.org/10.1161/STROKEAHA.115.011837] [PMID: 26786116]
[51]
Pan, K.L.; Hsiao, Y.W.; Lin, Y.J.; Lo, L.W.; Hu, Y.F.; Chung, F.P.; Tsai, Y.N.; Chao, T.F.; Liao, J.N.; Lin, C.Y.; Jhuo, S.J.; Lin, C.H.; Suresh, A.; Walia, R.; Te, A.L.D.; Yamada, S.; Chang, Y.T.; Chang, S.L.; Chen, S.A. Shorter leukocyte telomere length is associated with atrial remodeling and predicts recurrence in younger patients with paroxysmal atrial fibrillation after radiofrequency ablation. Circ. J., 2019, 83(7), 1449-1455.
[http://dx.doi.org/10.1253/circj.CJ-18-0880] [PMID: 31118363]
[52]
Chen, S.; Lin, J.; Matsuguchi, T.; Blackburn, E.; Yeh, F.; Best, L.G.; Devereux, R.B.; Lee, E.T.; Howard, B.V.; Roman, M.J.; Zhao, J. Short leukocyte telomere length predicts incidence and progression of carotid atherosclerosis in american indians: The strong heart family study. Aging, 2014, 6(5), 414-427.
[http://dx.doi.org/10.18632/aging.100671] [PMID: 24902894]
[53]
Haycock, P.C.; Heydon, E.E.; Kaptoge, S.; Butterworth, A.S.; Thompson, A.; Willeit, P. Leucocyte telomere length and risk of cardiovascular disease: Systematic review and meta-analysis. BMJ, 2014, 349, g4227.
[http://dx.doi.org/10.1136/bmj.g4227] [PMID: 25006006]
[54]
Samani, N.J.; Boultby, R.; Butler, R.; Thompson, J.R.; Goodall, A.H. Telomere shortening in atherosclerosis. Lancet, 2001, 358(9280), 472-473.
[http://dx.doi.org/10.1016/S0140-6736(01)05633-1] [PMID: 11513915]
[55]
Brouilette, S.; Singh, R.K.; Thompson, J.R.; Goodall, A.H.; Samani, N.J. White cell telomere length and risk of premature myocardial infarction. Arterioscler. Thromb. Vasc. Biol., 2003, 23(5), 842-846.
[http://dx.doi.org/10.1161/01.ATV.0000067426.96344.32] [PMID: 12649083]
[56]
Dickerson, G.E.; Chapman, A.B. Sewall Wright, 1889-1988: A brief biography. J. Anim. Sci., 1992, 70(11), 3281-3285.
[http://dx.doi.org/10.2527/1992.70113281x] [PMID: 1459888]
[57]
Ishikawa, N.; Nakamura, K.; Izumiyama-Shimomura, N.; Aida, J.; Matsuda, Y.; Arai, T.; Takubo, K. Changes of telomere status with aging: An update. Geriatr. Gerontol. Int., 2016, 16(Suppl. 1), 30-42.
[http://dx.doi.org/10.1111/ggi.12772] [PMID: 27018281]
[58]
Stefler, D.; Malyutina, S.; Maximov, V.; Orlov, P.; Ivanoschuk, D.; Nikitin, Y.; Gafarov, V.; Ryabikov, A.; Voevoda, M.; Bobak, M.; Holmes, M.V. Leukocyte telomere length and risk of coronary heart disease and stroke mortality: Prospective evidence from a Russian cohort. Sci. Rep., 2018, 8(1), 16627.
[http://dx.doi.org/10.1038/s41598-018-35122-y] [PMID: 30413768]
[59]
Appleby, S.; Pearson, J.F.; Aitchison, A.; Spittlehouse, J.K.; Joyce, P.R.; Kennedy, M.A. Mean telomere length is not associated with current health status in a 50-year-old population sample. Am. J. Hum. Biol., 2017, 29(1), 22906.
[http://dx.doi.org/10.1002/ajhb.22906] [PMID: 27562613]
[60]
Liu, B.; Sun, Y.; Xu, G.; Snetselaar, L.G.; Ludewig, G.; Wallace, R.B.; Bao, W. Association between body iron status and leukocyte telomere length, a biomarker of biological aging, in a nationally representative sample of US adults. J. Acad. Nutr. Diet., 2019, 119(4), 617-625.
[http://dx.doi.org/10.1016/j.jand.2018.09.007] [PMID: 30563782]
[61]
Fujishiro, K.; Needham, B.L.; Landsbergis, P.A.; Seeman, T.; Jenny, N.S.; Diez Roux, A.V. Selected occupational characteristics and change in leukocyte telomere length over 10 years: The multi-ethnic study of atherosclerosis (MESA). PLoS One, 2018, 13(9), e0204704.
[http://dx.doi.org/10.1371/journal.pone.0204704] [PMID: 30261026]
[62]
Zhou, J.; Wang, J.; Shen, Y.; Yang, Y.; Huang, P.; Chen, S.; Zou, C.; Dong, B. The association between telomere length and frailty: A systematic review and meta-analysis. Exp. Gerontol., 2018, 106, 16-20.
[http://dx.doi.org/10.1016/j.exger.2018.02.030] [PMID: 29518479]
[63]
El Assar, M.; Angulo, J.; Carnicero, J.A.; Walter, S.; García-García, F.J.; Rodríguez-Artalejo, F.; Rodríguez-Mañas, L. Association between telomere length, frailty and death in older adults. Geroscience, 2021, 43(2), 1015-1027.
[http://dx.doi.org/10.1007/s11357-020-00291-0] [PMID: 33190211]
[64]
Gampawar, P.; Schmidt, R.; Schmidt, H. Leukocyte telomere length is related to brain parenchymal fraction and attention/speed in the elderly: Results of the austrian stroke prevention study. Front. Psychiatry, 2020, 2020, 100.
[http://dx.doi.org/10.3389/fpsyt.2020.00100]
[65]
Lu, A.T.; Seeboth, A.; Tsai, P.C.; Sun, D.; Quach, A.; Reiner, A.P.; Kooperberg, C.; Ferrucci, L.; Hou, L.; Baccarelli, A.A.; Li, Y.; Harris, S.E.; Corley, J.; Taylor, A.; Deary, I.J.; Stewart, J.D.; Whitsel, E.A.; Assimes, T.L.; Chen, W.; Li, S.; Mangino, M.; Bell, J.T.; Wilson, J.G.; Aviv, A.; Marioni, R.E.; Raj, K.; Horvath, S. DNA methylation-based estimator of telomere length. Aging, 2019, 11(16), 5895-5923.
[http://dx.doi.org/10.18632/aging.102173] [PMID: 31422385]
[66]
Tian, Y.; Wang, S.; Jiao, F.; Kong, Q.; Liu, C.; Wu, Y. Telomere length: A potential biomarker for the risk and prognosis of stroke. Front. Neurol., 2019, 624, 624.
[http://dx.doi.org/10.3389/fneur.2019.00624]
[67]
Yetim, E.; Topcuoglu, M.A.; Yurur Kutlay, N.; Tukun, A.; Oguz, K.K.; Arsava, E.M. The association between telomere length and ischemic stroke risk and phenotype. Sci. Rep., 2021, 11(1), 10967.
[http://dx.doi.org/10.1038/s41598-021-90435-9] [PMID: 34040069]
[68]
Ding, H.; Chen, C.; Shaffer, J.R.; Liu, L.; Xu, Y.; Wang, X.; Hui, R.; Wang, D.W. Telomere length and risk of stroke in Chinese. Stroke, 2012, 43(3), 658-663.
[http://dx.doi.org/10.1161/STROKEAHA.111.637207] [PMID: 22343648]
[69]
Xiao, J.; Yuan, Q.; Zhang, S.; Li, X.; Bai, H.; Wang, Y.; Duan, S. The telomere length of peripheral blood cells is associated with the risk of ischemic stroke in Han population of northern China. Medicine, 2019, 98(7), e14593.
[http://dx.doi.org/10.1097/MD.0000000000014593] [PMID: 30762812]
[70]
Cao, W.; Zheng, D.; Zhang, J. Association between telomere length in peripheral blood leukocytes and risk of ischemic stroke in a Han Chinese population: A linear and non-linear Mendelian randomization analysis J. Transl. Med., 2020, 18(1), 385.
[http://dx.doi.org/10.1186/s12967-020-02551-1]
[71]
Jin, X.; Pan, B.; Dang, X.; Wu, H.; Xu, D. Relationship between short telomere length and stroke: A meta-analysis. Medicine, 2018, 97(39), e12489.
[http://dx.doi.org/10.1097/MD.0000000000012489] [PMID: 30278538]
[72]
Cao, W.; Li, X.; Zhang, X.; Zhang, J.; Sun, Q.; Xu, X.; Sun, M.; Tian, Q.; Li, Q.; Wang, H.; Liu, J.; Meng, X.; Wu, L.; Song, M.; Hou, H.; Wang, Y.; Wang, W. No causal effect of telomere length on ischemic stroke and its subtypes: A mendelian randomization study. Cells, 2019, 8(2), 159.
[http://dx.doi.org/10.3390/cells8020159] [PMID: 30769869]
[73]
Ballew, B.J.; Savage, S.A. Updates on the biology and management of dyskeratosis congenita and related telomere biology disorders. Expert Rev. Hematol., 2013, 6(3), 327-337.
[http://dx.doi.org/10.1586/ehm.13.23] [PMID: 23782086]
[74]
Vulliamy, T.; Marrone, A.; Szydlo, R.; Walne, A.; Mason, P.J.; Dokal, I. Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC. Nat. Genet., 2004, 36(5), 447-449.
[http://dx.doi.org/10.1038/ng1346] [PMID: 15098033]
[75]
Zhan, Y.; Hägg, S. Telomere length and cardiovascular disease risk. Curr. Opin. Cardiol., 2019, 34(3), 270-274.
[http://dx.doi.org/10.1097/HCO.0000000000000613] [PMID: 30747731]
[76]
Yeh, J.K.; Wang, C.Y. Telomeres and telomerase in cardiovascular diseases. Genes, 2016, 7(9), 58.
[http://dx.doi.org/10.3390/genes7090058] [PMID: 27598203]
[77]
Vaiserman, A.; Krasnienkov, D. Telomere length as a marker of biological age: State-of-the-art, open issues, and future perspectives. Front. Genet., 2021, 11, 630186.
[http://dx.doi.org/10.3389/fgene.2020.630186] [PMID: 33552142]
[78]
Tedone, E.; Huang, E.; O’Hara, R.; Batten, K.; Ludlow, A.T.; Lai, T.P.; Arosio, B.; Mari, D.; Wright, W.E.; Shay, J.W. Telomere length and telomerase activity in T cells are biomarkers of high-performing centenarians. Aging Cell, 2019, 18(1), e12859.
[http://dx.doi.org/10.1111/acel.12859] [PMID: 30488553]
[79]
Ioannidis, J.P.A. Why most published research findings are false. PLOS Medicine, 2005, 2(8), e124.
[http://dx.doi.org/10.1371/journal.pmed.0020124]
[80]
Schooler, J. W. Metascience could rescue the 'replication crisis. Nature. 515, 2014, 515(9), 1.
[http://dx.doi.org/10.1038/515009a]
[81]
Smith, N. Why 'statistical significance' is often insignificant. Bloomberg, 2017. Available from: https://www. bloomberg.com/opinion/articles/2017-11-02/why-statistical-significance-is-often-insignificant
[82]
Vetter, V.M.; Meyer, A.; Karbasiyan, M.; Steinhagen-Thiessen, E.; Hopfenmüller, W.; Demuth, I. Epigenetic clock and relative telomere length represent largely different aspects of aging in the berlin aging study II (BASE-II). J. Gerontol. A Biol. Sci. Med. Sci., 2019, 74(1), 27-32.
[http://dx.doi.org/10.1093/gerona/gly184] [PMID: 30137208]
[83]
Fasching, C.L. Telomere length measurement as a clinical biomarker of aging and disease. Crit. Rev. Clin. Lab. Sci., 2018, 55(7), 443-465.
[http://dx.doi.org/10.1080/10408363.2018.1504274] [PMID: 30265166]
[84]
Lulkiewicz, M.; Bajsert, J.; Kopczynski, P.; Barczak, W.; Rubis, B. Telomere length: How the length makes a difference. Mol. Biol. Rep., 2020, 47(9), 7181-7188.
[http://dx.doi.org/10.1007/s11033-020-05551-y] [PMID: 32876842]
[85]
Srinivas, N.; Rachakonda, S.; Kumar, R. Telomeres and telomere length: A general overview. Cancers, 2020, 12(3), 558.
[http://dx.doi.org/10.3390/cancers12030558] [PMID: 32121056]
[86]
Huang, Y.Q.; Lo, K.; Feng, Y.Q.; Zhang, B. The association of mean telomere length with all-cause, cerebrovascular and cardiovascular mortality. Biosci. Rep., 2019, 39(10), BSR20192306.
[http://dx.doi.org/10.1042/BSR20192306] [PMID: 31647542]
[87]
Li, J.; Feng, C.; Li, L. The association of telomere attrition with first-onset stroke in Southern Chinese: A case-control study and meta-analysis. Sci. Rep., 2018, 8(1), 2290.
[http://dx.doi.org/10.1038/s41598-018-20434-w]
[88]
Vecoli, C.; Borghini, A.; Andreassi, M.G. The molecular biomarkers of vascular aging and atherosclerosis: Telomere length and mitochondrial DNA4977 common deletion. Mutat. Res. Rev. Mutat. Res., 2020, 784, 108309.
[http://dx.doi.org/10.1016/j.mrrev.2020.108309] [PMID: 32430098]
[89]
Mensà, E.; Latini, S.; Ramini, D.; Storci, G.; Bonafè, M.; Olivieri, F. The telomere world and aging: Analytical challenges and future perspectives. Ageing Res. Rev., 2019, 50, 27-42.
[http://dx.doi.org/10.1016/j.arr.2019.01.004] [PMID: 30615937]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy