Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Traditional and Novel Computer-Aided Drug Design (CADD) Approaches in the Anticancer Drug Discovery Process

Author(s): Nidia del Carmen Quintal Bojórquez and Maira Rubi Segura Campos*

Volume 23, Issue 5, 2023

Published on: 13 December, 2022

Page: [333 - 345] Pages: 13

DOI: 10.2174/1568009622666220705104249

Price: $65

Abstract

Background: In the last decade, cancer has been a leading cause of death worldwide. Despite the impressive progress in cancer therapy, firsthand treatments are not selective to cancer cells and cause serious toxicity. Thus, the design and development of selective and innovative small molecule drugs is of great interest, particularly through in silico tools.

Objective: The aim of this review is to analyze different subsections of computer-aided drug design (CADD) in the process of discovering anticancer drugs.

Methods: Articles from the 2008-2021 timeframe were analyzed and based on the relevance of the information and the JCR of its journal of precedence, were selected to be included in this review.

Results: The information collected in this study highlights the main traditional and novel CADD approaches used in anticancer drug discovery, its sub-segments, and some applied examples. Throughout this review, the potential use of CADD in drug research and discovery, particularly in the field of oncology, is evident due to the many advantages it presents.

Conclusion: CADD approaches play a significant role in the drug development process since they allow a better administration of resources with successful results and a promising future market and clinical wise.

Keywords: anticancer drugs, computer-aided drug design, in silico, anticancer therapy, CADD approaches, artificial intelligence, novel CADD, traditional CADD

Next »
Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Niveshika; Verma, E.; Maurya, S.K.; Mishra, R.; Mishra, A.K. The combined use of in silico, in vitro, and in vivo analyses to assess anti-cancerous potential of a bioactive compound from cyanobacterium nostoc sp. MGL001. Front. Pharmacol., 2017, 8, 873.
[http://dx.doi.org/10.3389/fphar.2017.00873] [PMID: 29230175]
[4]
Kapetanovic, I.M. Computer-aided drug discovery and development (CADDD): In silico-chemico-biological approach. Chem. Biol. Interact., 2008, 171(2), 165-176.
[http://dx.doi.org/10.1016/j.cbi.2006.12.006] [PMID: 17229415]
[5]
Cui, W.; Aouidate, A.; Wang, S.; Yu, Q.; Li, Y.; Yuan, S. Discovering anti-cancer drugs via computational methods. Front. Pharmacol., 2020, 11, 733.
[http://dx.doi.org/10.3389/fphar.2020.00733] [PMID: 32508653]
[6]
Bunnage, M.E. Getting pharmaceutical R&D back on target. Nat. Chem. Biol., 2011, 7(6), 335-339.
[http://dx.doi.org/10.1038/nchembio.581] [PMID: 21587251]
[7]
Csermely, P.; Korcsmáros, T.; Kiss, H.J.M.; London, G.; Nussinov, R. Structure and dynamics of molecular networks: A novel paradigm of drug discovery: A comprehensive review. Pharmacol. Ther., 2013, 138(3), 333-408.
[http://dx.doi.org/10.1016/j.pharmthera.2013.01.016] [PMID: 23384594]
[8]
Mak, L.; Liggi, S.; Tan, L.; Kusonmano, K.; Rollinger, J.M.; Koutsoukas, A.; Glen, R.C.; Kirchmair, J. Anti-cancer drug development: Computational strategies to identify and target proteins involved in cancer metabolism. Curr. Pharm. Des., 2013, 19(4), 532-577.
[http://dx.doi.org/10.2174/138161213804581855] [PMID: 23016852]
[9]
Basith, S.; Cui, M.; Macalino, S.J.Y.; Choi, S. Expediting the design, discovery and development of anticancer drugs using computational approaches. Curr. Med. Chem., 2017, 24(42), 4753-4778.
[PMID: 27593958]
[10]
Mullard, A. New drugs cost US$2.6 billion to develop. Nat. Rev. Drug Discov., 2014, 13(12), 877-877.
[http://dx.doi.org/10.1038/nrd4507] [PMID: 25435204]
[11]
Brogi, S.; Ramalho, T.C.; Kuca, K.; Medina-Franco, J.L.; Valko, M. Editorial: In silico methods for drug design and discovery. Front Chem., 2020, 8, 612.
[http://dx.doi.org/10.3389/fchem.2020.00612] [PMID: 32850641]
[12]
Falzone, L.; Salomone, S.; Libra, M. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front. Pharmacol., 2018, 9, 1300.
[http://dx.doi.org/10.3389/fphar.2018.01300] [PMID: 30483135]
[13]
Gagic, Z.; Ruzic, D.; Djokovic, N.; Djikic, T.; Nikolic, K. in silico methods for design of kinase inhibitors as anticancer drugs. Front Chem., 2020, 7, 873.
[http://dx.doi.org/10.3389/fchem.2019.00873] [PMID: 31970149]
[14]
Drwal, M.N.; Griffith, R. Combination of ligand- and structure-based methods in virtual screening. Drug Discov. Today. Technol., 2013, 10(3), e395-e401.
[http://dx.doi.org/10.1016/j.ddtec.2013.02.002] [PMID: 24050136]
[15]
Ban, F.; Dalal, K.; Li, H.; LeBlanc, E.; Rennie, P.S.; Cherkasov, A. Best practices of computer-aided drug discovery: Lessons learned from the development of a preclinical candidate for prostate cancer with a new mechanism of action. J. Chem. Inf. Model., 2017, 57(5), 1018-1028.
[http://dx.doi.org/10.1021/acs.jcim.7b00137] [PMID: 28441481]
[16]
Kumar, V.; Krishna, S.; Siddiqi, M.I. Virtual screening strategies: Recent advances in the identification and design of anti-cancer agents. Methods, 2015, 71, 64-70.
[http://dx.doi.org/10.1016/j.ymeth.2014.08.010] [PMID: 25171960]
[17]
Zhavoronkov, A.; Ivanenkov, Y.A.; Aliper, A.; Veselov, M.S.; Aladinskiy, V.A.; Aladinskaya, A.V.; Terentiev, V.A.; Polykovskiy, D.A.; Kuznetsov, M.D.; Asadulaev, A.; Volkov, Y.; Zholus, A.; Shayakhmetov, R.R.; Zhebrak, A.; Minaeva, L.I.; Zagribelnyy, B.A.; Lee, L.H.; Soll, R.; Madge, D.; Xing, L.; Guo, T.; Aspuru-Guzik, A. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol., 2019, 37(9), 1038-1040.
[http://dx.doi.org/10.1038/s41587-019-0224-x] [PMID: 31477924]
[18]
Ai, G.; Tian, C.; Deng, D.; Fida, G.; Chen, H.; Ma, Y.; Ding, L.; Gu, Y. A combination of 2D similarity search, pharmacophore, and molecular docking techniques for the identification of vascular endothelial growth factor receptor-2 inhibitors. Anticancer Drugs, 2015, 26(4), 399-409.
[http://dx.doi.org/10.1097/CAD.0000000000000199] [PMID: 25569705]
[19]
Mendenhall, J.; Meiler, J. Improving quantitative structure-activity relationship models using artificial neural networks trained with dropout. J. Comput. Aided Mol. Des., 2016, 30(2), 177-189.
[http://dx.doi.org/10.1007/s10822-016-9895-2] [PMID: 26830599]
[20]
Umar, B.A.; Uzairu, A.; Shallangwa, G.A.; Sani, U. QSAR modeling for the prediction of pGI50 activity of compounds on LOX IMVI cell line and ligand-based design of potent compounds using in silico virtual screening. Netw. Model. Anal. Health Inform. Bioinform., 2019, 8(1), 22.
[http://dx.doi.org/10.1007/s13721-019-0202-8]
[21]
Ammad-ud-din, M.; Georgii, E.; Gönen, M.; Laitinen, T.; Kallioniemi, O.; Wennerberg, K.; Poso, A.; Kaski, S. Integrative and personalized QSAR analysis in cancer by kernelized Bayesian matrix factorization. J. Chem. Inf. Model., 2014, 54(8), 2347-2359.
[http://dx.doi.org/10.1021/ci500152b] [PMID: 25046554]
[22]
Umar, A.B.; Uzairu, A.; Shallangwa, G.A.; Uba, S. Ligand-based drug design and molecular docking simulation studies of some novel anticancer compounds on MALME-3M melanoma cell line. Egypt. J. Med. Hum. Genet., 2021, 22(1), 6.
[http://dx.doi.org/10.1186/s43042-020-00126-9]
[23]
Alam, S.; Khan, F. 3D-QSAR studies on maslinic acid analogs for anticancer activity against breast cancer cell line MCF-7. Sci. Rep., 2017, 7(1), 6019.
[http://dx.doi.org/10.1038/s41598-017-06131-0] [PMID: 28729623]
[24]
Kim, K.H.; Kim, N.D.; Seong, B.L. Pharmacophore-based virtual screening: A review of recent applications. Expert Opin. Drug Discov., 2010, 5(3), 205-222.
[http://dx.doi.org/10.1517/17460441003592072] [PMID: 22823018]
[25]
Horvath, D. Pharmacophore-Based Virtual Screening. In: Chemoinformatics and Computational Chemical Biology; Bajorath, J., Ed.; Humana Press: Totowa, NJ, 2011; pp. 261-298.
[26]
Manetti, F.; Stecca, B.; Santini, R.; Maresca, L.; Giannini, G.; Taddei, M.; Petricci, E. Pharmacophore-based virtual screening for identification of negative modulators of GLI1 as potential anticancer agents. ACS Med. Chem. Lett., 2020, 11(5), 832-838.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00639] [PMID: 32435392]
[27]
Gallego-Yerga, L.; Ochoa, R.; Lans, I.; Peña-Varas, C.; Alegría-Arcos, M.; Cossio, P.; Ramírez, D.; Peláez, R. Application of ensemble pharmacophore-based virtual screening to the discovery of novel antimitotic tubulin inhibitors. Comput. Struct. Biotechnol. J., 2021, 19, 4360-4372.
[http://dx.doi.org/10.1016/j.csbj.2021.07.039] [PMID: 34429853]
[28]
Wang, Z.; Sun, H.; Shen, C.; Hu, X.; Gao, J.; Li, D.; Cao, D.; Hou, T. Combined strategies in structure-based virtual screening. Phys. Chem. Chem. Phys., 2020, 22(6), 3149-3159.
[http://dx.doi.org/10.1039/C9CP06303J] [PMID: 31995074]
[29]
Ferreira, L.G.; Dos Santos, R.N.; Oliva, G.; Andricopulo, A.D. Molecular docking and structure-based drug design strategies. Molecules, 2015, 20(7), 13384-13421.
[http://dx.doi.org/10.3390/molecules200713384] [PMID: 26205061]
[30]
Chiba, S.; Ishida, T.; Ikeda, K.; Mochizuki, M.; Teramoto, R.; Taguchi, Y.H.; Iwadate, M.; Umeyama, H.; Ramakrishnan, C.; Thangakani, A.M.; Velmurugan, D.; Gromiha, M.M.; Okuno, T.; Kato, K.; Minami, S.; Chikenji, G.; Suzuki, S.D.; Yanagisawa, K.; Shin, W.H.; Kihara, D.; Yamamoto, K.Z.; Moriwaki, Y.; Yasuo, N.; Yoshino, R.; Zozulya, S.; Borysko, P.; Stavniichuk, R.; Honma, T.; Hirokawa, T.; Akiyama, Y.; Sekijima, M. An iterative compound screening contest method for identifying target protein inhibitors using the tyrosine-protein kinase Yes. Sci. Rep., 2017, 7(1), 12038.
[http://dx.doi.org/10.1038/s41598-017-10275-4] [PMID: 28931921]
[31]
Lavecchia, A.; Di Giovanni, C. Virtual screening strategies in drug discovery: A critical review. Curr. Med. Chem., 2013, 20(23), 2839-2860.
[http://dx.doi.org/10.2174/09298673113209990001] [PMID: 23651302]
[32]
Varela-Rial, A.; Majewski, M.; De Fabritiis, G. Structure based virtual screening: Fast and slow. WIREs Comput. Mol. Sci., 2021, 12(2), 1544.
[33]
Araujo, S.C.; Maltarollo, V.G.; Almeida, M.O.; Ferreira, L.L.G.; Andricopulo, A.D.; Honorio, K.M. Structure-based virtual screening, molecular dynamics and binding free energy calculations of hit candidates as ALK-5 inhibitors. Molecules, 2020, 25(2), E264.
[http://dx.doi.org/10.3390/molecules25020264] [PMID: 31936488]
[34]
Huang, S.Y.; Zou, X. Advances and challenges in protein-ligand docking. Int. J. Mol. Sci., 2010, 11(8), 3016-3034.
[http://dx.doi.org/10.3390/ijms11083016] [PMID: 21152288]
[35]
Yang, Y.; Adelstein, S.J.; Kassis, A.I. Target discovery from data mining approaches. Drug Discov. Today, 2009, 14(3-4), 147-154.
[http://dx.doi.org/10.1016/j.drudis.2008.12.005] [PMID: 19135549]
[36]
Westbrook, J.D.; Soskind, R.; Hudson, B.P.; Burley, S.K. Impact of the protein data bank on antineoplastic approvals. Drug Discov. Today, 2020, 25(5), 837-850.
[http://dx.doi.org/10.1016/j.drudis.2020.02.002] [PMID: 32068073]
[37]
Singh, A.N.; Baruah, M.M.; Sharma, N. Structure based docking studies towards exploring potential anti-androgen activity of selected phytochemicals against prostate cancer. Sci. Rep., 2017, 7(1), 1955.
[http://dx.doi.org/10.1038/s41598-017-02023-5] [PMID: 28512306]
[38]
Kostrzewa, T.; Sahu, K.K.; Gorska-Ponikowska, M.; Tuszynski, J.A.; Kuban-Jankowska, A. Synthesis of small peptide compounds, molecular docking, and inhibitory activity evaluation against phosphatases PTP1B and SHP2. Drug Des. Devel. Ther., 2018, 12, 4139-4147.
[http://dx.doi.org/10.2147/DDDT.S186614] [PMID: 30584278]
[39]
Jabeen, F.; Panda, S.S.; Kondratyuk, T.P.; Park, E.J.; Pezzuto, J.M.; Ihsan-ul-Haq; Hall, C.D.; Katritzky, A.R. Synthesis, molecular docking and anticancer studies of peptides and iso-peptides. Bioorg. Med. Chem. Lett., 2015, 25(15), 2980-2984.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.020] [PMID: 26048799]
[40]
Bakare, O.O.; Fadaka, A.O.; Keyster, M.; Pretorius, A. Structural and molecular docking analytical studies of the predicted ligand binding sites of cadherin-1 in cancer prognostics. Adv. Appl. Bioinform. Chem., 2020, 13, 1-9.
[http://dx.doi.org/10.2147/AABC.S253851] [PMID: 32821128]
[41]
Mishra, A.; Dey, S. Molecular docking studies of a cyclic octapeptide-cyclosaplin from sandalwood. Biomolecules, 2019, 9(11), 740.
[http://dx.doi.org/10.3390/biom9110740] [PMID: 31731771]
[42]
Nguyen, C.; Nguyen, V.D. Discovery of Azurin-Like anticancer bacteriocins from human gut microbiome through homology modeling and molecular docking against the tumor suppressor p53. BioMed Res. Int., 2016, 2016, 8490482.
[http://dx.doi.org/10.1155/2016/8490482]
[43]
Gupta, U.K.; Mahanta, S.; Paul, S. In silico design of small peptide-based Hsp90 inhibitor: A novel anticancer agent. Med. Hypotheses, 2013, 81(5), 853-861.
[http://dx.doi.org/10.1016/j.mehy.2013.08.006] [PMID: 24018284]
[44]
Rosita, A.S.; Begum, T.N. Molecular docking analysis of the TNIK receptor protein with a potential inhibitor from the NPACT databas. Bioinformation, 2020, 16(5), 387-392.
[http://dx.doi.org/10.6026/97320630016387] [PMID: 32831519]
[45]
Badar, M.; Shamsi, S.; Ahmed, J.; Alam, A. Molecular dynamics simulations: Concept, methods, and applications. Molecules, 2020. Available from: https://www.mdpi.com/journal/molecules/spe-cial_issues/Dynamics_Simulation
[46]
Hospital, A.; Goñi, J.R.; Orozco, M.; Gelpí, J.L. Molecular dynamics simulations: Advances and applications. Adv. Appl. Bioinform. Chem., 2015, 8, 37-47.
[PMID: 26604800]
[47]
Li, J.; Ying, S.; Ren, H.; Dai, J.; Zhang, L.; Liang, L.; Wang, Q.; Shen, Q.; Shen, J.W. Molecular dynamics study on the encapsulation and release of anti-cancer drug doxorubicin by chitosan. Int. J. Pharm., 2020, 580, 119241.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119241] [PMID: 32197982]
[48]
Emperador, A.; Solernou, A.; Sfriso, P.; Pons, C.; Gelpi, J.L.; Fernandez-Recio, J.; Orozco, M. Efficient relaxation of protein-protein interfaces by discrete molecular dynamics simulations. J. Chem. Theory Comput., 2013, 9(2), 1222-1229.
[http://dx.doi.org/10.1021/ct301039e] [PMID: 26588765]
[49]
Hait, W.N. Anticancer drug development: The grand challenges. Nat. Rev. Drug Discov., 2010, 9(4), 253-254.
[http://dx.doi.org/10.1038/nrd3144] [PMID: 20369394]
[50]
Chaudhari, R.; Fong, L.W.; Tan, Z.; Huang, B.; Zhang, S. An up-to-date overview of computational polypharmacology in modern drug discovery. Expert Opin. Drug Discov., 2020, 15(9), 1025-1044.
[http://dx.doi.org/10.1080/17460441.2020.1767063] [PMID: 32452701]
[51]
Anighoro, A.; Bajorath, J.; Rastelli, G. Polypharmacology: Challenges and opportunities in drug discovery. J. Med. Chem., 2014, 57(19), 7874-7887.
[http://dx.doi.org/10.1021/jm5006463] [PMID: 24946140]
[52]
Faivre, S.; Demetri, G.; Sargent, W.; Raymond, E. Molecular basis for sunitinib efficacy and future clinical development. Nat. Rev. Drug Discov., 2007, 6(9), 734-745.
[http://dx.doi.org/10.1038/nrd2380] [PMID: 17690708]
[53]
Zhang, Z.; Zhou, L.; Xie, N.; Nice, E.C.; Zhang, T.; Cui, Y.; Huang, C. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct. Target. Ther., 2020, 5(1), 113.
[http://dx.doi.org/10.1038/s41392-020-00213-8] [PMID: 32616710]
[54]
Sahoo, B.M.; Ravi Kumar, B.V.V.; Sruti, J.; Mahapatra, M.K.; Banik, B.K.; Borah, P. Drug repurposing strategy (DRS): Emerging approach to identify potential therapeutics for treatment of novel coronavirus infection. Front. Mol. Biosci., 2021, 8, 628144.
[http://dx.doi.org/10.3389/fmolb.2021.628144] [PMID: 33718434]
[55]
Nosengo, N. Can you teach old drugs new tricks? Nature, 2016, 534(7607), 314-316.
[http://dx.doi.org/10.1038/534314a] [PMID: 27306171]
[56]
Kurzrock, R.; Kantarjian, H.M.; Kesselheim, A.S.; Sigal, E.V. New drug approvals in oncology. Nat. Rev. Clin. Oncol., 2020, 17(3), 140-146.
[http://dx.doi.org/10.1038/s41571-019-0313-2] [PMID: 32020042]
[57]
Gallagher, E.J.; LeRoith, D. Obesity and diabetes: The increased risk of cancer and cancer-related mortality. Physiol. Rev., 2015, 95(3), 727-748.
[http://dx.doi.org/10.1152/physrev.00030.2014] [PMID: 26084689]
[58]
Mark, M.; Klingbiel, D.; Mey, U.; Winterhalder, R.; Rothermundt, C.; Gillessen, S.; von Moos, R.; Pollak, M.; Manetsch, G.; Strebel, R.; Cathomas, R. Impact of addition of metformin to abiraterone in metastatic castration-resistant prostate cancer patients with disease progressing while receiving abiraterone treatment (MetAb-Pro): Phase 2 pilot study. Clin. Genitourin. Cancer, 2019, 17(2), e323-e328.
[http://dx.doi.org/10.1016/j.clgc.2018.12.009] [PMID: 30686756]
[59]
Zhang, Z.J.; Yuan, J.; Bi, Y.; Wang, C.; Liu, Y. The effect of metformin on biomarkers and survivals for breast cancer- a systematic review and meta-analysis of randomized clinical trials. Pharmacol. Res., 2019, 141, 551-555.
[http://dx.doi.org/10.1016/j.phrs.2019.01.036] [PMID: 30664988]
[60]
Petchsila, K.; Prueksaritanond, N.; Insin, P.; Yanaranop, M.; Chotikawichean, N. Effect of metformin for decreasing proliferative marker in women with endometrial cancer: A randomized double-blind placebo-controlled trial. Asian Pac. J. Cancer Prev. APJCP., 2020, 21(3), 733-741.
[http://dx.doi.org/10.31557/APJCP.2020.21.3.733] [PMID: 32212801]
[61]
Bhaw-Luximon, A.; Jhurry, D. Metformin in pancreatic cancer treatment: From clinical trials through basic research to biomarker quantification. J. Cancer Res. Clin. Oncol., 2016, 142(10), 2159-2171.
[http://dx.doi.org/10.1007/s00432-016-2178-4] [PMID: 27160287]
[62]
Olgen, S.; Kotra, L.P. Drug repurposing in the development of anticancer agents. Curr. Med. Chem., 2019, 26(28), 5410-5427.
[http://dx.doi.org/10.2174/0929867325666180713155702] [PMID: 30009698]
[63]
Dutta, S.; Bose, K. Remodelling structure-based drug design using machine learning. Emerg. Top. Life Sci., 2021, 5(1), 13-27.
[http://dx.doi.org/10.1042/ETLS20200253] [PMID: 33825834]
[64]
Goel, A.K.; Davies, J. Artificial intelligence. In: The Cambridge Handbook of Intelligence, 2nd; Sternberg, R.J., Ed.; Cambridge University Press: Cambridge, 2020; pp. 602-625. Available from: https://www.cambridge.org/core/books/cambridge-handbook-of-intelligence/artificial-intelligence/B994B0D29512087BF53979CA9EABC9AB
[65]
Gupta, R.; Srivastava, D.; Sahu, M.; Tiwari, S.; Ambasta, R.K.; Kumar, P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol. Divers., 2021, 25(3), 1315-1360.
[http://dx.doi.org/10.1007/s11030-021-10217-3] [PMID: 33844136]
[66]
Aggarwal, M.; Murty, M. Applications of deep learning techniques for automated multiple sclerosis detection using magnetic resonance imaging: A review. Deep Learn., 2021, 2021, 35-66.
[67]
Schmidhuber, J. Deep learning in neural networks: An overview. Neural. Netw. Off J. Int. Neural Netw. Soc., 2015, 61, 85-117.
[http://dx.doi.org/10.1016/j.neunet.2014.09.003] [PMID: 25462637]
[68]
Lima, A.N.; Philot, E.A.; Trossini, G.H.G.; Scott, L.P.B.; Maltarollo, V.G.; Honorio, K.M. Use of machine learning approaches for novel drug discovery. Expert Opin. Drug Discov., 2016, 11(3), 225-239.
[http://dx.doi.org/10.1517/17460441.2016.1146250] [PMID: 26814169]
[69]
Angermueller, C.; Pärnamaa, T.; Parts, L.; Stegle, O. Deep learning for computational biology. Mol. Syst. Biol., 2016, 12(7), 878.
[http://dx.doi.org/10.15252/msb.20156651] [PMID: 27474269]
[70]
Liang, G.; Fan, W.; Luo, H.; Zhu, X. The emerging roles of artificial intelligence in cancer drug development and precision therapy. Biomed. Pharmacother., 2020, 128, 110255.
[http://dx.doi.org/10.1016/j.biopha.2020.110255] [PMID: 32446113]
[71]
Chen, G.; Tsoi, A.; Xu, H.; Zheng, W.J. Predict effective drug combination by deep belief network and ontology fingerprints. J. Biomed. Inform., 2018, 85, 149-154.
[http://dx.doi.org/10.1016/j.jbi.2018.07.024] [PMID: 30081101]
[72]
Simon, A.B.; Vitzthum, L.K.; Mell, L.K. Challenge of directly comparing imaging-based diagnoses made by machine learning algorithms with those made by human clinicians. J. Clin. Oncol., 2020, 38(16), 1868-1869.
[http://dx.doi.org/10.1200/JCO.19.03350] [PMID: 32271670]
[73]
Goecks, J.; Jalili, V.; Heiser, L.M.; Gray, J.W. How machine learning will transform biomedicine. Cell, 2020, 181(1), 92-101.
[http://dx.doi.org/10.1016/j.cell.2020.03.022] [PMID: 32243801]
[74]
Gerdes, H.; Casado, P.; Dokal, A.; Hijazi, M.; Akhtar, N.; Osuntola, R.; Rajeeve, V.; Fitzgibbon, J.; Travers, J.; Britton, D.; Khorsandi, S.; Cutillas, P.R. Drug ranking using machine learning systematically predicts the efficacy of anti-cancer drugs. Nat. Commun., 2021, 12(1), 1850.
[http://dx.doi.org/10.1038/s41467-021-22170-8] [PMID: 33767176]
[75]
Oquab, M.; Bottou, L.; Laptev, I.; Sivic, J. Learning and transferring mid-level image representations using convolutional neural networks. IEEE Conference on Computer Vision and Pattern Recognition, 23-28 June 2014, Columbus, OH, USA, pp. 1717-24.
[http://dx.doi.org/10.1109/CVPR.2014.222]
[76]
Aliper, A.; Plis, S.; Artemov, A.; Ulloa, A.; Mamoshina, P.; Zhavoronkov, A. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol. Pharm., 2016, 13(7), 2524-2530.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00248] [PMID: 27200455]
[77]
Kadurin, A.; Aliper, A.; Kazennov, A.; Mamoshina, P.; Vanhaelen, Q.; Khrabrov, K.; Zhavoronkov, A. The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology. Oncotarget, 2017, 8(7), 10883-10890.
[http://dx.doi.org/10.18632/oncotarget.14073] [PMID: 28029644]
[78]
Bhatt, A. Artificial intelligence in managing clinical trial design and conduct: Man and machine still on the learning curve? Perspect. Clin. Res., 2021, 12(1), 1-3.
[http://dx.doi.org/10.4103/picr.PICR_312_20] [PMID: 33816201]
[79]
Harrer, S.; Shah, P.; Antony, B.; Hu, J. Artificial intelligence for clinical trial design. Trends Pharmacol. Sci., 2019, 40(8), 577-591.
[http://dx.doi.org/10.1016/j.tips.2019.05.005] [PMID: 31326235]
[80]
Grace, K.; Salvatier, J.; Dafoe, A.; Zhang, B.; Evans, O. Viewpoint: When will ai exceed human performance? evidence from AI experts. J. Artif. Intell. Res., 2018, 62, 729-754.
[http://dx.doi.org/10.1613/jair.1.11222]
[81]
Shao, D; Dai, Y; Li, N; Cao, X; Zhao, W; Cheng, L Artificial intelligence in clinical research of cancers. Brief. Bioinform., 2022, 23(1), 523.
[http://dx.doi.org/10.1093/bib/bbab523]
[82]
Researchdive. Global computer-aided drug discovery market analysis. Res. Dive., 2021. Available from: https://www.researchdive.com/159/computer-aided-drug-discovery-market
[83]
Garofalo, M.; Grazioso, G.; Cavalli, A.; Sgrignani, J. How computational chemistry and drug delivery techniques can support the development of new anticancer Drugs. Molecules, 2020, 25(7), 1756.
[http://dx.doi.org/10.3390/molecules25071756] [PMID: 32290224]
[84]
Nautiyal, U; Kaur, C; Goel, V. Targeted drug delivery system: Current and novel approach. Semin Scholor, 2017, 2017, 7903022.
[85]
Veselov, V.V.; Nosyrev, A.E.; Jicsinszky, L.; Alyautdin, R.N.; Cravotto, G. Targeted delivery methods for anticancer drugs. Cancers (Basel), 2022, 14(3), 622.
[http://dx.doi.org/10.3390/cancers14030622] [PMID: 35158888]
[86]
Yadav, P.; Bandyopadhyay, A.; Chakraborty, A.; Sarkar, K. Enhancement of anticancer activity and drug delivery of chitosan-curcumin nanoparticle via molecular docking and simulation analysis. Carbohydr. Polym., 2018, 182, 188-198.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.102] [PMID: 29279114]
[87]
Wijeratne, P.A.; Vavourakis, V. A quantitative in silico platform for simulating cytotoxic and nanoparticle drug delivery to solid tumours. Interface Focus, 2019, 9(3), 20180063.
[http://dx.doi.org/10.1098/rsfs.2018.0063] [PMID: 31065337]
[88]
Ekins, S.; Mestres, J.; Testa, B. In silico pharmacology for drug discovery: Applications to targets and beyond. Br. J. Pharmacol., 2007, 152(1), 21-37.
[http://dx.doi.org/10.1038/sj.bjp.0707306] [PMID: 17549046]
[89]
Begum, S.S.; Das, D.; Gour, N.K.; Deka, R.C. Computational modelling of nanotube delivery of anti-cancer drug into glutathione reductase enzyme. Sci. Rep., 2021, 11(1), 4950.
[http://dx.doi.org/10.1038/s41598-021-84006-1] [PMID: 33654109]
[90]
Dehaghani, M.Z.; Yousefi, F.; Seidi, F.; Bagheri, B.; Mashhadzadeh, A.H.; Naderi, G.; Esmaeili, A.; Abida, O.; Habibzadeh, S.; Saeb, M.R.; Rybachuk, M. Encapsulation of an anticancer drug Isatin inside a host nano-vehicle SWCNT: A molecular dynamics simulation. Sci. Rep., 2021, 11(1), 18753.
[http://dx.doi.org/10.1038/s41598-021-98222-2] [PMID: 34548596]
[91]
Boroushaki, T.; Dekamin, M.G.; Hashemianzadeh, S.M.; Naimi-Jamal, M.R.; Ganjali Koli, M. A molecular dynamic simulation study of anticancer agents and UiO-66 as a carrier in drug delivery systems. J. Mol. Graph. Model., 2022, 113, 108147.
[http://dx.doi.org/10.1016/j.jmgm.2022.108147] [PMID: 35219082]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy