Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Epigallocatechin-3-gallate Induced HepG2 Cells Apoptosis through ROSmediated AKT /JNK and p53 Signaling Pathway

Author(s): Yutao Guan, Qianlong Wu, Miaomiao Li, Danyang Chen, Jingyao Su, Liandong Zuo*, Bing Zhu* and Yinghua Li*

Volume 23, Issue 6, 2023

Published on: 22 February, 2023

Page: [447 - 460] Pages: 14

DOI: 10.2174/1568009622666220705101642

Price: $65

Abstract

Background: Hepatocarcinoma is the third leading cause of cancer-related deaths around the world. Recently, some studies have reported that Epigallocatechin-3-gallate (EGCG) may have the anti-cancer potential. However, the affection and putative mechanisms of cytotoxicity induced by EGCG in HepG2 cells remain unknown. Based on the above, the present study evaluated the effect of EGCG on the cytotoxic and anti-cancer mechanisms of HepG2 cells.

Methods: The effect of EGCG on the apoptosis of Hep-G2 cells and its mechanism were studied by cell counting kit-8, mitochondrial membrane potential assay with JC-1, Annexin V-FITC apoptosis detection, cell cycle, and apoptosis analysis, one step TUNEL apoptosis assay, caspase 3 activity assay, caspase 9 activity Assay, Reactive Oxygen Species assay, and Western blot.

Results: EGCG-induced HepG2 cell apoptosis was confirmed by accumulation of the sub-G1 cells population, translocation of phosphatidylserine, depletion of mitochondrial membrane potential, DNA fragmentation, caspase-3 activation, caspase-9 activation, and poly (ADP-ribose) polymerase cleavage. Furthermore, EGCG enhanced cytotoxic effects on HepG2 cells and triggered intracellular reactive oxygen species; the signaling pathways of AKT, JNK, and p53 were activated to advance cell apoptosis.

Conclusion: The results reveal that EGCG may provide useful information on EGCG-induced HepG2 cell apoptosis and be an appropriate candidate for cancer chemotherapy.

Keywords: Epigallocatechin-3-gallate, HepG2, P53, ROS, Apoptosis

Graphical Abstract

[1]
Wang, H.; Naghavi, M.; Allen, C.; Barber, R.M.; Bhutta, Z.A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; Coates, M.M.; Coggeshall, M.; Dandona, L.; Dicker, D.J.; Erskine, H.E.; Ferrari, A.J.; Fitzmaurice, C.; Foreman, K.; Forouzanfar, M.H.; Fraser, M.S.; Fullman, N.; Gething, P.W.; Goldberg, E.M.; Graetz, N.; Haagsma, J.A.; Hay, S.I.; Huynh, C.; Johnson, C.O.; Kassebaum, N.J.; Kinfu, Y.; Kulikoff, X.R.; Kutz, M.; Kyu, H.H.; Larson, H.J.; Leung, J.; Liang, X.; Lim, S.S.; Lind, M.; Lozano, R.; Marquez, N.; Mensah, G.A.; Mikesell, J.; Mokdad, A.H.; Mooney, M.D.; Nguyen, G.; Nsoesie, E.; Pigott, D.M.; Pinho, C.; Roth, G.A.; Salomon, J.A.; Sandar, L.; Silpakit, N.; Sligar, A.; Sorensen, R.J.D.; Stanaway, J.; Steiner, C.; Teeple, S.; Thomas, B.A.; Troeger, C.; VanderZanden, A.; Vollset, S.E.; Wanga, V.; Whiteford, H.A.; Wolock, T.; Zoeckler, L.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abera, S.F.; Abreu, D.M.X.; Abu-Raddad, L.J.; Abyu, G.Y.; Achoki, T.; Adelekan, A.L.; Ademi, Z.; Adou, A.K.; Adsuar, J.C.; Afanvi, K.A.; Afshin, A.; Agardh, E.E.; Agarwal, A.; Agrawal, A.; Kiadaliri, A.A.; Ajala, O.N.; Akanda, A.S.; Akinyemi, R.O.; Akinyemiju, T.F.; Akseer, N.; Lami, F.H.A.; Alabed, S.; Al-Aly, Z.; Alam, K.; Alam, N.K.M.; Alasfoor, D.; Aldhahri, S.F.; Aldridge, R.W.; Alegretti, M.A.; Aleman, A.V.; Alemu, Z.A.; Alexander, L.T.; Alhabib, S.; Ali, R.; Alkerwi, A.; Alla, F.; Allebeck, P.; Al-Raddadi, R.; Alsharif, U.; Altirkawi, K.A.; Martin, E.A.; Alvis-Guzman, N.; Amare, A.T.; Amegah, A.K.; Ameh, E.A.; Amini, H.; Ammar, W.; Amrock, S.M.; Andersen, H.H.; Anderson, B.O.; Anderson, G.M.; Antonio, C.A.T.; Aregay, A.F.; Ärnlöv, J.; Arsenijevic, V.S.A.; Artaman, A.; Asayesh, H.; Asghar, R.J.; Atique, S.; Avokpaho, E.F.G.A.; Awasthi, A.; Azzopardi, P.; Bacha, U.; Badawi, A.; Bahit, M.C.; Balakrishnan, K.; Banerjee, A.; Barac, A.; Barker-Collo, S.L.; Bärnighausen, T.; Barregard, L.; Barrero, L.H.; Basu, A.; Basu, S.; Bayou, Y.T.; Bazargan-Hejazi, S.; Beardsley, J.; Bedi, N.; Beghi, E.; Belay, H.A.; Bell, B.; Bell, M.L.; Bello, A.K.; Bennett, D.A.; Bensenor, I.M.; Berhane, A.; Bernabé, E.; Betsu, B.D.; Beyene, A.S.; Bhala, N.; Bhalla, A.; Biadgilign, S.; Bikbov, B.; Abdulhak, A.A.B.; Biroscak, B.J.; Biryukov, S.; Bjertness, E.; Blore, J.D.; Blosser, C.D.; Bohensky, M.A.; Borschmann, R.; Bose, D.; Bourne, R.R.A.; Brainin, M.; Brayne, C.E.G.; Brazinova, A.; Breitborde, N.J.K.; Brenner, H.; Brewer, J.D.; Brown, A.; Brown, J.; Brugha, T.S.; Buckle, G.C.; Butt, Z.A.; Calabria, B.; Campos-Nonato, I.R.; Campuzano, J.C.; Carapetis, J.R.; Cárdenas, R.; Carpenter, D.O.; Carrero, J.J.; Castañeda-Orjuela, C.A.; Rivas, J.C.; Catalá-López, F.; Cavalleri, F.; Cercy, K.; Cerda, J.; Chen, W.; Chew, A.; Chiang, P.P-C.; Chibalabala, M.; Chibueze, C.E.; Chimed-Ochir, O.; Chisumpa, V.H.; Choi, J-Y.J.; Chowdhury, R.; Christensen, H.; Christopher, D.J.; Ciobanu, L.G.; Cirillo, M.; Cohen, A.J.; Colistro, V.; Colomar, M.; Colquhoun, S.M.; Cooper, C.; Cooper, L.T.; Cortinovis, M.; Cowie, B.C.; Crump, J.A.; Damsere-Derry, J.; Danawi, H.; Dandona, R.; Daoud, F.; Darby, S.C.; Dargan, P.I.; das Neves, J.; Davey, G.; Davis, A.C.; Davitoiu, D.V.; de Castro, E.F.; de Jager, P.; Leo, D.D.; Degenhardt, L.; Dellavalle, R.P.; Deribe, K.; Deribew, A.; Dharmaratne, S.D.; Dhillon, P.K.; Diaz-Torné, C.; Ding, E.L.; dos Santos, K.P.B.; Dossou, E.; Driscoll, T.R.; Duan, L.; Dubey, M.; Duncan, B.B.; Ellenbogen, R.G.; Ellingsen, C.L.; Elyazar, I.; Endries, A.Y.; Ermakov, S.P.; Eshrati, B.; Esteghamati, A.; Estep, K.; Faghmous, I.D.A.; Fahimi, S.; Faraon, E.J.A.; Farid, T.A.; Farinha, C.S.S.; Faro, A.; Farvid, M.S.; Farzadfar, F.; Feigin, V.L.; Fereshtehnejad, S-M.; Fernandes, J.G.; Fernandes, J.C.; Fischer, F.; Fitchett, J.R.A.; Flaxman, A.; Foigt, N.; Fowkes, F.G.R.; Franca, E.B.; Franklin, R.C.; Friedman, J.; Frostad, J.; Fürst, T.; Futran, N.D.; Gall, S.L.; Gambashidze, K.; Gamkrelidze, A.; Ganguly, P.; Gankpé, F.G.; Gebre, T.; Gebrehiwot, T.T.; Gebremedhin, A.T.; Gebru, A.A.; Geleijnse, J.M.; Gessner, B.D.; Ghoshal, A.G.; Gibney, K.B.; Gillum, R.F.; Gilmour, S.; Giref, A.Z.; Giroud, M.; Gishu, M.D.; Giussani, G.; Glaser, E.; Godwin, W.W.; Gomez-Dantes, H.; Gona, P.; Goodridge, A.; Gopalani, S.V.; Gosselin, R.A.; Gotay, C.C.; Goto, A.; Gouda, H.N.; Greaves, F.; Gugnani, H.C.; Gupta, R.; Gupta, R.; Gupta, V.; Gutiérrez, R.A.; Hafezi-Nejad, N.; Haile, D.; Hailu, A.D.; Hailu, G.B.; Halasa, Y.A.; Hamadeh, R.R.; Hamidi, S.; Hancock, J.; Handal, A.J.; Hankey, G.J.; Hao, Y.; Harb, H.L.; Harikrishnan, S.; Haro, J.M.; Havmoeller, R.; Heckbert, S.R.; Heredia-Pi, I.B.; Heydarpour, P.; Hilderink, H.B.M.; Hoek, H.W.; Hogg, R.S.; Horino, M.; Horita, N.; Hosgood, H.D.; Hotez, P.J.; Hoy, D.G.; Hsairi, M.; Htet, A.S.; Htike, M.M.T.; Hu, G.; Huang, C.; Huang, H.; Huiart, L.; Husseini, A.; Huybrechts, I.; Huynh, G.; Iburg, K.M.; Innos, K.; Inoue, M.; Iyer, V.J.; Jacobs, T.A.; Jacobsen, K.H.; Jahanmehr, N.; Jakovljevic, M.B.; James, P.; Javanbakht, M.; Jayaraman, S.P.; Jayatilleke, A.U.; Jeemon, P.; Jensen, P.N.; Jha, V.; Jiang, G.; Jiang, Y.; Jibat, T.; Jimenez-Corona, A.; Jonas, J.B.; Joshi, T.K.; Kabir, Z.; Kamal, R.; Kan, H.; Kant, S.; Karch, A.; Karema, C.K.; Karimkhani, C.; Karletsos, D.; Karthikeyan, G.; Kasaeian, A.; Katibeh, M.; Kaul, A.; Kawakami, N.; Kayibanda, J.F.; Keiyoro, P.N.; Kemmer, L.; Kemp, A.H.; Kengne, A.P.; Keren, A.; Kereselidze, M.; Kesavachandran, C.N.; Khader, Y.S.; Khalil, I.A.; Khan, A.R.; Khan, E.A.; Khang, Y-H.; Khera, S.; Khoja, T.A.M.; Kieling, C.; Kim, D.; Kim, Y.J.; Kissela, B.M.; Kissoon, N.; Knibbs, L.D.; Knudsen, A.K.; Kokubo, Y.; Kolte, D.; Kopec, J.A.; Kosen, S.; Koul, P.A.; Koyanagi, A.; Krog, N.H.; Defo, B.K.; Bicer, B.K.; Kudom, A.A.; Kuipers, E.J.; Kulkarni, V.S.; Kumar, G.A.; Kwan, G.F.; Lal, A.; Lal, D.K.; Lalloo, R.; Lallukka, T.; Lam, H.; Lam, J.O.; Langan, S.M.; Lansingh, V.C.; Larsson, A.; Laryea, D.O.; Latif, A.A.; Lawrynowicz, A.E.B.; Leigh, J.; Levi, M.; Li, Y.; Lindsay, M.P.; Lipshultz, S.E.; Liu, P.Y.; Liu, S.; Liu, Y.; Lo, L-T.; Logroscino, G.; Lotufo, P.A.; Lucas, R.M.; Lunevicius, R.; Lyons, R.A.; Ma, S.; Machado, V.M.P.; Mackay, M.T.; MacLachlan, J.H.; Razek, H.M.A.E.; Magdy, M.; Razek, A.E.; Majdan, M.; Majeed, A.; Malekzadeh, R.; Manamo, W.A.A.; Mandisarisa, J.; Mangalam, S.; Mapoma, C.C.; Marcenes, W.; Margolis, D.J.; Martin, G.R.; Martinez-Raga, J.; Marzan, M.B.; Masiye, F.; Mason-Jones, A.J.; Massano, J.; Matzopoulos, R.; Mayosi, B.M.; McGarvey, S.T.; McGrath, J.J.; McKee, M.; McMahon, B.J.; Meaney, P.A.; Mehari, A.; Mehndiratta, M.M.; Mejia-Rodriguez, F.; Mekonnen, A.B.; Melaku, Y.A.; Memiah, P.; Memish, Z.A.; Mendoza, W.; Meretoja, A.; Meretoja, T.J.; Mhimbira, F.A.; Micha, R.; Millear, A.; Miller, T.R.; Mirarefin, M.; Misganaw, A.; Mock, C.N.; Mohammad, K.A.; Mohammadi, A.; Mohammed, S.; Mohan, V.; Mola, G.L.D.; Monasta, L.; Hernandez, J.C.M.; Montero, P.; Montico, M.; Montine, T.J.; Moradi-Lakeh, M.; Morawska, L.; Morgan, K.; Mori, R.; Mozaffarian, D.; Mueller, U.O.; Murthy, G.V.S.; Murthy, S.; Musa, K.I.; Nachega, J.B.; Nagel, G.; Naidoo, K.S.; Naik, N.; Naldi, L.; Nangia, V.; Nash, D.; Nejjari, C.; Neupane, S.; Newton, C.R.; Newton, J.N.; Ng, M.; Ngalesoni, F.N.; de Dieu Ngirabega, J.; Nguyen, Q.L.; Nisar, M.I.; Pete, P.M.N.; Nomura, M.; Norheim, O.F.; Norman, P.E.; Norrving, B.; Nyakarahuka, L.; Ogbo, F.A.; Ohkubo, T.; Ojelabi, F.A.; Olivares, P.R.; Olusanya, B.O.; Olusanya, J.O.; Opio, J.N.; Oren, E.; Ortiz, A.; Osman, M.; Ota, E.; Ozdemir, R.; Pa, M.; Pain, A.; Pandian, J.D.; Pant, P.R.; Papachristou, C.; Park, E-K.; Park, J-H.; Parry, C.D.; Parsaeian, M.; Caicedo, A.J.P.; Patten, S.B.; Patton, G.C.; Paul, V.K.; Pearce, N.; Pedro, J.M.; Stokic, L.P.; Pereira, D.M.; Perico, N.; Pesudovs, K.; Petzold, M.; Phillips, M.R.; Piel, F.B.; Pillay, J.D.; Plass, D.; Platts-Mills, J.A.; Polinder, S.; Pope, C.A.; Popova, S.; Poulton, R.G.; Pourmalek, F.; Prabhakaran, D.; Qorbani, M.; Quame-Amaglo, J.; Quistberg, D.A.; Rafay, A.; Rahimi, K.; Rahimi-Movaghar, V.; Rahman, M.; Rahman, M.H.U.; Rahman, S.U.; Rai, R.K.; Rajavi, Z.; Rajsic, S.; Raju, M.; Rakovac, I.; Rana, S.M.; Ranabhat, C.L.; Rangaswamy, T.; Rao, P.; Rao, S.R.; Refaat, A.H.; Rehm, J.; Reitsma, M.B.; Remuzzi, G.; Resnikoff, S.; Ribeiro, A.L.; Ricci, S.; Blancas, M.J.R.; Roberts, B.; Roca, A.; Rojas-Rueda, D.; Ronfani, L.; Roshandel, G.; Rothenbacher, D.; Roy, A.; Roy, N.K.; Ruhago, G.M.; Sagar, R.; Saha, S.; Sahathevan, R.; Saleh, M.M.; Sanabria, J.R.; Sanchez-Niño, M.D.; Sanchez-Riera, L.; Santos, I.S.; Sarmiento-Suarez, R.; Sartorius, B.; Satpathy, M.; Savic, M.; Sawhney, M.; Schaub, M.P.; Schmidt, M.I.; Schneider, I.J.C.; Schöttker, B.; Schutte, A.E.; Schwebel, D.C.; Seedat, S.; Sepanlou, S.G.; Servan-Mori, E.E.; Shackelford, K.A.; Shaddick, G.; Shaheen, A.; Shahraz, S.; Shaikh, M.A.; Shakh-Nazarova, M.; Sharma, R.; She, J.; Sheikhbahaei, S.; Shen, J.; Shen, Z.; Shepard, D.S.; Sheth, K.N.; Shetty, B.P.; Shi, P.; Shibuya, K.; Shin, M-J.; Shiri, R.; Shiue, I.; Shrime, M.G.; Sigfusdottir, I.D.; Silberberg, D.H.; Silva, D.A.S.; Silveira, D.G.A.; Silverberg, J.I.; Simard, E.P.; Singh, A.; Singh, G.M.; Singh, J.A.; Singh, O.P.; Singh, P.K.; Singh, V.; Soneji, S.; Søreide, K.; Soriano, J.B.; Sposato, L.A.; Sreeramareddy, C.T.; Stathopoulou, V.; Stein, D.J.; Stein, M.B.; Stranges, S.; Stroumpoulis, K.; Sunguya, B.F.; Sur, P.; Swaminathan, S.; Sykes, B.L.; Szoeke, C.E.I.; Tabarés-Seisdedos, R.; Tabb, K.M.; Takahashi, K.; Takala, J.S.; Talongwa, R.T.; Tandon, N.; Tavakkoli, M.; Taye, B.; Taylor, H.R.; Ao, B.J.T.; Tedla, B.A.; Tefera, W.M.; Have, M.T.; Terkawi, A.S.; Tesfay, F.H.; Tessema, G.A.; Thomson, A.J.; Thorne-Lyman, A.L.; Thrift, A.G.; Thurston, G.D.; Tillmann, T.; Tirschwell, D.L.; Tonelli, M.; Topor-Madry, R.; Topouzis, F.; Towbin, J.A.; Traebert, J.; Tran, B.X.; Truelsen, T.; Trujillo, U.; Tura, A.K.; Tuzcu, E.M.; Uchendu, U.S.; Ukwaja, K.N.; Undurraga, E.A.; Uthman, O.A.; Dingenen, R.V.; van Donkelaar, A.; Vasankari, T.; Vasconcelos, A.M.N.; Venketasubramanian, N.; Vidavalur, R.; Vijayakumar, L.; Villalpando, S.; Violante, F.S.; Vlassov, V.V.; Wagner, J.A.; Wagner, G.R.; Wallin, M.T.; Wang, L.; Watkins, D.A.; Weichenthal, S.; Weiderpass, E.; Weintraub, R.G.; Werdecker, A.; Westerman, R.; White, R.A.; Wijeratne, T.; Wilkinson, J.D.; Williams, H.C.; Wiysonge, C.S.; Woldeyohannes, S.M.; Wolfe, C.D.A.; Won, S.; Wong, J.Q.; Woolf, A.D.; Xavier, D.; Xiao, Q.; Xu, G.; Yakob, B.; Yalew, A.Z.; Yan, L.L.; Yano, Y.; Yaseri, M.; Ye, P.; Yebyo, H.G.; Yip, P.; Yirsaw, B.D.; Yonemoto, N.; Yonga, G.; Younis, M.Z.; Yu, S.; Zaidi, Z.; Zaki, M.E.S.; Zannad, F.; Zavala, D.E.; Zeeb, H.; Zeleke, B.M.; Zhang, H.; Zodpey, S.; Zonies, D.; Zuhlke, L.J.; Vos, T.; Lopez, A.D.; Murray, C.J.L Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, 2016, 388(10053), 1459-1544.
[http://dx.doi.org/10.1016/S0140-6736(16)31012-1] [PMID: 27733281]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet, 2015, 385(9963), 117-171.
[http://dx.doi.org/10.1016/S0140-6736(14)61682-2] [PMID: 25530442]
[4]
Mu, C.; Sheng, Y.; Wang, Q.; Amin, A.; Li, X.; Xie, Y. Potential compound from herbal food of Rhizoma Polygonati for treatment of COVID-19 analyzed by network pharmacology: Viral and cancer signaling mechanisms. J. Funct. Foods, 2021, 77, 104149.
[http://dx.doi.org/10.1016/j.jff.2020.104149] [PMID: 32837538]
[5]
Amin, A.; Mahmoud-Ghoneim, D. Texture analysis of liver fibrosis microscopic images: A study on the effect of biomarkers. Acta Biochim. Biophys. Sin., 2011, 43(3), 193-203.
[http://dx.doi.org/10.1093/abbs/gmq129] [PMID: 21258076]
[6]
Efferth, T.; Oesch, F. Repurposing of plant alkaloids for cancer therapy: Pharmacology and toxicology. Semin. Cancer Biol., 2021, 68, 143-163.
[http://dx.doi.org/10.1016/j.semcancer.2019.12.010] [PMID: 31883912]
[7]
Hamza, A.A.; Heeba, G.H.; Hamza, S.; Abdalla, A.; Amin, A. Standardized extract of ginger ameliorates liver cancer by reducing proliferation and inducing apoptosis through inhibition oxidative stress/inflammation pathway. Biomed. Pharmacother., 2021, 134, 111102.
[http://dx.doi.org/10.1016/j.biopha.2020.111102] [PMID: 33338743]
[8]
Chen, R.; Huang, L.; Hu, K. Natural products remodel cancer-associated fibroblasts in desmoplastic tumors. Acta Pharm. Sin. B, 2020, 10(11), 2140-2155.
[http://dx.doi.org/10.1016/j.apsb.2020.04.005] [PMID: 33304782]
[9]
Murali, C.; Mudgil, P.; Gan, C.Y.; Tarazi, H.; El-Awady, R.; Abdalla, Y.; Amin, A.; Maqsood, S. Camel whey protein hydrolysates induced G2/M cellcycle arrest in human colorectal carcinoma. Sci. Rep., 2021, 11(1), 7062.
[http://dx.doi.org/10.1038/s41598-021-86391-z] [PMID: 33782460]
[10]
Crew, K.D.; Ho, K.A.; Brown, P.; Greenlee, H.; Bevers, T.B.; Arun, B.; Sneige, N.; Hudis, C.; McArthur, H.L.; Chang, J.; Rimawi, M.; Cornelison, T.L.; Cardelli, J.; Santella, R.M.; Wang, A.; Lippman, S.M.; Hershman, D.L. Effects of a green tea extract, Polyphenon E, on systemic biomarkers of growth factor signalling in women with hormone receptor-negative breast cancer. J. Hum. Nutr. Diet., 2015, 28(3), 272-282.
[http://dx.doi.org/10.1111/jhn.12229] [PMID: 24646362]
[11]
Amin, A.; Farrukh, A.; Murali, C.; Soleimani, A.; Praz, F.; Graziani, G.; Brim, H.; Ashktorab, H. Saffron and its major ingredients’ effect on colon cancer cells with mismatch repair deficiency and microsatellite instability. Molecules, 2021, 26(13), 3855.
[http://dx.doi.org/10.3390/molecules26133855] [PMID: 34202689]
[12]
Chen, X.; Man, G.C.W.; Hung, S.W.; Zhang, T.; Fung, L.W.Y.; Cheung, C.W.; Chung, J.P.W.; Li, T.C.; Wang, C.C. Therapeutic effects of green tea on endometriosis. Crit. Rev. Food Sci. Nutr., 2021, 2021, 1986465.
[http://dx.doi.org/10.1080/10408398.2021.1986465] [PMID: 34620005]
[13]
Zhao, J.; Blayney, A.; Liu, X.; Gandy, L.; Jin, W.; Yan, L.; Ha, J.H.; Canning, A.J.; Connelly, M.; Yang, C.; Liu, X.; Xiao, Y.; Cosgrove, M.S.; Solmaz, S.R.; Zhang, Y.; Ban, D.; Chen, J.; Loh, S.N.; Wang, C. EGCG binds intrinsically disordered N-terminal domain of p53 and disrupts p53-MDM2 interaction. Nat. Commun., 2021, 12(1), 986.
[http://dx.doi.org/10.1038/s41467-021-21258-5] [PMID: 33579943]
[14]
Pi, M.; Kapoor, K.; Ye, R.; Smith, J.C.; Baudry, J.; Quarles, L.D. GPCR6A is a molecular target for the natural products gallate and EGCG in green tea. Mol. Nutr. Food Res., 2018, 62(8), 1700770.
[http://dx.doi.org/10.1002/mnfr.201700770] [PMID: 29468843]
[15]
Kandil, R.; Merkel, O.M. Recent progress of polymeric nanogels for gene delivery. Curr. Opin. Colloid Interface Sci., 2019, 39, 11-23.
[http://dx.doi.org/10.1016/j.cocis.2019.01.005] [PMID: 30853837]
[16]
Xie, Y.; Mu, C.; Kazybay, B.; Sun, Q.; Kutzhanova, A.; Nazarbek, G.; Xu, N.; Nurtay, L.; Wang, Q.; Amin, A.; Li, X. Network pharmacology and experimental investigation of Rhizoma polygonati extract targeted kinase with herbzyme activity for potent drug delivery. Drug Deliv., 2021, 28(1), 2187-2197.
[http://dx.doi.org/10.1080/10717544.2021.1977422] [PMID: 34662244]
[17]
Editorial: Refresh cell culture. Nat. Biomed. Eng., 2021, 5(8), 783-784.
[http://dx.doi.org/10.1038/s41551-021-00790-1] [PMID: 34426674]
[18]
Marcondes, N.A.; Terra, S.R.; Lasta, C.S.; Hlavac, N.R.C.; Dalmolin, M.L.; Lacerda, L.A.; Faulhaber, G.A.M.; González, F.H.D. Comparison of JC‐1 and MitoTracker probes for mitochondrial viability assessment in stored canine platelet concentrates: A flow cytometry study. Cytometry A, 2019, 95(2), 214-218.
[http://dx.doi.org/10.1002/cyto.a.23567] [PMID: 30107098]
[19]
Kaminaga, K.; Hamada, R.; Usami, N.; Suzuki, K.; Yokoya, A. Targeted nuclear irradiation with an X-Ray microbeam enhances total JC-1 fluorescence from mitochondria. Radiat. Res., 2020, 194(5), 511-518.
[http://dx.doi.org/10.1667/RR15110.1] [PMID: 33045074]
[20]
Koç, E.; Çelik-Uzuner, S.; Uzuner, U.; Çakmak, R. The detailed comparison of cell death detected by annexin V-PI counterstain using fluorescence microscope, flow cytometry and automated cell counter in mammalian and microalgae cells. J. Fluoresc., 2018, 28(6), 1393-1404.
[http://dx.doi.org/10.1007/s10895-018-2306-4] [PMID: 30343360]
[21]
Li, Y.; Guo, M.; Lin, Z.; Zhao, M.; Xia, Y.; Wang, C.; Xu, T.; Zhu, B. Multifunctional selenium nanoparticles with Galangin-induced HepG2 cell apoptosis through p38 and AKT signalling pathway. R. Soc. Open Sci., 2018, 5(11), 180509.
[http://dx.doi.org/10.1098/rsos.180509] [PMID: 30564384]
[22]
D’yakonov, V.A.; Makarov, A.A.; Dzhemileva, L.U.; Ramazanov, I.R.; Makarova, E.K.; Dzhemilev, U.M. Natural trienoic acids as anticancer agents: First stereoselective synthesis, cell cycle analysis, induction of apoptosis, cell signaling and mitochondrial targeting studies. Cancers , 2021, 13(8), 1808.
[http://dx.doi.org/10.3390/cancers13081808] [PMID: 33920067]
[23]
Li, Y.; Xu, T.; Lin, Z.; Wang, C.; Xia, Y.; Guo, M.; Zhao, M.; Chen, Y.; Zhu, B. Inhibition of enterovirus A71 by selenium nanoparticles interferes with JNK signaling pathways. ACS Omega, 2019, 4(4), 6720-6725.
[http://dx.doi.org/10.1021/acsomega.8b03502]
[24]
Moore, C.L.; Savenka, A.V.; Basnakian, A.G. Tunel assay: A powerful tool for kidney injury evaluation. Int. J. Mol. Sci., 2021, 22(1), 412.
[http://dx.doi.org/10.3390/ijms22010412] [PMID: 33401733]
[25]
Yu, J.; Yang, A.; Wang, N.; Ling, H.; Song, J.; Chen, X.; Lian, Y.; Zhang, Z.; Yan, F.; Gu, M. Highly sensitive detection of caspase-3 activity based on peptide-modified organic electrochemical transistor biosensors. Nanoscale, 2021, 13(5), 2868-2874.
[http://dx.doi.org/10.1039/D0NR08453K] [PMID: 33464252]
[26]
Chen, H.; Zhang, J.; Gao, Y.; Liu, S.; Koh, K.; Zhu, X.; Yin, Y. Sensitive cell apoptosis assay based on caspase-3 activity detection with graphene oxide-assisted electrochemical signal amplification. Biosens. Bioelectron., 2015, 68, 777-782.
[http://dx.doi.org/10.1016/j.bios.2015.02.007] [PMID: 25682507]
[27]
Feng, X.; Tjia, J.Y.Y.; Zhou, Y.; Liu, Q.; Fu, C.; Yang, H. Effects of tocopherol nanoemulsion addition on fish sausage properties and fatty acid oxidation. L.W.T, 2020, 118, 108737.
[http://dx.doi.org/10.1016/j.lwt.2019.108737]
[28]
Fu, L.H.; Wan, Y.; Qi, C.; He, J.; Li, C.; Yang, C.; Xu, H.; Lin, J.; Huang, P. Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient cancer therapy. Adv. Mater., 2021, 33(7), 2006892.
[http://dx.doi.org/10.1002/adma.202006892] [PMID: 33394515]
[29]
Guo, J.; Yu, Z.; Sun, D.; Zou, Y.; Liu, Y.; Huang, L. Two nanoformulations induce reactive oxygen species and immunogenetic cell death for synergistic chemo-immunotherapy eradicating colorectal cancer and hepatocellular carcinoma. Mol. Cancer, 2021, 20(1), 10.
[http://dx.doi.org/10.1186/s12943-020-01297-0] [PMID: 33407548]
[30]
Zhang, C.; Wang, X.; Du, J.; Gu, Z.; Zhao, Y. Reactive oxygen species‐regulating strategies based on nanomaterials for disease treatment. Adv. Sci., 2021, 8(3), 2002797.
[http://dx.doi.org/10.1002/advs.202002797] [PMID: 33552863]
[31]
Bresolí-Obach, R.; Busto-Moner, L.; Muller, C.; Reina, M.; Nonell, S. NanoDCFH-DA: A silica-based nanostructured fluorogenic probe for the detection of reactive oxygen species. Photochem. Photobiol., 2018, 94(6), 1143-1150.
[http://dx.doi.org/10.1111/php.13020] [PMID: 30240026]
[32]
Li, Y.; Lin, Z.; Zhao, M.; Xu, T.; Wang, C.; Hua, L.; Wang, H.; Xia, H.; Zhu, B. Silver nanoparticle based codelivery of oseltamivir to inhibit the activity of the H1N1 influenza virus through ROS-mediated signaling pathways. ACS Appl. Mater. Interfaces, 2016, 8(37), 24385-24393.
[http://dx.doi.org/10.1021/acsami.6b06613] [PMID: 27588566]
[33]
Wang, Y.; Li, Z.; Yu, H. Aptamer-based western blot for selective protein recognition. Front Chem., 2020, 8, 570528.
[http://dx.doi.org/10.3389/fchem.2020.570528] [PMID: 33195056]
[34]
Wang, C.; Chen, H.; Chen, D.; Zhao, M.; Lin, Z.; Guo, M.; Xu, T.; Chen, Y.; Hua, L.; Lin, T.; Tang, Y.; Zhu, B.; Li, Y. The inhibition of h1n1 influenza virus-induced apoptosis by surface decoration of selenium nanoparticles with β-Thujaplicin through reactive oxygen species-mediated AKT and p53 signaling pathways. ACS Omega, 2020, 5(47), 30633-30642.
[http://dx.doi.org/10.1021/acsomega.0c04624] [PMID: 33283112]
[35]
Abdalla, A.; Murali, C.; Amin, A. Safranal inhibits angiogenesis via targeting HIF-1α/VEGF machinery: In vitro and ex vivo insights. Front. Oncol., 2022, 11, 789172.
[http://dx.doi.org/10.3389/fonc.2021.789172] [PMID: 35211395]
[36]
Abdalla, Y.; Abdalla, A.; Hamza, A.A.; Amin, A. Safranal prevents liver cancer through inhibiting oxidative stress and alleviating inflammation. Front. Pharmacol., 2022, 12, 777500.
[http://dx.doi.org/10.3389/fphar.2021.777500] [PMID: 35177980]
[37]
Lin, Y.C.; Chipot, C.; Scheuring, S. Annexin-V stabilizes membrane defects by inducing lipid phase transition. Nat. Commun., 2020, 11(1), 230.
[http://dx.doi.org/10.1038/s41467-019-14045-w] [PMID: 31932647]
[38]
Desvoyes, B.; Arana-Echarri, A.; Barea, M.D.; Gutierrez, C. A comprehensive fluorescent sensor for spatiotemporal cell cycle analysis in Arabidopsis. Nat. Plants, 2020, 6(11), 1330-1334.
[http://dx.doi.org/10.1038/s41477-020-00770-4] [PMID: 32989288]
[39]
Xie, P.; Keating, D.; Parrella, A.; Cheung, S.; Rosenwaks, Z.; Goldstein, M.; Palermo, G.D. Sperm genomic integrity by TUNEL varies throughout the male genital tract. J. Urol., 2020, 203(4), 802-808.
[http://dx.doi.org/10.1097/JU.0000000000000659] [PMID: 31738116]
[40]
Benassi, E.; Fan, H.; Sun, Q.; Dukenbayev, K.; Wang, Q.; Shaimoldina, A.; Tassanbiyeva, A.; Nurtay, L.; Nurkesh, A.; Kutzhanova, A. Generation of particle assemblies mimicking enzymatic activity by processing of herbal food: the case of rhizoma polygonati and other natural ingredients in traditional Chinese medicine. Nanoscale Advances., 2021, 3(8), 2222-2235.
[http://dx.doi.org/10.1039/D0NA00958J]
[41]
Han, J.; Goldstein, L.A.; Hou, W.; Watkins, S.C.; Rabinowich, H. Involvement of CASP9 (caspase 9) in IGF2R/CI-MPR endosomal transport. Autophagy, 2021, 17(6), 1393-1409.
[http://dx.doi.org/10.1080/15548627.2020.1761742] [PMID: 32397873]
[42]
Xu, T.; Zheng, R.; Chen, D.; Chen, H.; Zhao, M.; Guo, M.; Chen, Y.; Wang, C.; Kuang, L.; Li, Y. Inhibitory of EV-A71 virus-induced apoptosis by ZVAD through ROS mediated signaling pathways. Biocell, 2022, 46(4), 1033-1039.
[http://dx.doi.org/10.32604/biocell.2022.017757]
[43]
Hu, K.; Relton, E.; Locker, N.; Phan, N.T.N.; Ewing, A.G. Electrochemical measurements reveal reactive oxygen species in stress granules. Angew. Chem. Int. Ed., 2021, 60(28), 15302-15306.
[http://dx.doi.org/10.1002/anie.202104308] [PMID: 33876544]
[44]
Juaid, N.; Amin, A.; Abdalla, A.; Reese, K.; Alamri, Z.; Moulay, M.; Abdu, S.; Miled, N. Anti-hepatocellular carcinoma biomolecules: Molecular targets insights. Int. J. Mol. Sci., 2021, 22(19), 10774.
[http://dx.doi.org/10.3390/ijms221910774] [PMID: 34639131]
[45]
Zhang, J.; Duan, D.; Song, Z.L.; Liu, T.; Hou, Y.; Fang, J. Small molecules regulating reactive oxygen species homeostasis for cancer therapy. Med. Res. Rev., 2021, 41(1), 342-394.
[http://dx.doi.org/10.1002/med.21734] [PMID: 32981100]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy