Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Dextran Sulfate Inhibits Angiogenesis and Invasion of Gastric Cancer by Interfering with M2-type Macrophages Polarization

Author(s): Jiaxin Guo*, Zhaojun Li, Qian Ma, Mengqi Li, Yuan Zhao, Bing Li, Yuejia Tao, Yuanyi Xu* and Yunning Huang*

Volume 22, Issue 11, 2022

Published on: 29 August, 2022

Page: [904 - 918] Pages: 15

DOI: 10.2174/1568009622666220705095403

Price: $65

Abstract

Purpose: To explore the effect of dextran sulfate (DS) on the angiogenesis, invasion, and migration of gastric cancer cells by interfering with the polarization of M2-type macrophages.

Methods: The infiltration of M2-type macrophages and microvascular density in gastric cancer and paracancerous tissues were analyzed using immunohistochemistry and immunofluorescence. The effects of DS on M2-type macrophages and the angiogenesis in metastatic tumors were investigated in the nude mice intraperitoneal metastasis model using immunohistochemistry and western blot. The differentiation and polarization of macrophages, immunocytochemistry, western blot, ELISA, and transwell migration assay were used to evaluate the effect of DS on the polarization of macrophages, immunocytochemistry, western blot, ELISA, and transwell migration assay were used to evaluate the effect of DS on the polarization and recruitment capacity of macrophages. Immunocytofluorescence, tube formation assay, transwell invasion assay, wound healing assay, and western blot were used to investigate the effect of DS on the angiogenesis, invasion, and migration-promoting phenotype of M2- type macrophage in a co-culture system of macrophages and gastric cancer cells.

Results: The infiltration of M2-type macrophages and the microvascular density were highly expressed and positively correlated in the human gastric cancer tissue. DS can significantly inhibit the intraperitoneal metastases of gastric cancer in nude mice, and reduce the infiltration of M2-type macrophages and the angiogenesis in intraperitoneal metastatic tumors. Moreover, DS can prevent the polarization of M0-type macrophages to M2 type, reduce the expression of M2-type macrophage markers (CD206, CD163, IL-10, and Arg-1), down-regulate the IL-6-STAT3 pathway, and inhibit the recruitment capability of M2-type macrophages. Finally, the co-culture experiment showed that DS significantly reduced the enhancing effects of M2-type macrophages on the angiogenesis, invasion, and migration of gastric cancer cells, as well as down-regulated the related expressions of proteins (VEGF, N-cadherin, MMP-2 and Vimentin) in gastric cancer cells.

Conclusion: DS can reduce the infiltration of M2-type macrophages and the microvascular density in intraperitoneal metastases of gastric cancer in nude mice, and inhibit the angiogenesis, invasion, and migration of gastric cancer cells by interfering with the polarization of M2-type macrophages through repression of the IL-6/STAT3 signaling pathway.

Keywords: Dextran sulfate, gastric cancer, M2 type macrophages, Invasion and migration, angiogenesis.

Graphical Abstract

[1]
Feng, R.M.; Zong, Y.N.; Cao, S.M.; Xu, R.H. Current cancer situation in China: Good or bad news from the 2018 global cancer statistics? Cancer Commun. (Lond.), 2019, 39(1), 22.
[http://dx.doi.org/10.1186/s40880-019-0368-6] [PMID: 31030667]
[2]
Rau, B.; Brandl, A.; Piso, P.; Pelz, J.; Busch, P.; Demtroder, C.; Schule, S.; Schlitt, H.J.; Roitman, M.; Tepel, J.; Sulkowski, U.; Uzunoglu, F.; Hunerbein, M.; Horbelt, R.; Strohlein, M.; Beckert, S.; Konigsrainer, I.; Konigsrainer, A. Peritoneal metastasis in gastric cancer: Results from the german database. Gastric Cancer, 2020, 23(1), 11-22.
[3]
Guan, X. Cancer metastases: Challenges and opportunities. Acta Pharm. Sin. B, 2015, 5(5), 402-418.
[http://dx.doi.org/10.1016/j.apsb.2015.07.005] [PMID: 26579471]
[4]
Rojas, A.; Araya, P.; Gonzalez, I.; Morales, E. Gastric tumor microenvironment. Adv. Exp. Med. Biol., 2020, 1226, 23-35.
[http://dx.doi.org/10.1007/978-3-030-36214-0_2] [PMID: 32030673]
[5]
Oya, Y.; Hayakawa, Y.; Koike, K. Tumor microenvironment in gastric cancers. Cancer Sci., 2020, 111(8), 2696-2707.
[http://dx.doi.org/10.1111/cas.14521] [PMID: 32519436]
[6]
Chen, Y.; Jin, H.; Song, Y.; Huang, T.; Cao, J.; Tang, Q.; Zou, Z. Targeting tumor-associated macrophages: A potential treatment for solid tumors. J. Cell. Physiol., 2021, 236(5), 3445-3465.
[http://dx.doi.org/10.1002/jcp.30139] [PMID: 33200401]
[7]
Shu, Y.; Cheng, P. Targeting tumor-associated macrophages for cancer immunotherapy. Biochim. Biophys. Acta Rev. Cancer, 2020, 1874(2), 188434.
[http://dx.doi.org/10.1016/j.bbcan.2020.188434] [PMID: 32956767]
[8]
Salmaninejad, A.; Valilou, S.F.; Soltani, A.; Ahmadi, S.; Abarghan, Y.J.; Rosengren, R.J.; Sahebkar, A. Tumor-associated macrophages: Role in cancer development and therapeutic implications. Cell Oncol. (Dordr.), 2019, 42(5), 591-608.
[http://dx.doi.org/10.1007/s13402-019-00453-z] [PMID: 31144271]
[9]
Sexton, R.E.; Al Hallak, M.N.; Diab, M.; Azmi, A.S. Gastric cancer: A comprehensive review of current and future treatment strategies. Cancer Metastasis Rev., 2020, 39(4), 1179-1203.
[http://dx.doi.org/10.1007/s10555-020-09925-3] [PMID: 32894370]
[10]
Yao, X.; Ajani, J.A.; Song, S. Molecular biology and immunology of gastric cancer peritoneal metastasis. Transl. Gastroenterol. Hepatol., 2020, 5, 57.
[http://dx.doi.org/10.21037/tgh.2020.02.08] [PMID: 33073052]
[11]
Georgakopoulou, E.; Scully, C. Biological agents: What they are, how they affect oral health and how they can modulate oral healthcare. Br. Dent. J., 2015, 218(12), 671-677.
[http://dx.doi.org/10.1038/sj.bdj.2015.439] [PMID: 26114697]
[12]
Raveendran, S.; Yoshida, Y.; Maekawa, T.; Kumar, D.S. Pharmaceutically versatile sulfated polysaccharide based bionano platforms. Nanomedicine, 2013, 9(5), 605-626.
[http://dx.doi.org/10.1016/j.nano.2012.12.006] [PMID: 23347895]
[13]
Martenot, C.; Faury, N.; Morga, B.; Degremont, L.; Lamy, J.B.; Houssin, M.; Renault, T. Exploring first interactions between ostreid herpesvirus 1 (OsHV-1) and Its Host, Crassostrea gigas: Effects of specific antiviral antibodies and dextran sulfate. Front. Microbiol., 2019, 10, 1128.
[http://dx.doi.org/10.3389/fmicb.2019.01128] [PMID: 31178841]
[14]
Xu, Y.; Wang, X.; Huang, Y.; Ma, Y.; Jin, X.; Wang, H.; Wang, J. Inhibition of lysyl oxidase expression by dextran sulfate affects invasion and migration of gastric cancer cells. Int. J. Mol. Med., 2018, 42(5), 2737-2749.
[PMID: 30226558]
[15]
Miyasato, Y.; Shiota, T.; Ohnishi, K.; Pan, C.; Yano, H.; Horlad, H.; Yamamoto, Y.; Yamamoto-Ibusuki, M.; Iwase, H.; Takeya, M.; Komohara, Y. High density of CD204-positive macrophages predicts worse clinical prognosis in patients with breast cancer. Cancer Sci., 2017, 108(8), 1693-1700.
[http://dx.doi.org/10.1111/cas.13287] [PMID: 28574667]
[16]
Genin, M.; Clement, F.; Fattaccioli, A.; Raes, M.; Michiels, C. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer, 2015, 15(1), 577.
[http://dx.doi.org/10.1186/s12885-015-1546-9] [PMID: 26253167]
[17]
Wu, M.; Cao, M.; He, Y.; Liu, Y.; Yang, C.; Du, Y.; Wang, W.; Gao, F. A novel role of low molecular weight hyaluronan in breast cancer metastasis. FASEB J., 2015, 29(4), 1290-1298.
[http://dx.doi.org/10.1096/fj.14-259978] [PMID: 25550464]
[18]
Kohi, S.; Sato, N.; Cheng, X.B.; Koga, A.; Hirata, K. Increased expression of HYAL1 in pancreatic ductal adenocarcinoma. Pancreas, 2016, 45(10), 1467-1473.
[http://dx.doi.org/10.1097/MPA.0000000000000670] [PMID: 27622341]
[19]
Capece, D.; Fischietti, M.; Verzella, D.; Gaggiano, A.; Cicciarelli, G.; Tessitore, A.; Zazzeroni, F.; Alesse, E. The inflammatory microenvi-ronment in hepatocellular carcinoma: A pivotal role for tumor-associated macrophages. BioMed Res. Int., 2013, 2013, 187204.
[http://dx.doi.org/10.1155/2013/187204] [PMID: 23533994]
[20]
Fu, X-L.; Duan, W.; Su, C-Y.; Mao, F-Y.; Lv, Y-P.; Teng, Y-S.; Yu, P-W.; Zhuang, Y.; Zhao, Y-L. Interleukin 6 induces M2 macrophage differentiation by STAT3 activation that correlates with gastric cancer progression. Cancer Immunol. Immunother., 2017, 66(12), 1597-1608.
[http://dx.doi.org/10.1007/s00262-017-2052-5] [PMID: 28828629]
[21]
Räihä, M.R.; Puolakkainen, P.A. Tumor-associated macrophages (TAMs) as biomarkers for gastric cancer: A review. Chronic Dis. Transl. Med., 2018, 4(3), 156-163.
[http://dx.doi.org/10.1016/j.cdtm.2018.07.001] [PMID: 30276362]
[22]
Li, X.; Yao, W.; Yuan, Y.; Chen, P.; Li, B.; Li, J.; Chu, R.; Song, H.; Xie, D.; Jiang, X.; Wang, H. Targeting of tumour-infiltrating macro-phages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut, 2017, 66(1), 157-167.
[http://dx.doi.org/10.1136/gutjnl-2015-310514] [PMID: 26452628]
[23]
Cheng, N.; Bai, X.; Shu, Y.; Ahmad, O.; Shen, P. Targeting tumor-associated macrophages as an antitumor strategy. Biochem. Pharmacol., 2021, 183, 114354.
[http://dx.doi.org/10.1016/j.bcp.2020.114354] [PMID: 33279498]
[24]
Tariq, M.; Zhang, J.Q.; Liang, G.K.; He, Q.J.; Ding, L.; Yang, B. Gefitinib inhibits M2-like polarization of tumor-associated macrophages in Lewis lung cancer by targeting the STAT6 signaling pathway. Acta Pharmacol. Sin., 2017, 38(11), 1501-1511.
[http://dx.doi.org/10.1038/aps.2017.124] [PMID: 29022575]
[25]
Xiang, X.; Wang, J.; Lu, D.; Xu, X. Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct. Target. Ther., 2021, 6(1), 75.
[http://dx.doi.org/10.1038/s41392-021-00484-9] [PMID: 33619259]
[26]
Murray, P.J.; Allen, J.E.; Biswas, S.K.; Fisher, E.A.; Gilroy, D.W.; Goerdt, S.; Gordon, S.; Hamilton, J.A.; Ivashkiv, L.B.; Lawrence, T.; Locati, M.; Mantovani, A.; Martinez, F.O.; Mege, J.L.; Mosser, D.M.; Natoli, G.; Saeij, J.P.; Schultze, J.L.; Shirey, K.A.; Sica, A.; Suttles, J.; Udalova, I.; van Ginderachter, J.A.; Vogel, S.N.; Wynn, T.A. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity, 2014, 41(1), 14-20.
[http://dx.doi.org/10.1016/j.immuni.2014.06.008] [PMID: 25035950]
[27]
Li, W.; Zhang, X.; Wu, F.; Zhou, Y.; Bao, Z.; Li, H.; Zheng, P.; Zhao, S. Gastric cancer-derived mesenchymal stromal cells trigger M2 macrophage polarization that promotes metastasis and EMT in gastric cancer. Cell Death Dis., 2019, 10(12), 918.
[http://dx.doi.org/10.1038/s41419-019-2131-y] [PMID: 31801938]
[28]
Zhu, S.; Luo, Z.; Li, X.; Han, X.; Shi, S.; Zhang, T. Tumor-associated macrophages: Role in tumorigenesis and immunotherapy implications. J. Cancer, 2021, 12(1), 54-64.
[http://dx.doi.org/10.7150/jca.49692] [PMID: 33391402]
[29]
Malfitano, A.M.; Pisanti, S.; Napolitano, F.; Di Somma, S.; Martinelli, R.; Portella, G. Tumor-Associated macrophage status in cancer treatment. Cancers (Basel), 2020, 12(7), 1987.
[http://dx.doi.org/10.3390/cancers12071987] [PMID: 32708142]
[30]
Melincovici, C.S.; Boşca, A.B.; Şuşman, S.; Mărginean, M.; Mihu, C.; Istrate, M.; Moldovan, I.M.; Roman, A.L.; Mihu, C.M. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Rev. Roum. Morphol. Embryol., 2018, 59(2), 455-467.
[PMID: 30173249]
[31]
Abdalla, A.; Murali, C.; Amin, A. Safranal inhibits angiogenesis via Targeting HIF-1α/VEGF Machinery: In Vitro and Ex Vivo Insights. Front. Oncol., 2022, 11, 789172.
[http://dx.doi.org/10.3389/fonc.2021.789172] [PMID: 35211395]
[32]
Fu, L.Q.; Du, W.L.; Cai, M.H.; Yao, J.Y.; Zhao, Y.Y.; Mou, X.Z. The roles of tumor-associated macrophages in tumor angiogenesis and metastasis. Cell. Immunol., 2020, 353, 104119.
[http://dx.doi.org/10.1016/j.cellimm.2020.104119] [PMID: 32446032]
[33]
Wu, J.S.; Jiang, J.; Chen, B.J.; Wang, K.; Tang, Y.L.; Liang, X.H. Plasticity of cancer cell invasion: Patterns and mechanisms. Transl. Oncol., 2021, 14(1), 100899.
[http://dx.doi.org/10.1016/j.tranon.2020.100899] [PMID: 33080522]
[34]
Strouhalova, K.; Přechová, M.; Gandalovičová, A.; Brábek, J.; Gregor, M.; Rosel, D. Vimentin intermediate filaments as potential target for cancer treatment. Cancers (Basel), 2020, 12(1), 184.
[http://dx.doi.org/10.3390/cancers12010184] [PMID: 31940801]
[35]
Yang, J.; Antin, P.; Berx, G.; Blanpain, C.; Brabletz, T.; Bronner, M.; Campbell, K.; Cano, A.; Casanova, J.; Christofori, G.; Dedhar, S.; Derynck, R.; Ford, H.L.; Fuxe, J.; García de Herreros, A.; Goodall, G.J.; Hadjantonakis, A.K.; Huang, R.Y.J.; Kalcheim, C.; Kalluri, R.; Kang, Y.; Khew-Goodall, Y.; Levine, H.; Liu, J.; Longmore, G.D.; Mani, S.A.; Massagué, J.; Mayor, R.; McClay, D.; Mostov, K.E.; New-green, D.F.; Nieto, M.A.; Puisieux, A.; Runyan, R.; Savagner, P.; Stanger, B.; Stemmler, M.P.; Takahashi, Y.; Takeichi, M.; Theveneau, E.; Thiery, J.P.; Thompson, E.W.; Weinberg, R.A.; Williams, E.D.; Xing, J.; Zhou, B.P.; Sheng, G. Guidelines and definitions for research on epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol., 2020, 21(6), 341-352.
[http://dx.doi.org/10.1038/s41580-020-0237-9] [PMID: 32300252]
[36]
Juaid, N.; Amin, A.; Abdalla, A.; Reese, K.; Alamri, Z.; Moulay, M.; Abdu, S.; Miled, N. Anti-Hepatocellular carcinoma biomolecules: Molecular targets insights. Int. J. Mol. Sci., 2021, 22(19), 10774.
[http://dx.doi.org/10.3390/ijms221910774] [PMID: 34639131]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy