Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

N-function Heterocycles as Promising Anticancer Agents: A Case Study with a Decision Model in a Fuzzy Environment

Author(s): Merve Bulut, Salih Ökten*, Evrencan Özcan and Tamer Eren

Volume 21, Issue 1, 2024

Published on: 27 September, 2022

Page: [101 - 115] Pages: 15

DOI: 10.2174/1570180819666220704110011

Price: $65

Abstract

Objective: This study aimed to evaluate the data according to five accepted criteria for the effects of twenty promising anticancer agents on five different cancer types and determine the most effective compounds for further in vitro and in vivo studies with a multi-criteria decision-making method (MCDM), which rationalizes decision making in a fuzzy environment to avoid the high cost and time requirements of further preclinical and clinical studies.

Methods: Within the scope of the study, the weights of the five criteria were evaluated with the Pythagorean Fuzzy Analytic Hierarchy Process (PFAHP), which is one of the multi-criteria decisionmaking methods, and a comparison was made with the criteria weights obtained as a result of the Complex Proportional Assessment (COPRAS) method. Moreover, the effects of criteria weights calculated with PFAHP on evaluating alternatives were analyzed using different scenarios.

Results: Experimentally, twenty N-heterocyclic quinoline derivatives with different substituents were identified as promising anticancer agents. In this study, the multi-criteria decision-making (MCDM) model was proposed to identify the most promising anticancer agents against all tested cell lines. Both the experimental and model results indicated that 20, 17, 19, and 7 are the most promising anticancer agents against the A549, HeLa, Hep3B, HT29, and MCF7 cell lines. Moreover, different scenarios were generated and analyzed to prove the consistency of the proposed methodology.

Conclusion: MCDM strongly suggests that compounds 20, 17, 19, and 7 can be further investigated for in vivo studies.

Keywords: Quinoline, anticancer effect, IC50, LDH, pythagorean fuzzy sets, MCDM.

Graphical Abstract

[1]
Çakmak, O.; Ökten, S. Regioselective bromination: Synthesis of brominated methoxyquinolines. Tetrahedron, 2017, 73, 5389-5396.
[http://dx.doi.org/10.1016/j.tet.2017.07.044]
[2]
Laras, Y.; Hugues, V.; Chandrasekaran, Y.; Blanchard-Desce, M.; Acher, F.C.; Pietrancosta, N. Synthesis of quinoline dicarboxylic esters as biocompatible fluorescent tags. J. Org. Chem., 2012, 77(18), 8294-8302.
[http://dx.doi.org/10.1021/jo301652j] [PMID: 22931204]
[3]
Ökten, S.; Çakmak, O.; Tekin, Ş.; Köprülü, T.K. A SAR study: Evaluation of bromo derivatives of 8-substituted quinolines as novel anticancer agents. Lett. Drug Des. Discov., 2017, 14, 1415-1424.
[http://dx.doi.org/10.2174/1570180814666170504150050]
[4]
Chai, Y.; Liu, M.L.; Lv, K.; Feng, L.S.; Li, S.J.; Sun, L.Y.; Wang, S.; Guo, H.Y. Synthesis and in vitro antibacterial activity of a series of novel gatifloxacin derivatives. Eur. J. Med. Chem., 2011, 46(9), 4267-4273.
[http://dx.doi.org/10.1016/j.ejmech.2011.06.032] [PMID: 21764484]
[5]
Ökten, S.; Çakmak, O.; Erenler, R.; Tekin, Ş.; Yüce, Ö. Simple and convenient preparation of novel 6,8-disubstituted quinoline derivatives and their promising anticancer activities. Turk. J. Chem., 2013, 37, 896-908.
[http://dx.doi.org/10.3906/kim-1301-30]
[6]
Çakmak, O.; Ökten, S.; Alımlı, D.; Ersanlı, C.C.; Koçyiğit, Ü.M.; Taslimi, P. Novel piperazine and morpholine substituted quinolines: Selective synthesis through activation of 3,6,8-tribromoquinoline, characterization and their some metabolic enzymes inhibition potentials. J. Mol. Struct., 2020, 1220, 1286662.
[http://dx.doi.org/10.1016/j.molstruc.2020.128666]
[7]
Solomon, V.R.; Lee, H. Quinoline as a privileged scaffold in cancer drug discovery. Curr. Med. Chem., 2011, 18(10), 1488-1508.
[http://dx.doi.org/10.2174/092986711795328382] [PMID: 21428893]
[8]
Köprülü, T.K.; Ökten, S.; Atalay, V.E.; Tekin, Ş.; Çakmak, O. Biological activity and molecular docking studies of some new quinolines as potent anticancer agents. Med. Oncol., 2021, 38(7), 84.
[http://dx.doi.org/10.1007/s12032-021-01530-w] [PMID: 34146171]
[9]
Pinz, M.P.; Reis, A.S.; de Oliveira, R.L.; Voss, G.T.; Vogt, A.G.; Sacramento, M.D.; Roehrs, J.A.; Alves, D.; Luchese, C.; Wilhelm, E.A. 7-Chloro-4-phenylsulfonyl quinoline, a new antinociceptive and anti-inflammatory molecule: Structural improvement of a quinoline derivate with pharmacological activity. Regul. Toxicol. Pharmacol., 2017, 90, 72-77.
[http://dx.doi.org/10.1016/j.yrtph.2017.08.014] [PMID: 28842336]
[10]
Hoshino, K.; Inoue, K.; Murakami, Y.; Kurosaka, Y.; Namba, K.; Kashimoto, Y.; Uoyama, S.; Okumura, R.; Higuchi, S.; Otani, T. in vitro and in vivo antibacterial activities of DC-159a, a new fluoroquinolone. Antimicrob. Agents Chemother., 2008, 52(1), 65-76.
[http://dx.doi.org/10.1128/AAC.00853-07] [PMID: 17938194]
[11]
Wei, M.Y.; Yang, R.Y.; Shao, C.L.; Wang, C.Y.; Deng, D.S.; She, Z.G.; Lin, Y.C. A new griseofulvin derivative from the marine-derived arthrinium sp. Fungus and its biological activity. Chem. Nat. Compd., 2011, 47, 322-325.
[http://dx.doi.org/10.1007/s10600-011-9922-4]
[12]
Wright, A.D.; Goclik, E.; König, G.M.; Kaminsky, R.; Lepadins, D.F. Lepadins D-F: Antiplasmodial and antitrypanosomal decahydroquinoline derivatives from the tropical marine tunicate Didemnum sp. J. Med. Chem., 2002, 45(14), 3067-3072.
[http://dx.doi.org/10.1021/jm0110892] [PMID: 12086492]
[13]
Mishra, M.; Mishra, V.K.; Kashaw, V.; Iyer, A.K.; Kashaw, S.K. Comprehensive review on various strategies for antimalarial drug discovery. Eur. J. Med. Chem., 2017, 125, 1300-1320.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.025] [PMID: 27886547]
[14]
Shen, L.; Ye, Y.H.; Wang, X.T.; Zhu, H.L.; Xu, C.; Song, Y.C.; Li, H.; Tan, R.X. Structure and total synthesis of aspernigerin: A novel cytotoxic endophyte metabolite. Chemistry, 2006, 12(16), 4393-4396.
[http://dx.doi.org/10.1002/chem.200501423] [PMID: 16555343]
[15]
Sibevei, A.; Azimi, Z.N.; Ahmadjo, S.; Mortazavi, S.M.M. An integrated AHP-PROMETHEE method for selecting the most suitable ethylene propylene diene termonomer. J. Petroleum Sci. Techn., 2016, 6, 53.
[16]
Ökten, S.; Çakmak, O. Synthesis of novel cyano quinoline derivatives. Tetrahedron Lett., 2015, 56, 5337-5340.
[http://dx.doi.org/10.1016/j.tetlet.2015.07.092]
[17]
Çakmak, O.; Ökten, S.; Alımlı, D.; Saddiqa, A.; Ersanlı, C.C. Activation of 6-bromoquinoline by nitration: Synthesis of morpholinyl and piperazinyl quinolines. ARKIVOC, 2018, 3, 362-374.
[18]
Ekiz, M.; Tutar, A.; Ökten, S. Convenient synthesis of disubstituted tacrine derivatives via electrophilic and copper induced reactions. Tetrahedron, 2016, 72, 5323-5330.
[http://dx.doi.org/10.1016/j.tet.2016.07.012]
[19]
Aydın, A.; Ökten, S.; Erkan, S.; Bulut, M.; Özcan, E.; Tutar, A.; Eren, T. in vitro anticancer and antibacterial activities of brominated indenoquinoline amines supported with molecular docking and MCDM. ChemistrySelect, 2021, 6, 3286-3295.
[http://dx.doi.org/10.1002/slct.202004753]
[20]
Bulut, M.; Özcan, E. A novel approach towards evaluation of joint technology performances of battery energy storage system in a fuzzy environment. J. Energy Storage, 2021, 36, 102361.
[http://dx.doi.org/10.1016/j.est.2021.102361]
[21]
Bulut, M.; Özcan, E. Integration of battery energy storage systems into natural gas combined cycle power plants in fuzzy environment. J. Energy Storage, 2021, 36, 102376.
[http://dx.doi.org/10.1016/j.est.2021.102376]
[22]
Nikolić, V.; Mitić, V.V.; Kocić, L.; Petković, D. Wind speed parameters sensitivity analysis based on fractals and neuro-fuzzy selection technique. Knowl. Inf. Syst., 2017, 52, 255-265.
[http://dx.doi.org/10.1007/s10115-016-1006-0]
[23]
Gavrilović, S.; Denić, N.; Petković, D.; Živić, N.V.; Vujičić, S. Statistical evaluation of mathematics lecture performances by soft computing approach. Comput. Appl. Eng. Educ., 2018, 26, 902-905.
[http://dx.doi.org/10.1002/cae.21931]
[24]
Ekiz, M.; Tutar, A.; Ökten, S.; Bütün, B.; Koçyiğit, Ü.M.; Taslimi, P.; Topçu, G. Synthesis, characterization, and SAR of arylated indenoquinoline-based cholinesterase and carbonic anhydrase inhibitors. Arch. Pharm. (Weinheim), 2018, 351(9), e1800167.
[http://dx.doi.org/10.1002/ardp.201800167] [PMID: 30079554]
[25]
Ökten, S.; Aydın, A.; Koçyiğit, Ü.M.; Çakmak, O.; Erkan, S.; Andac, C.A.; Taslimi, P.; Gülçin, İ. Quinoline-based promising anticancer and antibacterial agents, and some metabolic enzyme inhibitors. Arch. Pharm. (Weinheim), 2020, 353(9), e2000086.
[http://dx.doi.org/10.1002/ardp.202000086] [PMID: 32537757]
[26]
Nikolić, V.; Petković, D.; Lazov, L.; Milovančević, M. Selection of the most influential factors on the water-jet assisted underwater laser process by adaptive neuro-fuzzy technique. Infrared Phys. Technol., 2016, 77, 45-50.
[http://dx.doi.org/10.1016/j.infrared.2016.05.021]
[27]
Zadeh, L.A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst., 1999, 100, 9-34.
[http://dx.doi.org/10.1016/S0165-0114(99)80004-9]
[28]
Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst., 1986, 20, 87-96.
[http://dx.doi.org/10.1016/S0165-0114(86)80034-3]
[29]
Ilbahar, E.; Karaşan, A.; Cebi, S.; Kahraman, C. A novel approach to risk assessment for occupational health and safety using Pythagorean fuzzy AHP & fuzzy inference system. Saf. Sci., 2018, 103, 124-136.
[http://dx.doi.org/10.1016/j.ssci.2017.10.025]
[30]
Yager, R.R. Pythagorean membership grades in multicriteria decision making. IEEE Trans. Fuzzy Syst., 2014, 22, 958-965.
[http://dx.doi.org/10.1109/TFUZZ.2013.2278989]
[31]
Gül, M.; Ak, M.F. A comparative outline for quantifying risk ratings in occupational health and safety risk assessment. J. Clean. Prod., 2018, 196, 653-664.
[http://dx.doi.org/10.1016/j.jclepro.2018.06.106]
[32]
Zhang, X.; Xu, Z. Extension of topsis to multiple criteria decision making with pythagorean fuzzy sets. Int. J. Intell. Syst., 2014, 29, 1061-1078.
[http://dx.doi.org/10.1002/int.21676]
[33]
Ekmekcioğlu, Ö.; Koc, K.; Özger, M. Stakeholder perceptions in flood risk assessment: A hybrid fuzzy AHP-TOPSIS approach for Istanbul, Turkey. Int. J. Risk Reduc., 2021, 60, 102327.
[http://dx.doi.org/10.1016/j.ijdrr.2021.102327]
[34]
Nguyen, H.M.; Thanh, T.B. Electrostatic modulation of a photonic crystal resonant filter. J. Nanophotonics, 2020, 14, 1-13.
[http://dx.doi.org/10.1117/1.JNP.14.026014]
[35]
Yazdi, M.; Korhan, O.; Daneshvar, S. Application of fuzzy fault tree analysis based on modified fuzzy AHP and fuzzy TOPSIS for fire and explosion in the process industry. Int. J. Occup. Saf. Ergon., 2020, 26(2), 319-335.
[http://dx.doi.org/10.1080/10803548.2018.1454636] [PMID: 29557291]
[36]
Zavadskas, E.K.; Kaklauskas, A.; Turskis, Z.; Tamošaitiene, J. Selection of the effective dwelling house walls by applying attributes values determined at intervals. J. Civ. Eng. Manag., 2008, 14, 85-93.
[http://dx.doi.org/10.3846/1392-3730.2008.14.3]
[37]
Ökten, S.; Aydın, A.; Tutar, A. Determination of anticancer and antibacterial activities of disubstituted tacrine derivatives. Sakarya University J. Sci., 2019, 23, 824-830.
[http://dx.doi.org/10.16984/saufenbilder.469273]
[38]
Laufer, S.; Holzgrabe, U.; Steinhilber, D. Drug discovery: A modern decathlon. Angew. Chem. Int. Ed. Engl., 2013, 52(15), 4072-4076.
[http://dx.doi.org/10.1002/anie.201210006] [PMID: 23468378]
[39]
Özcan, E.; Ökten, S.; Eren, T. Decision making for promising quinoline-based anticancer agents through combined methodology. J. Biochem. Mol. Toxicol., 2020, 34, e22522.
[http://dx.doi.org/10.1002/jbt.22522] [PMID: 32407595]

Rights & Permissions Print Cite