Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Recent Developments, Challenges and Opportunities in Targeting the KRAS Pathway

Author(s): Manoj Kumar Pothuganti, Sayan Mitra, Pravin Iyer and Nagaraj Gowda*

Volume 20, Issue 8, 2023

Published on: 13 October, 2022

Page: [992 - 1004] Pages: 13

DOI: 10.2174/1570180819666220704104028

Price: $65

Abstract

KRAS is a highly mutated gene among cancers, especially in the lung, pancreatic and colorectal cancers (CRC). Despite extensive efforts in the past three decades, KRAS remains undruggable. But lately, inhibitors selectively binding to cysteine mutant at 12th position (G12C) are in clinical trials as a single agent and in combination with other drugs. FDA approved LUMAKRAS (Sotorasib, AMG510) for metastatic NSCLC, while Adagrasib (MRTX849) is under clinical trials, and it is showing good safety and efficacy in pancreatic and GI tumors. Both these molecules demonstrated better response in NSCLC but have less efficacy in colorectal and other solid cancers. Among non-G12C KRAS mutant cancers, promising data are emerging from G12D inhibition. This review covers the status of KRAS G12C, non- G12C inhibitors, and discusses different nodal proteins in the RAS signaling pathway, mechanism of resistance in targeted therapy and combination approaches. Ongoing clinical trials with G12C inhibitors have promising results. However, a combination of KRAS inhibition with other inhibitors of signaling components in vertical axis (SHP2, SOS1, MEK, PI3K/AKT and EGFR inhibitors) might be beneficial for durable clinical response. Sotorasib in combination with MEK inhibitor showed promising results in preclinical xenograft and PDx models of KRAS mutated cancers. Although at a preclinical stage, other approaches like Tri complex inhibitor, KRAS (ON) inhibitors, and non-G12C inhibitors are of significant interest in KRAS drug discovery. Multiple targeted approaches are being explored based on tumor specific gene expression profiles considering dynamic nature of KRAS activity and heterogeneity of hard to treat tumors.

Keywords: KRAS, SOS1, SHP2, KRAS G12C, Sotorasib, Adagrasib, Tri complex inhibitors, Resistance, Combination therapy

[1]
Chang, E.H.; Gonda, M.A.; Ellis, R.W.; Scolnick, E.M.; Lowy, D.R. Human genome contains four genes homologous to transforming genes of Harvey and Kirsten murine sarcoma viruses. Proc. Natl. Acad. Sci. USA, 1982, 79(16), 4848-4852.
[http://dx.doi.org/10.1073/pnas.79.16.4848] [PMID: 6289320]
[2]
Matikas, A.; Mistriotis, D.; Georgoulias, V.; Kotsakis, A. Targeting KRAS mutated non-small cell lung cancer: A history of failures and a future of hope for a diverse entity. Crit. Rev. Oncol. Hematol., 2017, 110, 1-12.
[http://dx.doi.org/10.1016/j.critrevonc.2016.12.005] [PMID: 28109399]
[3]
Timar, J.; Kashofer, K. Molecular epidemiology and diagnostics of KRAS mutations in human cancer. Cancer Metastasis Rev., 2020, 39(4), 1029-1038.
[http://dx.doi.org/10.1007/s10555-020-09915-5] [PMID: 32725342]
[4]
Han, C.W.; Jeong, M.S.; Jang, S.B. Structure, signaling and the drug discovery of the Ras oncogene protein. BMB Rep., 2017, 50(7), 355-360.
[http://dx.doi.org/10.5483/BMBRep.2017.50.7.062] [PMID: 28571593]
[5]
Overbeck, A.F.; Brtva, T.R.; Cox, A.D.; Graham, S.M.; Huff, S.Y.; Khosravi-Far, R.; Quilliam, L.A.; Solski, P.A.; Der, C.J. Guanine nucleotide exchange factors: Activators of Ras superfamily proteins. Mol. Reprod. Dev., 1995, 42(4), 468-476.
[http://dx.doi.org/10.1002/mrd.1080420415] [PMID: 8607978]
[6]
Hunter, J.C.; Manandhar, A.; Carrasco, M.A.; Gurbani, D.; Gondi, S.; Westover, K.D. Biochemical and structural analysis of common cancer-associated KRAS mutations. Mol. Cancer Res., 2015, 13(9), 1325-1335.
[http://dx.doi.org/10.1158/1541-7786.MCR-15-0203] [PMID: 26037647]
[7]
Kessler, D.; Gmachl, M.; Mantoulidis, A.; Martin, L.J.; Zoephel, A.; Mayer, M.; Gollner, A.; Covini, D.; Fischer, S.; Gerstberger, T.; Gmaschitz, T.; Goodwin, C.; Greb, P.; Häring, D.; Hela, W.; Hoffmann, J.; Karolyi-Oezguer, J.; Knesl, P.; Kornigg, S.; Koegl, M.; Kousek, R.; Lamarre, L.; Moser, F.; Munico-Martinez, S.; Peinsipp, C.; Phan, J.; Rinnenthal, J.; Sai, J.; Salamon, C.; Scherbantin, Y.; Schipany, K.; Schnitzer, R.; Schrenk, A.; Sharps, B.; Siszler, G.; Sun, Q.; Waterson, A.; Wolkerstorfer, B.; Zeeb, M.; Pearson, M.; Fesik, S.W.; McConnell, D.B. Drugging an undruggable pocket on KRAS. Proc. Natl. Acad. Sci. USA, 2019, 116(32), 15823-15829.
[http://dx.doi.org/10.1073/pnas.1904529116] [PMID: 31332011]
[8]
Kettle, J.G.; Cassar, D.J. Covalent inhibitors of the GTPase KRAS G12C: A review of the patent literature. Expert Opin. Ther. Pat., 2020, 30(2), 103-120.
[http://dx.doi.org/10.1080/13543776.2020.1709443] [PMID: 31913776]
[9]
Canon, J.; Rex, K.; Saiki, A.Y.; Mohr, C.; Cooke, K.; Bagal, D.; Gaida, K.; Holt, T.; Knutson, C.G.; Koppada, N.; Lanman, B.A.; Werner, J.; Rapaport, A.S.; San Miguel, T.; Ortiz, R.; Osgood, T.; Sun, J.R.; Zhu, X.; McCarter, J.D.; Volak, L.P.; Houk, B.E.; Fakih, M.G.; O’Neil, B.H.; Price, T.J.; Falchook, G.S.; Desai, J.; Kuo, J.; Govindan, R.; Hong, D.S.; Ouyang, W.; Henary, H.; Arvedson, T.; Cee, V.J.; Lipford, J.R. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature, 2019, 575(7781), 217-223.
[http://dx.doi.org/10.1038/s41586-019-1694-1] [PMID: 31666701]
[10]
Hong, D.S.; Fakih, M.G.; Strickler, J.H.; Desai, J.; Durm, G.A.; Shapiro, G.I.; Falchook, G.S.; Price, T.J.; Sacher, A.; Denlinger, C.S.; Bang, Y.J.; Dy, G.K.; Krauss, J.C.; Kuboki, Y.; Kuo, J.C.; Coveler, A.L.; Park, K.; Kim, T.W.; Barlesi, F.; Munster, P.N.; Ramalingam, S.S.; Burns, T.F.; Meric-Bernstam, F.; Henary, H.; Ngang, J.; Ngarmchamnanrith, G.; Kim, J.; Houk, B.E.; Canon, J.; Lipford, J.R.; Friberg, G.; Lito, P.; Govindan, R.; Li, B.T. KRAS G12C inhibition with sotorasib in advanced solid tumors. N. Engl. J. Med., 2020, 383(13), 1207-1217.
[http://dx.doi.org/10.1056/NEJMoa1917239] [PMID: 32955176]
[11]
Bekaii-Saab, T.S.; Spira, A.I.; Yaeger, R.; Buchschacher, G.L.; McRee, A.J.; Sabari, J.K.; Johnson, M.L.; Barve, M.A.; Hafez, N.; Velastegui, K.; Christensen, J.G.; Kheoh, T.; DerTorossian, H.; Rybkin, I.I. KRYSTAL-1: Updated activity and safety of adagrasib (MRTX849) in patients (Pts) with unresectable or metastatic pancreatic cancer (PDAC) and other gastrointestinal (GI) tumors harboring a KRAS mutation. J. Clin. Oncol., 2022.
[12]
Janne, P.A. KRYSTAL-1: Activity and safety of adagrasib (MRTX849) in advanced/metastatic non-small cell lung cancer (NSCLC) harboring KRAS G12C mutation. Eur. J. Cancer, 2020, 138, S1-S2.
[13]
Johnson, M.L.; Ou, S.H.I.; Barve, M.; Rybkin, I.I.; Papadopoulos, K.P.; Leal, T.A.; Velastegui, K.; Christensen, J.G.; Kheoh, T.; Chao, R.C.; Weiss, J. KRYSTAL-1: Activity and safety of adagrasib (MRTX849) in patients with colorectal cancer (CRC) and other solid tumors harboring a KRAS G12C mutation. Eur. J. Cancer, 2020, 138, S2.
[http://dx.doi.org/10.1016/S0959-8049(20)31077-7]
[14]
[15]
Peng, S.B.; Si, C.; Zhang, Y. Preclinical characterization of LY3537982, a novel, highly selective and potent KRAS G12C inhibitor. Proceedings of the 112th Annual Meeting of the AACR, 2021.
[16]
Hata, A.N.; Shaw, A.T. Resistance looms for KRASG12C inhibitors. Nat. Med., 2020, 26(2), 169-170.
[http://dx.doi.org/10.1038/s41591-020-0765-z] [PMID: 32020086]
[17]
Nichols, R.; Schulze, C.; Bermingham, A.; Choy, T.; Cregg, J.; Kiss, G.; Marquez, A.; Reyes, D.; Saldajeno-Concar, M.; Weller, C.; Whalen, D.; Yang, Y.; Wang, Z.; Koltun, E.S.; Singh, M.; Wildes, D.; Gill, A.L.; Hansen, R.; Kelsey, S.; Goldsmith, M.; Smith, J. A06 tri-complex inhibitors of the oncogenic, GTP-bound form of KRASG12C overcome RTK-mediated escape mechanisms and drive tumor regressions in preclinical models of NSCLC. J. Thorac. Oncol., 2020, 15(2), S13-S14.
[http://dx.doi.org/10.1016/j.jtho.2019.12.035]
[18]
Kelsy, S.; President, R&D Revolution Medicines., 2020. Available from: https://www.revmed. com/media/approaches-inhibiting-ras-driven-tumors-beyond-kras-g12c
[19]
Goldsmith, M.A. Translating frontier oncology targets to outsmart cancer. Revol. Med., 2021. Available from: https://s3-us-west-2.amazonaws.com/rvmdpubs.revmed.com/2019/RAS_Meeting_Sept_2019_FINAL_9_10_2019.pdf
[20]
Jančík, S.; Drábek, J.; Radzioch, D.; Hajdúch, M. Clinical relevance of KRAS in human cancers. J. Biomed. Biotechnol., 2010, 2010, 150960.
[http://dx.doi.org/10.1155/2010/150960] [PMID: 20617134]
[21]
Zhang, H.; Gao, Z.; Meng, C.; Li, X.; Shi, D. Inhibitor binding sites in the protein tyrosine phosphatase SHP-2. Mini Rev. Med. Chem., 2020, 20(11), 1017-1030.
[http://dx.doi.org/10.2174/1389557520666200303130833] [PMID: 32124695]
[22]
Buday, L.; Vas, V. Novel regulation of Ras proteins by direct tyrosine phosphorylation and dephosphorylation. Cancer Metastasis Rev., 2020, 39(4), 1067-1073.
[http://dx.doi.org/10.1007/s10555-020-09918-2] [PMID: 32936431]
[23]
Fedele, C.; Li, S.; Teng, K.W.; Foster, C.J.R.; Peng, D.; Ran, H.; Mita, P.; Geer, M.J.; Hattori, T.; Koide, A.; Wang, Y.; Tang, K.H.; Leinwand, J.; Wang, W.; Diskin, B.; Deng, J.; Chen, T.; Dolgalev, I.; Ozerdem, U.; Miller, G.; Koide, S.; Wong, K.K.; Neel, B.G. SHP2 inhibition diminishes KRASG12C cycling and promotes tumor microenvironment remodeling. J. Exp. Med., 2021, 218(1), e20201414.
[http://dx.doi.org/10.1084/jem.20201414] [PMID: 33045063]
[24]
Lu, S.; Qiu, Y.; Ni, D.; He, X.; Pu, J.; Zhang, J. Emergence of allosteric drug-resistance mutations: New challenges for allosteric drug discovery. Drug Discov. Today, 2020, 25(1), 177-184.
[http://dx.doi.org/10.1016/j.drudis.2019.10.006] [PMID: 31634592]
[25]
Spalinger, M.R.; Schwarzfischer, M.; Scharl, M. The role of protein tyrosine phosphatases in inflammasome activation. Int. J. Mol. Sci., 2020, 21(15), 5481-5481.
[http://dx.doi.org/10.3390/ijms21155481] [PMID: 32751912]
[26]
Uprety, D.; Adjei, A.A. KRAS: From undruggable to a druggable Cancer Target. Cancer Treat. Rev., 2020, 89, 102070.
[http://dx.doi.org/10.1016/j.ctrv.2020.102070] [PMID: 32711246]
[27]
Wu, J.; Zhang, H.; Zhao, G. Allosteric inhibitors of SHP2: An updated patent review (2015- 2020). Curr. Med. Chem., 2020, 28(19), 3825-3842.
[PMID: 32988341]
[28]
Disease linked SHP2 mutations cause phase separation to activate MAPK. Cancer Discov., 2020, 10(12), 1785.
[http://dx.doi.org/10.1158/2159-8290.CD-RW2020-147] [PMID: 34365364]
[29]
Chen, D.; Barsoumian, H.; Yang, L.; Younes, A.; Verma, V.; Cortez, M.A.; Welsh, J.W. SHP-2 and PDL1 inhibition combined with radiotherapy enhances systemic antitumor effects in an anti-PD1-resistant model of non-small-cell-lung cancer. Int. J. Radiat. Oncol. Biol. Phys., 2020, 108(3), S91-S91.
[http://dx.doi.org/10.1016/j.ijrobp.2020.07.2256]
[30]
Chen, H.; Libring, S.; Ruddraraju, K.V.; Miao, J.; Solorio, L.; Zhang, Z.Y.; Wendt, M.K. SHP2 is a multifunctional therapeutic target in drug resistant metastatic breast cancer. Oncogene, 2020, 39(49), 7166-7180.
[http://dx.doi.org/10.1038/s41388-020-01488-5] [PMID: 33033382]
[31]
Song, Z.; Wang, M.; Ge, Y.; Chen, X.P.; Xu, Z.; Sun, Y.; Xiong, X.F. Tyrosine phosphatase SHP2 inhibitors in tumor-targeted therapies. Acta Pharm. Sin. B, 2021, 11(1), 13-29.
[http://dx.doi.org/10.1016/j.apsb.2020.07.010] [PMID: 33532178]
[32]
Bendell, J. Intermittent dosing of rmc-4630, a potent, selective inhibitor of shp2, combined with mek inhibitor cobimetinib, in a phase 1b/2 clinical trail for advanced solid tumors with activating mutations of ras signaling. Eur. J. Cancer, 2020, 138, S8-S9.
[33]
LaMarche, M.J.; Acker, M.; Argintaru, A.; Bauer, D.; Boisclair, J.; Chan, H.; Chen, C.H.T.; Chen, Y.N.; Chen, Z.; Deng, Z.; Dore, M.; Dunstan, D.; Fan, J.; Fekkes, P.; Firestone, B.; Fodor, M.; Garcia-Fortanet, J.; Fortin, P.D.; Fridrich, C.; Giraldes, J.; Glick, M.; Grunenfelder, D.; Hao, H.X.; Hentemann, M.; Ho, S.; Jouk, A.; Kang, Z.B.; Karki, R.; Kato, M.; Keen, N.; Koenig, R.; LaBonte, L.R.; Larrow, J.; Liu, G.; Liu, S.; Majumdar, D.; Mathieu, S.; Meyer, M.J.; Mohseni, M.; Ntaganda, R.; Palermo, M.; Perez, L.; Pu, M.; Ramsey, T.; Reilly, J.; Sarver, P.; Sellers, W.R.; Sendzik, M.; Shultz, M.D.; Slisz, J.; Slocum, K.; Smith, T.; Spence, S.; Stams, T.; Straub, C.; Tamez, V., Jr; Toure, B.B.; Towler, C.; Wang, P.; Wang, H.; Williams, S.L.; Yang, F.; Yu, B.; Zhang, J.H.; Zhu, S. Identification of TNO155, an allosteric SHP2 inhibitor for the treatment of cancer. J. Med. Chem., 2020, 63(22), 13578-13594.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01170] [PMID: 32910655]
[34]
Liu, C.; Lu, H.; Wang, H.; Loo, A.; Zhang, X.; Yang, G.; Kowal, C.; Delach, S.; Wang, Y.; Goldoni, S.; Hastings, W.D.; Wong, K.; Gao, H.; Meyer, M.J.; Moody, S.E.; LaMarche, M.J.; Engelman, J.A.; Williams, J.A.; Hammerman, P.S.; Abrams, T.J.; Mohseni, M.; Caponigro, G.; Hao, H.X. Combinations with allosteric SHP2 inhibitor TNO155 to block receptor tyrosine kinase signaling. Clin. Cancer Res., 2021, 27(1), 342-354.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-2718] [PMID: 33046519]
[35]
Lu, H.; Liu, C.; Huynh, H.; Le, T.B.U.; LaMarche, M.J.; Mohseni, M.; Engelman, J.A.; Hammerman, P.S.; Caponigro, G.; Hao, H.X. Resistance to allosteric SHP2 inhibition in FGFR-driven cancers through rapid feedback activation of FGFR. Oncotarget, 2020, 11(3), 265-281.
[http://dx.doi.org/10.18632/oncotarget.27435] [PMID: 32076487]
[36]
Margarit, S.M.; Sondermann, H.; Hall, B.E.; Nagar, B.; Hoelz, A.; Pirruccello, M.; Bar-Sagi, D.; Kuriyan, J. Structural evidence for feedback activation by Ras.GTP of the Ras-specific nucleotide exchange factor SOS. Cell, 2003, 112(5), 685-695.
[http://dx.doi.org/10.1016/S0092-8674(03)00149-1] [PMID: 12628188]
[37]
Bonfini, L.; Karlovich, C.A.; Dasgupta, C.; Banerjee, U. The Son of sevenless gene product: A putative activator of Ras. Science, 1992, 255(5044), 603-606.
[http://dx.doi.org/10.1126/science.1736363] [PMID: 1736363]
[38]
Wang, D.Z.; Hammond, V.E.; Abud, H.E.; Bertoncello, I.; McAvoy, J.W.; Bowtell, D.D. Mutation in Sos1 dominantly enhances a weak allele of the EGFR, demonstrating a requirement for Sos1 in EGFR signaling and development. Genes Dev., 1997, 11(3), 309-320.
[http://dx.doi.org/10.1101/gad.11.3.309] [PMID: 9030684]
[39]
Boriack-Sjodin, P.A.; Margarit, S.M.; Bar-Sagi, D.; Kuriyan, J. The structural basis of the activation of Ras by Sos. Nature, 1998, 394(6691), 337-343.
[http://dx.doi.org/10.1038/28548] [PMID: 9690470]
[40]
Nimnual, A.S.; Yatsula, B.A.; Bar-Sagi, D. Coupling of Ras and Rac guanosine triphosphatases through the Ras exchanger Sos. Science, 1998, 279(5350), 560-563.
[http://dx.doi.org/10.1126/science.279.5350.560] [PMID: 9438849]
[41]
Quilliam, L.A. New insights into the mechanisms of SOS activation. Sci. STKE, 2007, 2007(414), pe67.
[http://dx.doi.org/10.1126/stke.4142007pe67] [PMID: 18042941]
[42]
Hofmann, M.H.; Gmachl, M.; Ramharter, J.; Savarese, F.; Gerlach, D.; Marszalek, J.R.; Sanderson, M.P.; Kessler, D.; Trapani, F.; Arnhof, H.; Rumpel, K.; Botesteanu, D.A.; Ettmayer, P.; Gerstberger, T.; Kofink, C.; Wunberg, T.; Zoephel, A.; Fu, S.C.; Teh, J.L.; Böttcher, J.; Pototschnig, N.; Schachinger, F.; Schipany, K.; Lieb, S.; Vellano, C.P.; O’Connell, J.C.; Mendes, R.L.; Moll, J.; Petronczki, M.; Heffernan, T.P.; Pearson, M.; McConnell, D.B.; Kraut, N. BI-3406, a potent and selective SOS1–KRAS interaction inhibitor, is effective in KRAS-driven cancers through combined MEK inhibition. Cancer Discov., 2021, 11(1), 142-157.
[http://dx.doi.org/10.1158/2159-8290.CD-20-0142] [PMID: 32816843]
[44]
Hillig, R.C.; Sautier, B.; Schroeder, J.; Moosmayer, D.; Hilpmann, A.; Stegmann, C.M.; Werbeck, N.D.; Briem, H.; Boemer, U.; Weiske, J.; Badock, V.; Mastouri, J.; Petersen, K.; Siemeister, G.; Kahmann, J.D.; Wegener, D.; Böhnke, N.; Eis, K.; Graham, K.; Wortmann, L.; von Nussbaum, F.; Bader, B. Discovery of potent SOS1 inhibitors that block RAS activation via disruption of the RAS–SOS1 interaction. Proc. Natl. Acad. Sci. USA, 2019, 116(7), 2551-2560.
[http://dx.doi.org/10.1073/pnas.1812963116] [PMID: 30683722]
[45]
Evelyn, C.R.; Duan, X.; Biesiada, J.; Seibel, W.L.; Meller, J.; Zheng, Y. Rational design of small molecule inhibitors targeting the Ras GEF, SOS1. Chem. Biol., 2014, 21(12), 1618-1628.
[http://dx.doi.org/10.1016/j.chembiol.2014.09.018] [PMID: 25455859]
[46]
Evelyn, C.R.; Biesiada, J.; Duan, X.; Tang, H.; Shang, X.; Papoian, R.; Seibel, W.L.; Nelson, S.; Meller, J.; Zheng, Y. Combined rational design and a high throughput screening platform for identifying chemical inhibitors of a Ras-activating enzyme. J. Biol. Chem., 2015, 290(20), 12879-12898.
[http://dx.doi.org/10.1074/jbc.M114.634493] [PMID: 25825487]
[47]
Peri, F.; Airoldi, C.; Colombo, S.; Martegani, E.; van Neuren, A.S.; Stein, M.; Marinzi, C.; Nicotra, F. Design, synthesis and biological evaluation of sugar-derived Ras inhibitors. ChemBioChem, 2005, 6(10), 1839-1848.
[http://dx.doi.org/10.1002/cbic.200400420] [PMID: 16196015]
[48]
Sun, Q.; Burke, J.P.; Phan, J. Discovery of small molecules that bind to KRas and inhibit activation. Angew. Chem. Int. Ed. Engl., 2012, 51(25), 6140-6143.
[http://dx.doi.org/10.1074/jbc.M114.634493Sos-mediated]
[49]
Hocker, H.J.; Cho, K.J.; Chen, C.Y.K.; Rambahal, N.; Sagineedu, S.R.; Shaari, K.; Stanslas, J.; Hancock, J.F.; Gorfe, A.A. Andrographolide derivatives inhibit guanine nucleotide exchange and abrogate oncogenic Ras function. Proc. Natl. Acad. Sci. USA, 2013, 110(25), 10201-10206.
[http://dx.doi.org/10.1073/pnas.1300016110] [PMID: 23737504]
[50]
Winter, J.J.G.; Anderson, M.; Blades, K.; Brassington, C.; Breeze, A.L.; Chresta, C.; Embrey, K.; Fairley, G.; Faulder, P.; Finlay, M.R.V.; Kettle, J.G.; Nowak, T.; Overman, R.; Patel, S.J.; Perkins, P.; Spadola, L.; Tart, J.; Tucker, J.A.; Wrigley, G. Small molecule binding sites on the Ras:SOS complex can be exploited for inhibition of Ras activation. J. Med. Chem., 2015, 58(5), 2265-2274.
[http://dx.doi.org/10.1021/jm501660t] [PMID: 25695162]
[51]
Patgiri, A.; Yadav, K.K.; Arora, P.S.; Bar-Sagi, D. An orthosteric inhibitor of the Ras-Sos interaction. Nat. Chem. Biol., 2011, 7(9), 585-587.
[http://dx.doi.org/10.1038/nchembio.612] [PMID: 21765406]
[52]
Leshchiner, E.S.; Parkhitko, A.; Bird, G.H.; Luccarelli, J.; Bellairs, J.A.; Escudero, S.; Opoku-Nsiah, K.; Godes, M.; Perrimon, N.; Walensky, L.D. Direct inhibition of oncogenic KRAS by hydrocarbon-stapled SOS1 helices. Proc. Natl. Acad. Sci. USA, 2015, 112(6), 1761-1766.
[http://dx.doi.org/10.1073/pnas.1413185112] [PMID: 25624485]
[53]
Theard, P.L.; Sheffels, E.; Sealover, N.E.; Linke, A.J.; Pratico, D.J.; Kortum, R.L. Marked synergy by vertical inhibition of EGFR signaling in NSCLC spheroids shows SOS1 is a therapeutic target in EGFR-mutated cancer. eLife, 2020, 9, e58204.
[http://dx.doi.org/10.7554/eLife.58204] [PMID: 32897190]
[54]
Wang, J.; Pollard, K.; Allen, A.N.; Tomar, T.; Pijnenburg, D.; Yao, Z.; Rodriguez, F.J.; Pratilas, C.A. Combined inhibition of SHP2 and MEK is effective in models of NF1-deficient malignant peripheral nerve sheath tumors. Cancer Res., 2020, 80(23), 5367-5379.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-1365] [PMID: 33032988]
[55]
Santana-Codina, N.; Chandhoke, A.S.; Yu, Q.; Małachowska, B.; Kuljanin, M.; Gikandi, A.; Stańczak, M.; Gableske, S.; Jedrychowski, M.P.; Scott, D.A.; Aguirre, A.J.; Fendler, W.; Gray, N.S.; Mancias, J.D. Defining and targeting adaptations to oncogenic KRASG12C inhibition using quantitative temporal proteomics. Cell Rep., 2020, 30(13), 4584-4599.e4.
[http://dx.doi.org/10.1016/j.celrep.2020.03.021] [PMID: 32234489]
[56]
Adachi, Y.; Ito, K.; Hayashi, Y.; Kimura, R.; Tan, T.Z.; Yamaguchi, R.; Ebi, H. Epithelial-to-mesenchymal transition is a cause of both intrinsic and acquired resistance to KRAS G12C inhibitor in KRAS G12C–mutant non–small cell lung cancer. Clin. Cancer Res., 2020, 26(22), 5962-5973.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-2077] [PMID: 32900796]
[57]
Briere, D.M.; Calinisan, A.; Aranda, R.; Sudhakar, N.; Hargis, L.; Gatto, S.; Fernandez-Banet, J.; Pavlicek, A.; Engstrom, L.D.; Hallin, J.; Christensen, J.G.; Olson, P. Abstract LB-C09: The KRASG12C inhibitor MRTX849 reconditions the tumor immune microenvironment and leads to durable complete responses in combination with anti-PD-1 therapy in a syngeneic mouse model. Mol. Cancer Ther., 2019, 18(12_Supplement)LB-C09,
[http://dx.doi.org/10.1158/1535-7163.TARG-19-LB-C09]
[58]
Jiao, D.; Yang, S. Overcoming resistance to drugs targeting KRASG12C mutation. Innovation, 2020, 1(2), 100035.
[60]
Blair, H.A. Sotorasib: First approval. Drugs, 2021, 81(13), 1573-1579.
[http://dx.doi.org/10.1007/s40265-021-01574-2] [PMID: 34357500]
[61]
Maus, M.K.H.; Grimminger, P.P.; Mack, P.C.; Astrow, S.H.; Stephens, C.; Zeger, G.; Hsiang, J.; Brabender, J.; Friedrich, M.; Alakus, H.; Hölscher, A.H.; Lara, P.; Danenberg, K.D.; Lenz, H.J.; Gandara, D.R. KRAS mutations in non-small-cell lung cancer and colorectal cancer: Implications for EGFR-targeted therapies. Lung Cancer, 2014, 83(2), 163-167.
[http://dx.doi.org/10.1016/j.lungcan.2013.11.010] [PMID: 24331409]
[62]
Kordiak, J.; Szemraj, J.; Grabska-Kobylecka, I.; Bialasiewicz, P.; Braun, M.; Kordek, R.; Nowak, D. Intratumor heterogeneity and tissue distribution of KRAS mutation in non-small cell lung cancer: Implications for detection of mutated KRAS oncogene in exhaled breath condensate. J. Cancer Res. Clin. Oncol., 2019, 145(1), 241-251.
[http://dx.doi.org/10.1007/s00432-018-2779-1] [PMID: 30368666]
[63]
Richman, S.D.; Chambers, P.; Seymour, M.T.; Daly, C.; Grant, S.; Hemmings, G.; Quirke, P. Intra-tumoral heterogeneity of KRAS and BRAF mutation status in patients with advanced colorectal cancer (aCRC) and cost-effectiveness of multiple sample testing. Anal. Cell. Pathol. (Amst.), 2011, 34(1-2), 61-66.
[http://dx.doi.org/10.1155/2011/393521] [PMID: 21483104]

© 2024 Bentham Science Publishers | Privacy Policy