Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Facile Synthesis and Enhanced Photocatalytic Properties of La2O3/SrSn(OH)6 Nanorods

Author(s): Yong Zhang, Lihong Zhuang, Feihu Tao, Zeyang Xue and Lizhai Pei*

Volume 19, Issue 3, 2023

Published on: 06 September, 2022

Page: [449 - 458] Pages: 10

DOI: 10.2174/1573413718666220701150802

Price: $65

Abstract

Background: The efficient removal of the environmental organic pollutants using the photocatalytic technology catalyzed by semiconductors has attracted great research interest in recent years. La2O3/SrSn(OH)6 nanorods show enhanced photocatalytic activity towards crystal violet (CV).

Objective: The aim of this study is to obtain La2O3/SrSn(OH)6 nanorods by a simple hydrothermal route using lanthanum acetate and SrSn(OH)6 nanorods, and explore the photocatalytic properties for CV degradation.

Methods: La2O3/SrSn(OH)6 nanorods were obtained by a hydrothermal route using lanthanum acetate and SrSn(OH)6 nanorods and characterized by X-ray diffraction (XRD), transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and photocatalytic experiments.

Results: The composite nanorods comprise hexagonal SrSn(OH)6 and cubic La2O3 phases. Some nanoscale particles attach to the surface of the nanorods with a diameter and length of about 100 nm and 1 μm, respectively. La2O3/SrSn(OH)6 nanorods show a lower band gap value than the SrSn(OH)6 nanorods. The photocatalytic reaction rate constant for the CV degradation using 15wt.%- La2O3/SrSn(OH)6 nanorods is 3 times higher than that of the pure nanorods.

Conclusion: La2O3/SrSn(OH)6 nanorods possess good reusability and stability for CV removal. The photocatalytic activity for the CV removal of the SrSn(OH)6 nanorods can be greatly enhanced by La2O3.

Keywords: La2O3, SrSn(OH)6 nanorods, transmission electron microscopy, crystal violet, photocatalytic properties, environmental organic pollutants, semiconductor photocatalysts.

Graphical Abstract

[1]
Qiu, J.H.; Li, M.; Ding, M.L.; Yao, J.F. Cellulose tailored semiconductors for advanced photocatalysis. Renew. Sustain. Energy Rev., 2022, 154, 111820.
[http://dx.doi.org/10.1016/j.rser.2021.111820]
[2]
Chen, C.S.; Xie, X.D.; Zhao, G.J.; Zeng, B.; Ning, X.T.; Cao, S.Y.; Xiao, Y.; Mei, Y.P.; Meng, X.M.; Huang, M.X. Graphene/multi-walled carbon nanotube composite as an effective supports to enhance the photocatalytic property of Cu-doped ZnO nanoparticles. Funct. Mater. Lett. (Singap.), 2013, 6(6), 1350062.
[http://dx.doi.org/10.1142/S1793604713500628]
[3]
Wang, Z.; Chen, H.J.; Qiu, F.L.; Xue, Z.Y.; Yu, C.H.; Wang, P.X.; Cong, Q.M.; Pei, L.Z.; Fan, C.; Zhang, Y. Facile cetyltrimethylammoni-um bromide (CTAB)-assisted synthesis of calcium bismuthate nanoflakes with solar light photocatalytic performance. Curr. Nanosci., 2021, 17(2), 315-326.
[http://dx.doi.org/10.2174/1573413716999200817120339]
[4]
Yang, L.; Yu, Y.; Yang, W.; Li, X.; Zhang, G.; Shen, Y.; Dong, F.; Sun, Y. Efficient visible light photocatalytic NO abatement over SrSn(OH)6 nanowires loaded with Ag/Ag2O cocatalyst. Environ. Res., 2021, 201, 111521.
[http://dx.doi.org/10.1016/j.envres.2021.111521] [PMID: 34214565]
[5]
Junploy, P.; Thongtem, S.; Thongtem, T. Photoabsorption and photocatalysis of SrSnO3 produced by a cyclic microwave radiation. Superlattices Microstruct., 2013, 57, 1-10.
[http://dx.doi.org/10.1016/j.spmi.2013.01.008]
[6]
Zhang, W.D.; Wang, Y.; Wang, Y.; Liang, Y.; Dong, F. Highly efficient photocatalytic NO removal and in situ DRIFTS investigation on SrSn(OH)6. Chin. Chem. Lett., 2022, 33(3), 1259-1262.
[http://dx.doi.org/10.1016/j.cclet.2021.07.065]
[7]
Xue, Z.Y.; Li, F.Y.; Yu, C.H.; Huang, J.F.; Tao, F.H.; Cai, Z.Y.; Pei, L.Z. Synthesis of hexahydroxy strontium stannate nanorods for pho-tocatalytic degradation of organic pollutants. Toxicol. Environ. Chem., 2022, 103(4), 279-294.
[http://dx.doi.org/10.1080/02772248.2021.1999453]
[8]
Luo, Y.P.; Chen, J.; Liu, J.W.; Shao, Y.; Li, X.F.; Li, D.Z. Hydroxide SrSn(OH)6: A new photocatalyst for degradation of benzene and Rhodamine B. Appl. Catal. B, 2016, 182, 533-540.
[http://dx.doi.org/10.1016/j.apcatb.2015.09.051]
[9]
Nezamzadeh-Ejhieh, A.; Shahriari, E. Photocatalytic decolorization of methyl green using Fe(II)-o-phenanthroline as supported onto zeo-lite Y. J. Ind. Eng. Chem., 2014, 20(5), 2719-2726.
[http://dx.doi.org/10.1016/j.jiec.2013.10.060]
[10]
Senobari, S.; Nezamzadeh-Ejhieh, A. A comprehensive study on the photocatalytic activity of coupled copper oxide-cadmium sulfide nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 196, 334-343.
[http://dx.doi.org/10.1016/j.saa.2018.02.043] [PMID: 29475182]
[11]
Nezamzadeh-Ejhieh, A.; Banan, Z. A comparison between the efficiency of CdS nanoparticles/zeolite A and CdO/zeolite A as catalysts in photodecolorization of crystal violet. Desalination, 2011, 279(1-3), 146-151.
[http://dx.doi.org/10.1016/j.desal.2011.06.006]
[12]
Derikvandi, H.; Nezamzadeh-Ejhieh, A. A comprehensive study on electrochemical and photocatalytic activity of SnO2-ZnO/clinoptilolite nanoparticles. J. Mol. Catal. Chem., 2017, 426, 158-169.
[http://dx.doi.org/10.1016/j.molcata.2016.11.011]
[13]
Arabpour, N.; Nezamzadeh-Ejhieh, A. Modification of clinoptilolite nano-particles with iron oxide: Increased composite catalytic activity for photodegradation of cotrimaxazole in aqueous suspension. Mater. Sci. Semicond. Process., 2015, 31, 684-692.
[http://dx.doi.org/10.1016/j.mssp.2014.12.067]
[14]
Pourtaheri, A.; Nezamzadeh-Ejhieh, A. Enhancement in photocatalytic activity of NiO by supporting onto an Iranian clinoptilolite nano-particles of aqueous solution of cefuroxime pharmaceutical capsule. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 137, 338-344.
[http://dx.doi.org/10.1016/j.saa.2014.08.058] [PMID: 25233023]
[15]
Yang, X.J.; Wu, L.N.; Hu, R.N.; Xing, J.Q.; Zhou, G.H.; Lu, S.F.; Wu, J.; Li, P.; Liu, D. Hollow microspherical Bi2MoO6/Zn–Ti layered double hydroxide heterojunction for efficient visible-light photocatalytic degradation of organic contaminants. New J. Chem., 2022, 46(4), 1704-1712.
[http://dx.doi.org/10.1039/D1NJ05008G]
[16]
Kim, Y.H.; Irie, H.; Hashimoto, K. A visible light-sensitive tungsten carbide/tungsten trioxde composite photocatalyst. Appl. Phys. Lett., 2019, 92(18), 182107.
[http://dx.doi.org/10.1063/1.2924276]
[17]
Chen, C.S.; Xie, X.D.; Cao, S.; Liu, T.G.; Lin, L.W.; Chen, X.H.; Liu, Q.C.; Kuang, J.C.; Xiao, Y. Preparation and photocatalytic activity of multi-walled carbon nanotubes/Mg-doped ZnO nanohybrids. Mater. Sci. Pol., 2015, 33(3), 460-469.
[http://dx.doi.org/10.1515/msp-2015-0083]
[18]
Chen, C.S.; Mei, W.; Wang, C.; Yang, Z.; Chen, X.A.; Chen, X.H.; Liu, T.G. Synthesis of a flower-like SnO/ZnO nanostructure with high catalytic activity and stability under natural sunlight. J. Alloys Compd., 2020, 826, 154122.
[http://dx.doi.org/10.1016/j.jallcom.2020.154122]
[19]
Oh, W.C.; Jung, A.R.; Ko, W.B. Characterization and relative photonic efficiencies of a new nanocarbon/TiO2 composite photocatalyst designed for organic dye decomposition and bactericidal activity. Mater. Sci. Eng. C, 2009, 29(4), 1338-1347.
[http://dx.doi.org/10.1016/j.msec.2008.10.034]
[20]
Omrani, N.; Nezamzadeh-Ejhieh, A. A comprehensive study on the enhanced photocatalytic activity of Cu2O/BiVO4/WO3 nanoparticles. J. Photochem. Photobiol. Chem., 2020, 389, 112223.
[http://dx.doi.org/10.1016/j.jphotochem.2019.112223]
[21]
Mirsalari, S.A.; Nezamzadeh-Ejhieh, A. CdS–Ag3PO4 nano-catalyst: A brief characterization and kinetic study towards methylene blue photodegradation. Mater. Sci. Semicond. Process., 2021, 122, 105455.
[http://dx.doi.org/10.1016/j.mssp.2020.105455]
[22]
Wannapop, S.; Khawsaad, A.; Supanpong, A.; Janorat, Y.; Chuminjak, Y.; Tuantranont, A.; Phuruangrat, A.; Thongtem, T.; Thongtem, S.; Somdee, A. Photocatalytic study of metal oxide enhanced ZnO synthesized by a one-step cyclic-microwave method: The role of the p-n heterostructure. Inorg. Chem. Commun., 2022, 138, 109210.
[http://dx.doi.org/10.1016/j.inoche.2022.109210]
[23]
Chen, H.J.; Wang, Z.; Xue, Z.Y.; Yu, C.H.; Pei, L.Z.; Fan, C.G. Constructing a Z-scheme Bi2O3/In2O3 heterojunction for efficient photo-catalytic degradation of Rhodamine B. Cryst. Res. Technol., 2020, 55, 2000093.
[http://dx.doi.org/10.1002/crat.202000093]
[24]
Huang, Z.; Liu, J.; Zong, S.; Wang, X.; Chen, K.; Liu, L.; Fang, Y. Fabrication of graphitic carbon Nitride/Nonstoichiometric molybdenum oxide nanorod composite with the nonmetal plasma enhanced photocatalytic hydrogen evolution activity. J. Colloid Interface Sci., 2022, 606(Pt 1), 848-859.
[http://dx.doi.org/10.1016/j.jcis.2021.08.073] [PMID: 34425272]
[25]
Soleimani, F.; Nezamzadeh-Ejhieh, A. Study of the photocatalytic activity of CdS–ZnS nano-composite in the photodegradation of rifam-pin in aqueous solution. J. Mater. Res. Technol., 2020, 9(6), 16237-16251.
[http://dx.doi.org/10.1016/j.jmrt.2020.11.091]
[26]
Soori, F.; Nezamzadeh-Ejhieh, A. Synergistic effects of copper oxide-zeolite nanoparticles composite on photocatalytic degradation of 2,6-dimethylphenol aqueous solution. J. Mol. Liq., 2018, 255, 250-256.
[http://dx.doi.org/10.1016/j.molliq.2018.01.169]
[27]
Xu, H.; Li, H.M.; Sun, G.S.; Xia, J.X.; Wu, C.D.; Ye, Z.X.; Zhang, Q. Photocatalytic activity of La2O3-modified silver vanadates catalyst for Rhodamine B dye degradation under visible light irradiation. Chem. Eng. J., 2010, 160(1), 33-41.
[http://dx.doi.org/10.1016/j.cej.2010.02.054]
[28]
Fey, G.T.K.; Muralidharan, P.; Lu, C.Z.; Cho, Y.D. Enhanced electrochemical performance and thermal stability of La2O3-coated LiCoO2. Electrochim. Acta, 2006, 51(23), 4850-4858.
[http://dx.doi.org/10.1016/j.electacta.2006.01.024]
[29]
Sun, H.; Ding, Y.; Duan, J.; Zhang, Q.; Wang, Z.; Lou, H.; Zheng, X. Transesterification of sunflower oil to biodiesel on ZrO2 supported La2O3 catalyst. Bioresour. Technol., 2010, 101(3), 953-958.
[http://dx.doi.org/10.1016/j.biortech.2009.08.089] [PMID: 19766483]
[30]
Qi, Y.C.; Peng, H. One-pot synthesis of La2O3-decorated Mg-Al oxides nanosheets for solar-light driven photocatalytic activity. Colloid. Colloids Surf. A Physicochem. Eng. Asp., 2020, 604, 125316.
[http://dx.doi.org/10.1016/j.colsurfa.2020.125316]
[31]
Bilel, C.; Jbeli, R.; Jemaa, I.B.; Boukhachem, A.; Saadallah, F.; Amlouk, M.; Ezzaouïa, H. Physical investigations on annealed structure Cu/La2O3 for photocatalytic application under sunlight. J. Mater. Sci. Mater. Electron., 2020, 31(10), 7398-7410.
[http://dx.doi.org/10.1007/s10854-020-02863-4]
[32]
Raeisi-Kheirabadi, N.; Nezamzadeh-Ejhieh, A. A Z-scheme g-C3N4/Ag3PO4 nanocomposite: Its photocatalytic activity and capability for water splitting. Int. J. Hydrogen Energy, 2020, 45(58), 33381-33395.
[http://dx.doi.org/10.1016/j.ijhydene.2020.09.028]
[33]
Noruozi, A.; Nezamzadeh-Ejhieh, A. Preparation, characterization, and investigation of the catalytic property of α-Fe2O3-ZnO nanoparti-cles in the photodegradation and mineralization of methylene blue. Chem. Phys. Lett., 2020, 752, 137587.
[http://dx.doi.org/10.1016/j.cplett.2020.137587]
[34]
Yousefi, A.; Nezamzadeh-Ejhieh, A. Preparation and characterization of SnO2-BiVO4-CuO catalyst and kinetics of phenazopyridine pho-todegradation. Iran. J. Catal., 2021, 11, 247-259.
[35]
Liu, X.Q.; Lv, J.J.; Wang, S.; Li, X.; Lang, J.Y.; Su, Y.G.; Chai, Z.L.; Wang, X.J. A novel contractive effect of KTaO3 nanocrystals via La3+ doping and an enhanced photocatalytic performance. J. Alloys Compd., 2015, 622, 894-901.
[http://dx.doi.org/10.1016/j.jallcom.2014.11.005]
[36]
Rayade, R.G.; Kulkarni, R.G.; Jasra, R.V. Transition metal ion impregnated mesoporous TiO2 for photocatalytic degradation of organic contaminants in water. Ind. Eng. Chem. Res., 2006, 45(15), 5231-5238.
[http://dx.doi.org/10.1021/ie051362o]
[37]
Liang, J.C.; Wang, J.Y.; Yu, K.F.; Song, K.X.; Wang, X.F.; Liu, W.P.; Hou, J.Z.; Liang, C. Enhanced photocatalytic performance of Nd3+-doped TiO2 nanosphere under visible light. Chem. Phys., 2020, 528, 110538.
[http://dx.doi.org/10.1016/j.chemphys.2019.110538]
[38]
Derikvandi, H.; Nezamzadeh-Ejhieh, A. A comprehensive study on enhancement and optimization of photocatalytic activity of ZnS and SnS2: Response Surface Methodology (RSM), n-n heterojunction, supporting and nanoparticles study. J. Photochem. Photobiol. Chem., 2017, 348, 68-78.
[http://dx.doi.org/10.1016/j.jphotochem.2017.08.007]
[39]
Rahmani-Aliabadi, A.; Nezamzadeh-Ejhieh, A. A visible light FeS/Fe2S3/zeolite photocatalyst towards photodegradation of ciprofloxacin. J. Photochem. Photobiol. Chem., 2018, 357, 1-10.
[http://dx.doi.org/10.1016/j.jphotochem.2018.02.006]
[40]
Shao, X.; Pan, F.; Zheng, L.; Zhang, R.; Wang, W.Y. Nd-doped TiO2-C hybrid aerogels and their photocatalytic properties. N. Carbon Mater., 2018, 33(2), 116-124.
[http://dx.doi.org/10.1016/S1872-5805(18)60329-4]
[41]
Zhang, T.; Zeng, X.T.; Xia, Y.D.; Wang, H.Y. Morphology evolution and photocatalytic applications of W-doped Bi2O3 films prepared using unique oblique angle Co-sputtering technology. Ceram. Int., 2019, 45(17), 21968-21974.
[http://dx.doi.org/10.1016/j.ceramint.2019.07.211]
[42]
Huo, Y.; Zhu, J.; Li, J.; Li, G.; Li, H. An active La/TiO2 photocatalyst prepared by ultrasonication-assisted sol–gel method followed by treatment under supercritical conditions. J. Mol. Catal. Chem., 2007, 278(1-2), 237-243.
[http://dx.doi.org/10.1016/j.molcata.2007.07.054]
[43]
Nezamzadeh-Ejhieh, A.; Banan, Z. Sunlight assisted photodecolorization of crystal violet catalyzed by CdS nanoparticles embedded on zeolite A. Desalination, 2012, 284, 157-166.
[http://dx.doi.org/10.1016/j.desal.2011.08.050]
[44]
Ebrahimi, R.; Maleki, A.; Zandsalimi, Y.; Ghanbari, R.; Shahmoradi, B.; Rezaee, R.; Safari, M.; Joo, S.W.; Daraei, H.; Puttaiah, S.H.; Giahi, O. Photocatalytic degradation of organic dyes using WO3-doped ZnO nanoparticles fixed on a glass surface in aqueous solution. J. Ind. Eng. Chem., 2019, 73, 297-305.
[http://dx.doi.org/10.1016/j.jiec.2019.01.041]
[45]
Pei, L.Z.; Wang, S.; Jiang, Y.X.; Li, Y.; Xie, Y.K.; Guo, Y.H. Single crystalline Sr germanate nanowires and their photocatalytic perfor-mance for the degradation of methyl blue. CrystEngComm, 2013, 5(38), 7815-7823.
[http://dx.doi.org/10.1039/c3ce40989a]
[46]
Chen, H.J.; Yu, C.H.; Xue, Z.Y.; Wang, P.X.; Wang, Z.; Cong, Q.M.; Pei, L.Z.; Fan, C.G. Synthesis of Li-doped bismuth oxide nanoplates, Co nanoparticles modification and good photocatalytic activity toward organic pollutants. Toxicol. Environ. Chem., 2020, 102(7-8), 356-385.
[http://dx.doi.org/10.1080/02772248.2020.1798448]
[47]
Chen, C.Y.; Kuo, J.T.; Yang, H.A.; Chung, Y.C. A coupled biological and photocatalysis pretreatment system for the removal of crystal violet from wastewater. Chemosphere, 2013, 92(6), 695-701.
[http://dx.doi.org/10.1016/j.chemosphere.2013.04.040] [PMID: 23664476]
[48]
Zhang, Y.; Lin, F.F.; Wei, T.; Qiu, F.L.; Ma, Y.; Pei, L.Z. Ethylenediamine-assisted synthesis of barium bismuthate microrods and solar light photocatalytic performance. Int. J. Mater. Res., 2018, 109, 1035-1042.
[http://dx.doi.org/10.1016/10.3139/146.111703]
[49]
Pei, L.Z.; Lin, N.; Wei, T.; Liu, H.D.; Yu, H.Y. Zinc vanadate nanorods and their visible light photocatalytic activity. J. Alloys Compd., 2015, 631, 90-98.
[http://dx.doi.org/10.1016/j.jallcom.2015.01.115]
[50]
Omrani, N.; Nezamzadeh-Ejhieh, A.; Alizadeh, M. Brief study on the kinetic aspect of photodegradation of sulfasalazine aqueous solution by cuprous oxide/cadmium sulfide nanoparticles. Desal. Water Treat., 2019, 162, 290-302.
[http://dx.doi.org/10.5004/dwt.2019.24352]
[51]
Hemmatpour, P.; Nezamzadeh-Ejhieh, A.; Ershadi, A. A brief study on the Eriochrome black T photodegradation kinetic by CdS/BiVO4 coupled catalyst. Mater. Res. Bull., 2022, 151, 111830.
[http://dx.doi.org/10.1016/j.materresbull.2022.111830]
[52]
Nezamzadeh-Ejhieh, A.; Banan, Z. Kinetic investigation of photocatalytic degradation of dimethyldisulfide by zeolite A containing nano CdS. Iran. J. Catal., 2021, 2, 77-81.
[53]
Nosuhi, M.; Nezamzadeh-Ejhieh, A. High catalytic activity of Fe(II)-clinoptilolite nanoparticales for indirect voltammetric determination of dichromate: Experimental design by response surface methodology (RSM). Electrochim. Acta, 2017, 223, 47-62.
[http://dx.doi.org/10.1016/j.electacta.2016.12.011]
[54]
Amani-Beni, Z.; Nezamzadeh-Ejhieh, A. A novel non-enzymatic glucose sensor based on the modification of carbon paste electrode with CuO nanoflower: Designing the experiments by response surface methodology (RSM). J. Colloid Interface Sci., 2017, 504, 186-196.
[http://dx.doi.org/10.1016/j.jcis.2017.05.049] [PMID: 28550749]
[55]
Derikvandi, H.; Nezamzadeh-Ejhieh, A. Designing of experiments for evaluating the interactions of influencing factors on the photocata-lytic activity of NiS and SnS2: Focus on coupling, supporting and nanoparticles. J. Colloid Interface Sci., 2017, 490, 628-641.
[http://dx.doi.org/10.1016/j.jcis.2016.11.102] [PMID: 27940030]
[56]
Amani-Beni, Z.; Nezamzadeh-Ejhieh, A. NiO nanoparticles modified carbon paste electrode as a novel sulfasalazine sensor. Anal. Chim. Acta, 2018, 1031, 47-59.
[http://dx.doi.org/10.1016/j.aca.2018.06.002] [PMID: 30119743]
[57]
Pei, L.Z.; Lin, F.F.; Qiu, F.L.; Wang, W.L.; Zhang, Y.; Fan, C.G. Formation of Ba bismuthate nanobelts and sensitive electrochemical de-termination of tartaric acid. Mater. Res. Express, 2017, 4(7), 075047.
[http://dx.doi.org/10.1088/2053-1591/aa7e04]
[58]
Pei, L.Z.; Wei, T.; Lin, N.; Cai, Z.Y.; Fan, C.G.; Yang, Z. Synthesis of zinc bismuthate nanorods and electrochemical performance for sensitive determination of L-cysteine. J. Electrochem. Soc., 2016, 163(2), H1-H8.
[http://dx.doi.org/10.1149/2.0041602jes]
[59]
Ghattavi, S.; Nezamzadeh-Ejhieh, A. A visible light driven AgBr/g-C3N4 photocatalyst composite in methyl orange photodegradation: Fo-cus on photoluminescence, mole ratio, synthesis method of g-C3N4 and scavengers. Compos., Part B Eng., 2020, 183, 107712.
[http://dx.doi.org/10.1016/j.compositesb.2019.107712]
[60]
Derikvandi, H.; Nezamzadeh-Ejhieh, A. Increased photocatalytic activity of NiO and ZnO in photodegradation of a model drug aqueous solution: Effect of coupling, supporting, particles size and calcination temperature. J. Hazard. Mater., 2017, 321, 629-638.
[http://dx.doi.org/10.1016/j.jhazmat.2016.09.056] [PMID: 27694027]
[61]
Chaudhari, S.M.; Gonsalves, O.S.; Nemade, P.R. Enhanced photocatalytic degradation of Diclofenac with AgI/CeO2: A comparison with Mn, Cu and Ag-doped CeO2. Mater. Res. Bull., 2021, 143, 111463.
[http://dx.doi.org/10.1016/j.materresbull.2021.111463]
[62]
Ghattavi, S.; Nezamzadeh-Ejhieh, A. A brief study on the boosted photocatalytic activity of AgI/WO3/ZnO in the degradation of Methylene Blue under visible light irradiation. Desal. Water Treat., 2019, 166, 92-104.
[http://dx.doi.org/10.5004/dwt.2019.24638]
[63]
Omrani, N.; Nezamzadeh-Ejhieh, A. A comprehensive study on the mechanism pathways and scavenging agents in the photocatalytic activity of BiVO4/WO3 nano-composite. J. Water Process Eng., 2020, 33, 101094.
[http://dx.doi.org/10.1016/j.jwpe.2019.101094]
[64]
Yao, S.Y.; Zheng, R.F.; Li, R.; Chen, Y.Q.; Zhou, X.S.; Luo, J. Construction of Z-scheme LaNiO3/SnS2 composite for boosting visible light photodegradation of tetracycline. J. Taiwan Inst. Chem. Eng., 2019, 100, 186-193.
[http://dx.doi.org/10.1016/j.jtice.2019.04.021]
[65]
Pirhashemi, M.; Habibi-Yangjeh, A. Ultrasonic-assisted preparation of plasmonic ZnO/Ag/Ag2WO4 nanocomposites with high visible-light photocatalytic performance for degradation of organic pollutants. J. Colloid Interface Sci., 2017, 491, 216-229.
[http://dx.doi.org/10.1016/j.jcis.2016.12.044] [PMID: 28033518]
[66]
Wang, T.; Quan, W.; Jiang, D.; Chen, L.; Li, D.; Meng, S.; Chen, M. Synthesis of redoxmediator-free direct Z-scheme AgI/WO3 nanocom-posite photocatalysts for the degradation of tetracycline with enhanced photocatalytic activity. Chem. Eng. J., 2016, 300, 280-290.
[http://dx.doi.org/10.1016/j.cej.2016.04.128]
[67]
Puneetha, J.; Nagaraju, K.; Rathna, A. Investigation of photocatalytic degradation of crystal violet and its correlation with bandgap in ZnO and ZnO/GO nanhybrid. Inorg. Chem. Commun., 2021, 125, 108460.
[http://dx.doi.org/10.1016/j.inoche.2021.108460]
[68]
Omrani, N.; Nezamzadeh-Ejhieh, A. A ternary Cu2O/BiVO4/WO3 nano-composite: Scavenging agents and the mechanism pathways in the photodegradation of sulfasalazine. J. Mol. Liq., 2020, 315, 113701.
[http://dx.doi.org/10.1016/j.molliq.2020.113701]
[69]
Rezaei, M.; Nezamzadeh-Ejhieha, A. The ZnO-NiO nano-composite: A brief characterization, kinetic and thermodynamic study and study the Arrhenius model on the sulfasalazine photodegradation. Int. J. Hydrogen Energy, 2020, 45(46), 24749-24764.
[http://dx.doi.org/10.1016/j.ijhydene.2020.06.258]
[70]
Ullah, R.; Sun, J.H.; Gul, A.; Bai, S.Y. One-step hydrothermal synthesis of TiO2-supported clinoptilolite: An integrated photocatalytic adsorbent for removal of crystal violet dye from aqueous media. J. Environ. Chem. Eng., 2020, 8(4), 103852.
[http://dx.doi.org/10.1016/j.jece.2020.103852]
[71]
Omrani, N.; Nezamzadeh-Ejhieh, A. Focus on scavengers’ effects and GC-MASS analysis of photodegradation intermediates of sulfasala-zine by Cu2O/CdS nanocomposite. Separ. Purif. Tech., 2020, 235, 116228.
[http://dx.doi.org/10.1016/j.seppur.2019.116228]
[72]
Mirsalari, S.A.; Nezamzadeh-Ejhieh, A. Focus on the photocatalytic pathway of the CdS-AgBr nano-catalyst by using the scavenging agents. Separ. Purif. Tech., 2020, 250, 117235.
[http://dx.doi.org/10.1016/j.seppur.2020.117235]
[73]
Ghattavi, S.; Nezamzadeh-Ejhieh, A. GC-MASS detection of methyl orange degradation intermediates by AgBr/g-C3N4: Experimental de-sign, bandgap study, and characterization of the catalyst. Int. J. Hydrogen Energy, 2020, 45(46), 24636-24656.
[http://dx.doi.org/10.1016/j.ijhydene.2020.06.207]
[74]
Omrani, N.; Nezamzadeh-Ejhieh, A. Photodegradation of sulfasalazine over Cu2O-BiVO4-WO3 nano-composite: Characterization and ex-perimental design. Int. J. Hydrogen Energy, 2020, 45(38), 19144-19162.
[http://dx.doi.org/10.1016/j.ijhydene.2020.05.019]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy