Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Alzheimer’s Disease: Treatment of Multi-Factorial Disorders with Multi- Target Approach

Author(s): Baljit Kaur, Vivesh and Palwinder Singh*

Volume 23, Issue 4, 2023

Published on: 21 September, 2022

Page: [380 - 398] Pages: 19

DOI: 10.2174/1389557522666220701112048

Price: $65

conference banner
Abstract

Alzheimer’s Disease (AD) is a common neurodegenerative disorder that is almost incurable with the existing therapeutic interventions. Due to the high-risk factors associated with this disease, there is a global pursuit of new anti-AD agents. Herein, we explore the biochemical pathways which are responsible for the initiation/propagation of the disease. It is observed that out of the two isoforms of β-secretase, β-site amyloid precursor protein cleaving enzyme 1 (BACE1) and β-site amyloid precursor protein cleaving enzyme 2 (BACE2) present in the brain, BACE1 plays the predominant role in the commencement of AD. Moreover, the catalytic activities of acetylcholinesterase and butyrylcholinesterase regulate the concentration of neurotransmitters, and they are needed to be kept under control during the signs of AD. Hence, these two enzymes also serve as potential targets for the treatment of AD patients. Keeping in view the multifactorial nature of the disease, we also reviewed the multitarget approach for the treatment of AD. It is tried to identify the common structural features of those molecules which act on different cellular targets during AD therapy.

Keywords: Multi-factorial disease, biochemistry of alzheimer’s disease, Amyloid precursor protein; beta-site APP cleaving enzyme, neurotransmitters, multi-target inhibitors.

Graphical Abstract

[1]
Taylor, P.; Brown, J.H. Acetylcholine In: Basic Neurochemistry: Molecular, Cellular and Medical Aspects, 6th Ed; Albers, R.W.; Siegel, G.J.; Katzman, R; Agranoff, B.W., Eds.; Lippincott-Raven Publishers: Philadelphia, 1999.
[2]
World Health Organization. Global action plan on the public health response to dementia 2017 - 2025 Available from: http://www.who.int/mental_health/neurology/dementia/action_plan_2017_2025/en/ (Accessed November 25, 2020).
[3]
Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; Costafreda, S.G.; Dias, A.; Fox, N.; Gitlin, L.N.; Howard, R.; Kales, H.C.; Kivimäki, M.; Larson, E.B.; Ogunniyi, A.; Orgeta, V.; Ritchie, K.; Rockwood, K.; Sampson, E.L.; Samus, Q.; Schneider, L.S.; Selbæk, G.; Teri, L.; Mukadam, N. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet, 2020, 396(10248), 413-446.
[http://dx.doi.org/10.1016/S0140-6736(20)30367-6] [PMID: 32738937]
[4]
Francis, P.T. The interplay of neurotransmitters in Alzheimer’s disease. CNS Spectr., 2005, 10(11)(Suppl. 18), 6-9.
[http://dx.doi.org/10.1017/S1092852900014164] [PMID: 16273023]
[5]
Rodrigues, R.; Petersen, R.B.; Perry, G. Parallels between major depressive disorder and Alzheimer’s disease: Role of oxidative stress and genetic vulnerability. Cell. Mol. Neurobiol., 2014, 34(7), 925-949.
[http://dx.doi.org/10.1007/s10571-014-0074-5] [PMID: 24927694]
[6]
Biringer, R.G. The role of eicosanoids in Alzheimer’s disease. Int. J. Environ. Res. Public Health, 2019, 16(14), 1-33.
[http://dx.doi.org/10.3390/ijerph16142560] [PMID: 31323750]
[7]
Felger, J.C.; Lotrich, F.E. Inflammatory cytokines in depression: Neurobiological mechanisms and therapeutic implications. Neuroscience, 2013, 246, 199-229.
[http://dx.doi.org/10.1016/j.neuroscience.2013.04.060] [PMID: 23644052]
[8]
Long, J.M.; Holtzman, D.M. Alzheimer Disease: An update on pathobiology and treatment strategies. Cell, 2019, 179(2), 312-339.
[http://dx.doi.org/10.1016/j.cell.2019.09.001] [PMID: 31564456]
[9]
Chakraborty, A.; Diwan, A. Alzheimer and it’s possible therapy: A review. J. Exp. Neurol., 2020, 1, 115-122.
[10]
Calabrò, M.; Rinaldi, C.; Santoro, G.; Crisafulli, C. The biological pathways of Alzheimer disease: A review. AIMS Neurosci., 2020, 8(1), 86-132.
[http://dx.doi.org/10.3934/Neuroscience.2021005] [PMID: 33490374]
[11]
NIA alzheimer’s and related dementias education and referral (ADEAR) center Available from: www.nia.nih.gov/alzheimers (Accessed on: 26 June 2021).
[12]
Cai, Y.; An, S.S.; Kim, S. Mutations in Presenilin 2 and its implications in Alzheimer’s disease and other dementia-associated disorders. Clin. Interv. Aging, 2015, 10, 1163-1172.
[PMID: 26203236]
[13]
O’Brien, R.J.; Wong, P.C. Amyloid precursor protein processing and Alzheimer’s disease. Annu. Rev. Neurosci., 2011, 34(1), 185-204.
[http://dx.doi.org/10.1146/annurev-neuro-061010-113613] [PMID: 21456963]
[14]
Priller, C.; Bauer, T.; Mitteregger, G.; Krebs, B.; Kretzschmar, H.A.; Herms, J. Synapse formation and function is modulated by the amyloid precursor protein. J. Neurosci., 2006, 26(27), 7212-7221.
[http://dx.doi.org/10.1523/JNEUROSCI.1450-06.2006] [PMID: 16822978]
[15]
Turner, P.R.; O’Connor, K.; Tate, W.P.; Abraham, W.C. Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog. Neurobiol., 2003, 70(1), 1-32.
[http://dx.doi.org/10.1016/S0301-0082(03)00089-3] [PMID: 12927332]
[16]
Soscia, S.J.; Kirby, J.E.; Washicosky, K.J.; Tucker, S.M.; Ingelsson, M.; Hyman, B.; Burton, M.A.; Goldstein, L.E.; Duong, S.; Tanzi, R.E.; Moir, R.D. The Alzheimer’s disease-associated amyloid β-protein is an antimicrobial peptide. PLoS One, 2010, 5(3), e9505.
[http://dx.doi.org/10.1371/journal.pone.0009505] [PMID: 20209079]
[17]
Duce, J.A.; Tsatsanis, A.; Cater, M.A.; James, S.A.; Robb, E.; Wikhe, K.; Leong, S.L.; Perez, K.; Johanssen, T.; Greenough, M.A.; Cho, H.H.; Galatis, D.; Moir, R.D.; Masters, C.L.; McLean, C.; Tanzi, R.E.; Cappai, R.; Barnham, K.J.; Ciccotosto, G.D.; Rogers, J.T.; Bush, A.I. Iron-export ferroxidase activity of β-amyloid precursor protein is inhibited by zinc in Alzheimer’s disease. Cell, 2010, 142(6), 857-867.
[http://dx.doi.org/10.1016/j.cell.2010.08.014] [PMID: 20817278]
[18]
Zheng, H.; Koo, E.H. Biology and pathophysiology of the amyloid precursor protein. Mol. Neurodegener., 2011, 6(1), 27.
[http://dx.doi.org/10.1186/1750-1326-6-27] [PMID: 21527012]
[19]
MacLeod, R.; Hillert, E.K.; Cameron, R.T.; Baillie, G.S. The role and therapeutic targeting of α-, β- and γ-secretase in Alzheimer’s disease. Future Sci. OA, 2015, 1(3), FSO11.
[http://dx.doi.org/10.4155/fso.15.9] [PMID: 28031886]
[20]
Korabecny, J.; Spilovska, K.; Soukup, O.; Spilovska, K.; Soukup, O.; Dolezal, R.; Kuca, K. Amyloid beta beta hypothesis: Attention to β- and γ- secretase modulators In: Alzheimer’s Disease - The 21st Century Challenge;; Dorszewska, J; Kozubski, W, Eds.; , 2018; pp. 1-20.
[21]
Murphy, M.P.; LeVine, H. III Alzheimer’s disease and the amyloid-β peptide. J. Alzheimers Dis., 2010, 19(1), 311-323.
[http://dx.doi.org/10.3233/JAD-2010-1221] [PMID: 20061647]
[22]
Ahmed, R.R.; Holler, C.J.; Webb, R.L.; Li, F.; Beckett, T.L.; Murphy, M.P. BACE1 and BACE2 enzymatic activities in Alzheimer’s disease. J. Neurochem., 2010, 112(4), 1045-1053.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06528.x] [PMID: 19968762]
[23]
Albert, J.S. Progress in the Development of β-Secretase Inhibitors for Alzheimer’s Disease. Progress in Medicinal Chemistry, 2009, 48, 133-161.
[24]
Scott, J.D.; Stamford, A.W.; Gilbert, E.J.; Cumming, J.N. Iminothiadiazine dioxide compounds as BACE inhibitors, compositions and their use. U.S. Patent 8729071B2, May 20, 2014.
[25]
Maia, M.A.; Sousa, E. BACE-1 and γ-secretase as therapeutic targets for Alzheimer’s disease. Pharmaceuticals (Basel), 2019, 12(1), 41.
[http://dx.doi.org/10.3390/ph12010041] [PMID: 30893882]
[26]
Egan, M.F.; Kost, J.; Voss, T.; Mukai, Y.; Aisen, P.S.; Cummings, J.L.; Tariot, P.N.; Vellas, B.; van Dyck, C.H.; Boada, M.; Zhang, Y.; Li, W.; Furtek, C.; Mahoney, E.; Harper Mozley, L.; Mo, Y.; Sur, C.; Michelson, D. Randomized trial of verubecestat for prodromal Alzheimer’s disease. N. Engl. J. Med., 2019, 380(15), 1408-1420.
[http://dx.doi.org/10.1056/NEJMoa1812840] [PMID: 30970186]
[27]
Scott, J.D.; Li, S.W.; Brunskill, A.P.J.; Chen, X.; Cox, K.; Cumming, J.N.; Forman, M.; Gilbert, E.J.; Hodgson, R.A.; Hyde, L.A.; Jiang, Q.; Iserloh, U.; Kazakevich, I.; Kuvelkar, R.; Mei, H.; Meredith, J.; Misiaszek, J.; Orth, P.; Rossiter, L.M.; Slater, M.; Stone, J.; Strickland, C.O.; Voigt, J.H.; Wang, G.; Wang, H.; Wu, Y.; Greenlee, W.J.; Parker, E.M.; Kennedy, M.E.; Stamford, A.W. Discovery of the 3-imino-1,2,4-thiadiazinane 1,1-dioxide derivative verubecestat (MK-8931)-Aβ-site amyloid precursor protein cleaving enzyme 1 inhibitor for the treatment of Alzheimer’s disease. J. Med. Chem., 2016, 59(23), 10435-10450.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00307] [PMID: 27933948]
[28]
Jeppsson, F.; Eketjäll, S.; Janson, J.; Karlström, S.; Gustavsson, S.; Olsson, L.L.; Radesäter, A.C.; Ploeger, B.; Cebers, G.; Kolmodin, K.; Swahn, B.M.; von Berg, S.; Bueters, T.; Fälting, J. Discovery of AZD3839, a potent and selective BACE1 inhibitor clinical candidate for the treatment of Alzheimer disease. J. Biol. Chem., 2012, 287(49), 41245-41257.
[http://dx.doi.org/10.1074/jbc.M112.409110] [PMID: 23048024]
[29]
Neumann, U.; Ufer, M.; Jacobson, L.H.; Rouzade-Dominguez, M.L.; Huledal, G.; Kolly, C.; Lüönd, R.M.; Machauer, R.; Veenstra, S.J.; Hurth, K.; Rueeger, H.; Tintelnot-Blomley, M.; Staufenbiel, M.; Shimshek, D.R.; Perrot, L.; Frieauff, W.; Dubost, V.; Schiller, H.; Vogg, B.; Beltz, K.; Avrameas, A.; Kretz, S.; Pezous, N.; Rondeau, J.M.; Beckmann, N.; Hartmann, A.; Vormfelde, S.; David, O.J.; Galli, B.; Ramos, R.; Graf, A.; Lopez Lopez, C. The BACE-1 inhibitor CNP520 for prevention trials in Alzheimer’s disease. EMBO Mol. Med., 2018, 10(11), e9316.
[http://dx.doi.org/10.15252/emmm.201809316] [PMID: 30224383]
[30]
Adis Insight. Available from: https://adisinsight.springer.com/trials/700198352 (Accessed on 26 June 2021).
[31]
Eketjäll, S.; Janson, J.; Kaspersson, K.; Bogstedt, A.; Jeppsson, F.; Fälting, J.; Haeberlein, S.B.; Kugler, A.R.; Alexander, R.C.; Cebers, G. AZD3293: A novel, orally active BACE1 inhibitor with high potency and permeability and markedly slow off-rate kinetics. J. Alzheimers Dis., 2016, 50(4), 1109-1123.
[http://dx.doi.org/10.3233/JAD-150834] [PMID: 26890753]
[32]
Wessels, A.M.; Tariot, P.N.; Zimmer, J.A.; Selzler, K.J.; Bragg, S.M.; Andersen, S.W.; Landry, J.; Krull, J.H.; Downing, A.M.; Willis, B.A.; Shcherbinin, S.; Mullen, J.; Barker, P.; Schumi, J.; Shering, C.; Matthews, B.R.; Stern, R.A.; Vellas, B.; Cohen, S.; MacSweeney, E.; Boada, M.; Sims, J.R. Efficacy and safety of lanabecestat for treatment of early and mild alzheimer disease: The AMARANTH and DAYBREAK-ALZ randomized clinical trials. JAMA Neurol., 2020, 77(2), 199-209.
[http://dx.doi.org/10.1001/jamaneurol.2019.3988] [PMID: 31764959]
[33]
Ye, N.; Monk, S.A.; Daga, P.; Bender, D.M.; Rosen, L.B.; Mullen, J.; Minkwitz, M.C.; Kugler, A.R. Clinical bioavailability of the novel BACE1 inhibitor lanabecestat (azd3293): Assessment of tablet formulations versus an oral solution and the impact of gastric pH on pharmacokinetics. Clin. Pharmacol. Drug Dev., 2018, 7(3), 233-243.
[http://dx.doi.org/10.1002/cpdd.422] [PMID: 29319935]
[34]
Timmers, M.; Streffer, J.R.; Russu, A.; Tominaga, Y.; Shimizu, H.; Shiraishi, A.; Tatikola, K.; Smekens, P.; Börjesson-Hanson, A.; Andreasen, N.; Matias-Guiu, J.; Baquero, M.; Boada, M.; Tesseur, I.; Tritsmans, L.; Van Nueten, L.; Engelborghs, S. Pharmacodynamics of atabecestat (JNJ-54861911), an oral BACE1 inhibitor in patients with early Alzheimer’s disease: Randomized, double-blind, placebo-controlled study. Alzheimers Res. Ther., 2018, 10(1), 85.
[http://dx.doi.org/10.1186/s13195-018-0415-6] [PMID: 30134967]
[35]
Yan, R. Stepping closer to treating Alzheimer’s disease patients with BACE1 inhibitor drugs. Transl. Neurodegener., 2016, 5(1), 13.
[http://dx.doi.org/10.1186/s40035-016-0061-5] [PMID: 27418961]
[36]
Novak, G.; Streffer, J.R.; Timmers, M.; Henley, D.; Brashear, H.R.; Bogert, J.; Russu, A.; Janssens, L.; Tesseur, I.; Tritsmans, L.; Van Nueten, L.; Engelborghs, S. Long-term safety and tolerability of atabecestat (JNJ-54861911), an oral BACE1 inhibitor, in early Alzheimer’s disease spectrum patients: A randomized, double-blind, placebo-controlled study and a two-period extension study. Alzheimers Res. Ther., 2020, 12(1), 58.
[http://dx.doi.org/10.1186/s13195-020-00614-5] [PMID: 32410694]
[37]
Oehlrich, D.; Prokopcova, H.; Gijsen, H.J.M. The evolution of amidine-based brain penetrant BACE1 inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(9), 2033-2045.
[http://dx.doi.org/10.1016/j.bmcl.2014.03.025] [PMID: 24704031]
[38]
Eisai. Eisai and biogen to discontinue phase III clinical studies of BACE inhibitor elenbecestat in early Alzheimer’s disease. Available from: https://eisai.mediaroom.com/2019-09-13-Eisai-And-Biogen-To-Discontinue-Phase-III-Clinical-Studies-Of-BACE-Inhibitor-Elenbecestat-In-Early-Alzheimers-Disease (Accessed on June 26, 2020).
[39]
Lopez Lopez, C.; Tariot, P.N.; Caputo, A.; Langbaum, J.B.; Liu, F.; Riviere, M.E.; Langlois, C.; Rouzade-Dominguez, M.L.; Zalesak, M.; Hendrix, S.; Thomas, R.G.; Viglietta, V.; Lenz, R.; Ryan, J.M.; Graf, A.; Reiman, E.M. The Alzheimer’s prevention initiative generation program: Study design of two randomized controlled trials for individuals at risk for clinical onset of Alzheimer’s disease. Alzheimers Dement. (N. Y.), 2019, 5(1), 216-227.
[http://dx.doi.org/10.1016/j.trci.2019.02.005] [PMID: 31211217]
[40]
Lane, R.M.; Potkin, S.G.; Enz, A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int. J. Neuropsychopharmacol., 2006, 9(1), 101-124.
[http://dx.doi.org/10.1017/S1461145705005833] [PMID: 16083515]
[41]
Encyclopaedia Britannica. Available from: https://www.britannica.com/science/acetylcholine (Accessed on June 26, 2020).
[42]
Webster, R.A. Neurotransmitters, drugs and brain function. In: Neurotransmitters, Drugs and Brain Function; Webster, R., Ed.; John Wiley & Sons Ltd: London, UK, 2001; pp. 117-136.
[http://dx.doi.org/10.1002/0470846577.ch6]
[43]
Augustine, G.J. Synaptic transmission. In: Neuroscience; Purves, D.; Augustine, G.J.; Fitzpatrick, D.; Hall, W.C.; Lamantia, A.; McNamara, J.O.; Williams, S.M., Eds.; Sunderland, Massachusetts, U.S.A., 2019; pp. 93-127.
[44]
Hirsch, N.P. Neuromuscular junction in health and disease. Br. J. Anaesth., 2007, 99(1), 132-138.
[http://dx.doi.org/10.1093/bja/aem144] [PMID: 17573397]
[45]
Kryger, G.; Silman, I.; Sussman, J.L. Structure of acetylcholinesterase complexed with E2020 (Aricept): Implications for the design of new anti-Alzheimer drugs. Structure, 1999, 7(3), 297-307.
[http://dx.doi.org/10.1016/S0969-2126(99)80040-9] [PMID: 10368299]
[46]
Tripathi, A.; Srivastava, U. Acetylcholinesterase: A versatile enzyme of nervous system. Ann. Neurosci., 2008, 15(4), 106-111.
[http://dx.doi.org/10.5214/ans.0972.7531.2008.150403]
[47]
Bourne, Y.; Taylor, P. Radić Z.; Marchot, P. Structural insights into ligand interactions at the acetylcholinesterase peripheral anionic site. EMBO J., 2003, 22(1), 1-12.
[http://dx.doi.org/10.1093/emboj/cdg005] [PMID: 12505979]
[48]
Brandon, E.P.; Mellott, T.; Pizzo, D.P.; Coufal, N.; D’Amour, K.A.; Gobeske, K.; Lortie, M.; López-Coviella, I.; Berse, B.; Thal, L.J.; Gage, F.H.; Blusztajn, J.K. Choline transporter 1 maintains cholinergic function in choline acetyltransferase haploinsufficiency. J. Neurosci., 2004, 24(24), 5459-5466.
[http://dx.doi.org/10.1523/JNEUROSCI.1106-04.2004] [PMID: 15201317]
[49]
Meriney, S.D.; Fanselow, E.E. Acetylcholine. In: Synaptic Transmission; Meriney, S.D.; Fanselow, E.E., Eds.; Elsevier Science: Amsterdam, Netherlands, 2019; pp. 345-367.
[http://dx.doi.org/10.1016/B978-0-12-815320-8.00016-8]
[50]
Jarrott, B. Tacrine: In vivo veritas. Pharmacol. Res., 2017, 116, 29-31.
[http://dx.doi.org/10.1016/j.phrs.2016.12.033] [PMID: 28040533]
[51]
Chufarova, N.; Czarnecka, K. Skibiński, R.; Cuchra, M.; Majsterek, I.; Szymański, P. New tacrine-acridine hybrids as promising multifunctional drugs for potential treatment of Alzheimer’s disease. Arch. Pharm. (Weinheim), 2018, 351(7), e1800050.
[http://dx.doi.org/10.1002/ardp.201800050] [PMID: 29870588]
[52]
Harel, M.; Schalk, I.; Ehret-Sabatier, L.; Bouet, F.; Goeldner, M.; Hirth, C.; Axelsen, P.H.; Silman, I.; Sussman, J.L. Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc. Natl. Acad. Sci. USA, 1993, 90(19), 9031-9035.
[http://dx.doi.org/10.1073/pnas.90.19.9031] [PMID: 8415649]
[53]
Mo, J.Y.; Ryoo, J.P. Transdermal drug delivery system containing rivastigmine. US. Patent 2014152454A1, September 25, 2014.
[54]
Bar-On, P.; Millard, C.B.; Harel, M.; Dvir, H.; Enz, A.; Sussman, J.L.; Silman, I. Kinetic and structural studies on the interaction of cholinesterases with the anti-Alzheimer drug rivastigmine. Biochemistry, 2002, 41(11), 3555-3564.
[http://dx.doi.org/10.1021/bi020016x] [PMID: 11888271]
[55]
Müller, T. Rivastigmine in the treatment of patients with Alzheimer’s disease. Neuropsychiatr. Dis. Treat., 2007, 3(2), 211-218.
[http://dx.doi.org/10.2147/nedt.2007.3.2.211] [PMID: 19300554]
[56]
Cheung, J.; Rudolph, M.J.; Burshteyn, F.; Cassidy, M.S.; Gary, E.N.; Love, J.; Franklin, M.C.; Height, J.J. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J. Med. Chem., 2012, 55(22), 10282-10286.
[http://dx.doi.org/10.1021/jm300871x] [PMID: 23035744]
[57]
Lee, E.S.; Jain, A.K.; Singh, P. Donepezil transdermal delivery system. US. Patent 2018022817A1, February 1, 2018.
[58]
Brodaty, H.; Corey-Bloom, J.; Potocnik, F.C.V.; Truyen, L.; Gold, M.; Damaraju, C.R.V. Galantamine prolonged-release formulation in the treatment of mild to moderate Alzheimer’s disease. Dement. Geriatr. Cogn. Disord., 2005, 20(2-3), 120-132.
[http://dx.doi.org/10.1159/000086613] [PMID: 15990426]
[59]
Liu, M.Y.; Meng, S.N.; Wu, H.Z.; Wang, S.; Wei, M-J. Pharmacokinetics of single-dose and multiple-dose memantine in healthy Chinese volunteers using an analytic method of liquid chromatography-tandem mass spectrometry. Clin. Ther., 2008, 30(4), 641-653.
[http://dx.doi.org/10.1016/j.clinthera.2008.04.005] [PMID: 18498913]
[60]
Han, J.; Ji, Y.; Youn, K.; Lim, G.; Lee, J.; Kim, D.H.; Jun, M. Baicalein as a potential inhibitor against BACE1 and AChE: Mechanistic comprehension through in vitro and computational approaches. Nutrients, 2019, 11(11), 1-11.
[http://dx.doi.org/10.3390/nu11112694] [PMID: 31703329]
[61]
Agbo, E.N.; Gildenhuys, S.; Choong, Y.S.; Mphahlele, M.J.; More, G.K. Synthesis of furocoumarin-stilbene hybrids as potential multifunctional drugs against multiple biochemical targets associated with Alzheimer’s disease. Bioorg. Chem., 2020, 101, 103997.
[http://dx.doi.org/10.1016/j.bioorg.2020.103997] [PMID: 32554280]
[62]
Rastegari, A.; Nadri, H.; Mahdavi, M.; Moradi, A.; Mirfazli, S.S.; Edraki, N.; Moghadam, F.H.; Larijani, B.; Akbarzadeh, T.; Saeedi, M. Design, synthesis and anti-Alzheimer’s activity of novel 1,2,3-triazole-chromenone carboxamide derivatives. Bioorg. Chem., 2019, 83, 391-401.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.065] [PMID: 30412794]
[63]
Pachón-Angona, I.; Refouvelet, B.; Andrýs, R.; Martin, H.; Luzet, V.; Iriepa, I.; Moraleda, I.; Diez-Iriepa, D.; Oset-Gasque, M.J.; Marco-Contelles, J.; Musilek, K.; Ismaili, L. Donepezil + chromone + melatonin hybrids as promising agents for Alzheimer’s disease therapy. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 479-489.
[http://dx.doi.org/10.1080/14756366.2018.1545766] [PMID: 30712420]
[64]
Sang, Z.; Wang, K.; Shi, J.; Liu, W.; Cheng, X.; Zhu, G.; Wang, Y.; Zhao, Y.; Qiao, Z.; Wu, A.; Tan, Z. The development of advanced structural framework as multi-target-directed ligands for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2020, 192, 112180.
[http://dx.doi.org/10.1016/j.ejmech.2020.112180] [PMID: 32131034]
[65]
Sang, Z.; Wang, K.; Shi, J.; Cheng, X.; Zhu, G.; Wei, R.; Ma, Q.; Yu, L.; Zhao, Y.; Tan, Z.; Liu, W. Apigenin-rivastigmine hybrids as multi-target-directed liagnds for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2020, 187, 111958.
[http://dx.doi.org/10.1016/j.ejmech.2019.111958] [PMID: 31865014]
[66]
Wang, X.B.; Yin, F.C.; Huang, M.; Jiang, N.; Lan, J.S.; Kong, L.Y. Chromone and donepezil hybrids as new multipotent cholinesterase and monoamine oxidase inhibitors for the potential treatment of Alzheimer’s disease. RSC Med. Chem., 2020, 11(2), 225-233.
[http://dx.doi.org/10.1039/C9MD00441F] [PMID: 33479629]
[67]
Fernández-Bachiller, M.I.; Pérez, C.; Monjas, L.; Rademann, J.; Rodríguez-Franco, M.I. New tacrine-4-oxo-4H-chromene hybrids as multifunctional agents for the treatment of Alzheimer’s disease, with cholinergic, antioxidant, and β-amyloid-reducing properties. J. Med. Chem., 2012, 55(3), 1303-1317.
[http://dx.doi.org/10.1021/jm201460y] [PMID: 22243648]
[68]
Mphahlele, M.J.; Gildenhuys, S.; Agbo, E.N. In vitro evaluation and docking studies of 5-oxo-5H-furo[3,2-g]chromene-6-carbaldehyde derivatives as potential anti-Alzheimer’s agents. Int. J. Mol. Sci., 2019, 20(21), 5451.
[http://dx.doi.org/10.3390/ijms20215451] [PMID: 31683761]
[69]
Li, Y.; Qiang, X.; Luo, L.; Yang, X.; Xiao, G.; Zheng, Y.; Cao, Z.; Sang, Z.; Su, F.; Deng, Y. Multitarget drug design strategy against Alzheimer’s disease: Homoisoflavonoid Mannich base derivatives serve as acetylcholinesterase and monoamine oxidase B dual inhibitors with multifunctional properties. Bioorg. Med. Chem., 2017, 25(2), 714-726.
[http://dx.doi.org/10.1016/j.bmc.2016.11.048] [PMID: 27923535]
[70]
Deng, Y.; Jiang, Y.; Zhao, X.; Wang, J. Design, synthesize and bio-evaluate 1,2-dihydroisoquinolin-3(4h)-one derivates as acetylcholinesterase and β-secretase dual inhibitors in treatment with Alzheimer’s disease. J. Biosci. Med., 2016, 04, 112-123.
[71]
Nuthakki, V.K.; Sharma, A.; Kumar, A.; Bharate, S.B. Identification of embelin, a 3-undecyl-1,4-benzoquinone from Embelia ribes as a multitargeted anti-Alzheimer agent. Drug Dev. Res., 2019, 80(5), 655-665.
[http://dx.doi.org/10.1002/ddr.21544] [PMID: 31050027]
[72]
Green, K.D.; Fosso, M.Y.; Garneau-Tsodikova, S. Multifunctional donepezil analogues as cholinesterase and BACE1 inhibitors. Molecules, 2018, 23(12), 1-22.
[http://dx.doi.org/10.3390/molecules23123252] [PMID: 30544832]
[73]
Wichur, T.; Pasieka, A. Godyń J.; Panek, D.; Góral, I.; Latacz, G.; Honkisz-Orzechowska, E.; Bucki, A.; Siwek, A.; Głuch-Lutwin, M.; Knez, D.; Brazzolotto, X.; Gobec, S.; Kołaczkowski, M.; Sabate, R.; Malawska, B.; Więckowska, A. Discovery of 1-(phenylsulfonyl)-1H-indole-based multifunctional ligands targeting cholinesterases and 5-HT6 receptor with anti-aggregation properties against amyloid-beta and tau. Eur. J. Med. Chem., 2021, 225, 113783.
[http://dx.doi.org/10.1016/j.ejmech.2021.113783] [PMID: 34461507]
[74]
Lalut, J.; Santoni, G.; Karila, D.; Lecoutey, C.; Davis, A.; Nachon, F.; Silman, I.; Sussman, J.; Weik, M.; Maurice, T.; Dallemagne, P.; Rochais, C. Novel multitarget-directed ligands targeting acetylcholinesterase and σ1 receptors as lead compounds for treatment of Alzheimer’s disease: Synthesis, evaluation, and structural characterization of their complexes with acetylcholinesterase. Eur. J. Med. Chem., 2019, 162, 234-248.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.064] [PMID: 30447434]
[75]
Mo, J.; Chen, T.; Yang, H.; Guo, Y.; Li, Q.; Qiao, Y.; Lin, H.; Feng, F.; Liu, W.; Chen, Y.; Liu, Z.; Sun, H. Design, synthesis, in vitro and in vivo evaluation of benzylpiperidine-linked 1,3-dimethylbenzimidazolinones as cholinesterase inhibitors against Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 330-343.
[http://dx.doi.org/10.1080/14756366.2019.1699553] [PMID: 31856607]
[76]
Pérez-Areales, F.J.; Garrido, M.; Aso, E.; Bartolini, M.; De Simone, A.; Espargaró, A.; Ginex, T.; Sabate, R.; Pérez, B.; Andrisano, V.; Puigoriol-Illamola, D.; Pallàs, M.; Luque, F.J.; Loza, M.I.; Brea, J.; Ferrer, I.; Ciruela, F.; Messeguer, A.; Muñoz-Torrero, D. Centrally active multitarget anti-Alzheimer agents derived from the antioxidant lead CR-6. J. Med. Chem., 2020, 63(17), 9360-9390.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00528] [PMID: 32706255]
[77]
Cen, J.; Guo, H.; Hong, C.; Lv, J.; Yang, Y.; Wang, T.; Fang, D.; Luo, W.; Wang, C. Development of tacrine-bifendate conjugates with improved cholinesterase inhibitory and pro-cognitive efficacy and reduced hepatotoxicity. Eur. J. Med. Chem., 2018, 144, 128-136.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.005] [PMID: 29268129]
[78]
Yao, H.; Uras, G.; Zhang, P.; Xu, S.; Yin, Y.; Liu, J.; Qin, S.; Li, X.; Allen, S.; Bai, R.; Gong, Q.; Zhang, H.; Zhu, Z.; Xu, J. Discovery of novel tacrine-pyrimidone hybrids as potent dual ache/gsk-3 inhibitors for the treatment of Alzheimer’s disease. J. Med. Chem., 2021, 64(11), 7483-7506.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00160] [PMID: 34024109]
[79]
Choubey, P.K.; Tripathi, A.; Sharma, P.; Shrivastava, S.K. Design, synthesis, and multitargeted profiling of N-benzylpyrrolidine derivatives for the treatment of Alzheimer’s disease. Bioorg. Med. Chem., 2020, 28(22), 115721.
[http://dx.doi.org/10.1016/j.bmc.2020.115721] [PMID: 33007563]
[80]
Lecoutey, C.; Hedou, D.; Freret, T.; Giannoni, P.; Gaven, F.; Since, M.; Bouet, V.; Ballandonne, C.; Corvaisier, S.; Malzert Fréon, A.; Mignani, S.; Cresteil, T.; Boulouard, M.; Claeysen, S.; Rochais, C.; Dallemagne, P. Design of donecopride, a dual serotonin subtype 4 receptor agonist/acetylcholinesterase inhibitor with potential interest for Alzheimer’s disease treatment. Proc. Natl. Acad. Sci. USA, 2014, 111(36), E3825-E3830.
[http://dx.doi.org/10.1073/pnas.1410315111] [PMID: 25157130]
[81]
Du, H.; Liu, X.; Xie, J.; Ma, F. Novel deoxyvasicinone–donepezil hybrids as potential multitarget drug candidates for Alzheimer’s disease. ACS Chem. Neurosci., 2019, 10(5), 2397-2407.
[http://dx.doi.org/10.1021/acschemneuro.8b00699] [PMID: 30720268]
[82]
Poliseno, V.; Chaves, S.; Brunetti, L.; Loiodice, F.; Carrieri, A.; Laghezza, A.; Tortorella, P.; Magalhães, J.D.; Cardoso, S.M.; Santos, M.A.; Piemontese, L. Derivatives of tenuazonic acid as potential new multi‐target anti‐Alzheimer’s disease agents. Biomolecules, 2021, 11(1), 111.
[http://dx.doi.org/10.3390/biom11010111] [PMID: 33467709]
[83]
Liu, T.; Chen, S.; Du, J.; Xing, S.; Li, R.; Li, Z. Design, synthesis, and biological evaluation of novel (4-(1,2,4-oxadiazol-5-yl)phenyl)-2-aminoacetamide derivatives as multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2022, 227, 113973.
[http://dx.doi.org/10.1016/j.ejmech.2021.113973] [PMID: 34752955]
[84]
Sakata, R.P.; Antoniolli, G.; Lancellotti, M.; Kawano, D.F.; Guimarães Barbosa, E.; Almeida, W.P. Synthesis and biological evaluation of 2′-Aminochalcone: A multi-target approach to find drug candidates to treat Alzheimer’s disease. Bioorg. Chem., 2020, 103, 104201.
[http://dx.doi.org/10.1016/j.bioorg.2020.104201] [PMID: 32890999]
[85]
Pan, W.; Hu, K.; Bai, P.; Yu, L.; Ma, Q.; Li, T.; Zhang, X.; Chen, C.; Peng, K.; Liu, W.; Sang, Z. Design, synthesis and evaluation of novel ferulic acid-memoquin hybrids as potential multifunctional agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2016, 26(10), 2539-2543.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.086] [PMID: 27072909]
[86]
Sang, Z.; Wang, K.; Bai, P.; Wu, A.; Shi, J.; Liu, W.; Zhu, G.; Wang, Y.; Lan, Y.; Chen, Z.; Zhao, Y.; Qiao, Z.; Wang, C.; Tan, Z. Design, synthesis and biological evaluation of novel O-carbamoyl ferulamide derivatives as multi-target-directed ligands for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2020, 194, 112265.
[http://dx.doi.org/10.1016/j.ejmech.2020.112265] [PMID: 32240904]
[87]
Blaikie, L.; Kay, G.; Kong Thoo Lin, P. Synthesis and in vitro evaluation of vanillin derivatives as multi-target therapeutics for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2020, 30(21), 127505.
[http://dx.doi.org/10.1016/j.bmcl.2020.127505] [PMID: 32822761]
[88]
Simoni, E.; Daniele, S.; Bottegoni, G.; Pizzirani, D.; Trincavelli, M.L.; Goldoni, L.; Tarozzo, G.; Reggiani, A.; Martini, C.; Piomelli, D.; Melchiorre, C.; Rosini, M.; Cavalli, A. Combining galantamine and memantine in multitargeted, new chemical entities potentially useful in Alzheimer’s disease. J. Med. Chem., 2012, 55(22), 9708-9721.
[http://dx.doi.org/10.1021/jm3009458] [PMID: 23033965]
[89]
Reggiani, A.M.; Simoni, E.; Caporaso, R.; Meunier, J.; Keller, E.; Maurice, T.; Minarini, A.; Rosini, M.; Cavalli, A. In vivo characterization of ARN14140, a memantine/galantamine-based multi-target compound for Alzheimer’s disease. Sci. Rep., 2016, 6(1), 33172.
[http://dx.doi.org/10.1038/srep33172] [PMID: 27609215]
[90]
Singhal, M.; Merino, V.; Rosini, M.; Cavalli, A.; Kalia, Y.N. controlled iontophoretic delivery in vitro and in vivo of ARN14140- A multitarget compound for Alzheimer’s disease. Mol. Pharm., 2019, 16(8), 3460-3468.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00252] [PMID: 31241959]
[91]
Prati, F.; De Simone, A.; Bisignano, P.; Armirotti, A.; Summa, M.; Pizzirani, D.; Scarpelli, R.; Perez, D.I.; Andrisano, V.; Perez-Castillo, A.; Monti, B.; Massenzio, F.; Polito, L.; Racchi, M.; Favia, A.D.; Bottegoni, G.; Martinez, A.; Bolognesi, M.L.; Cavalli, A. Multitarget drug discovery for Alzheimer’s disease: Triazinones as BACE-1 and GSK-3β Inhibitors. Angew. Chem., 2015, 127(5), 1598-1602.
[http://dx.doi.org/10.1002/ange.201410456]
[92]
Rodriguez, S.; Hug, C.; Todorov, P.; Moret, N.; Boswell, S.A.; Evans, K.; Zhou, G.; Johnson, N.T.; Hyman, B.T.; Sorger, P.K.; Albers, M.W.; Sokolov, A. Machine learning identifies candidates for drug repurposing in Alzheimer’s disease. Nat. Commun., 2021, 12(1), 1033.
[http://dx.doi.org/10.1038/s41467-021-21330-0] [PMID: 33589615]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy