Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

A Co-Encapsulation of Coenzyme Q10 and Curcumin in Liposomes Coated with Chitosan (Q10-Cur-Lip-Chi) with Enhanced Solubility and Stability for Good Release Performance and Antioxidative Activity

Author(s): Linjin Yu, Chuyan Chao, Qinglan Li, Songling Ye, Jiasen Lin, Shuling Zhong, Qiancheng Xuan, Kailin Xu* and Suqing Zhao*

Volume 20, Issue 9, 2023

Published on: 18 November, 2022

Page: [1391 - 1403] Pages: 13

DOI: 10.2174/1567201819666220630122755

Price: $65

conference banner
Abstract

Background: Coenzyme Q10 (Q10) is a powerful lipophilic antioxidant with poor solubility in aqueous media. Curcumin (Cur) is a natural polyphenolic phytochemical molecule with poor aqueous solubility. The liposome is an improved administration of drugs because it is biocompatible and permeable for nutraceutical delivery. Chitosan, a hydrophilic polymer, is often used as a polymer coating for its good biocompatible and biodegradable properties, and its relatively low toxicity level.

Methods: Q10 and Cur co-loaded liposomes coated with chitosan (Q10-Cur-Lip-Chi) were constructed. The co-encapsulation of Q10 and Cur in liposomes coated with chitosan was verified by TEM, DLS, DSC, FT-IR, and XRPD. The release profile and antioxidant activity of Q10-Cur-Lip-Chi were accessed.

Results: The particle size of Q10-Cur-Lip-Chi was about 1440 nm with narrow particle distribution. A satisfactory encapsulation efficiency (EE) of Q10 was about 98%, and 25% for that of Cur. Q10-Cur- Lip-Chi showed higher solubility and better pH resistance with 98.5% of Q10 and Cur retention at pH 7.0 - 9.0. Q10-Cur-Lip also showed great salt stability with a vesicle size change of less than 5%. PSof Q10-Cur-Lip-Chi changed less than 10% at 4°C of storage. Q10-Cur-Lip-Chi also exhibited a good controlled release profile with its accumulative release of less than 34% for Q10 and 30% for curcumin after 24 h. The Q10-Cur-Lip-Chi performed a synergistic effect on antioxidant activity reaching 41.86±1.84%, which was 5.9 times higher than that of Q10, 2.5 times higher than that of Cur, and 1.7 times higher than that of the mixture.

Conclusion: The co-encapsulation Q10-Cur-Lip-Chi improves the solubility and stability of Q10 and Cur for good release performance and antioxidative activity.

Keywords: Coenzyme Q10, Curcumin, Liposomes, Co-encapsulation

« Previous
Graphical Abstract

[1]
Gutierrez-Mariscal, F.M.; Yubero-Serrano, E.M.; Villalba, J.M.; Lopez-Miranda, J. Coenzyme Q10: From bench to clinic in aging diseases, a translational review. Crit. Rev. Food Sci. Nutr., 2019, 59(14), 2240-2257.
[http://dx.doi.org/10.1080/10408398.2018.1442316] [PMID: 29451807]
[2]
Yamada, Y.; Nakamura, K.; Abe, J.; Hyodo, M.; Haga, S.; Ozaki, M.; Harashima, H. Mitochondrial delivery of coenzyme Q10 via systemic administration using a MITO-Porter prevents ischemia/reperfusion injury in the mouse liver. J. Control. Release, 2015, 213, 86-95.
[http://dx.doi.org/10.1016/j.jconrel.2015.06.037] [PMID: 26160304]
[3]
López-Pedrera, C.; Villalba, J.M.; Patiño-Trives, A.M.; Luque-Tévar, M.; Barbarroja, N.; Aguirre, M.A.; Escudero-Contreras, A.; Pérez-Sánchez, C. Therapeutic potential and immunomodulatory role of coenzyme Q10 and its analogues in systemic Autoimmune Diseases. Antioxidants, 2021, 10(4), 600.
[http://dx.doi.org/10.3390/antiox10040600] [PMID: 33924642]
[4]
Onoue, S.; Terasawa, N.; Nakamura, T.; Yuminoki, K.; Hashimoto, N.; Yamada, S. Biopharmaceutical characterization of nanocrystalline solid dispersion of coenzyme Q10 prepared with cold wet-milling system. Eur. J. Pharm. Sci., 2014, 53, 118-125.
[http://dx.doi.org/10.1016/j.ejps.2013.12.013] [PMID: 24368114]
[5]
Qin, B.; Liu, L.; Pan, Y.; Zhu, Y.; Wu, X.; Song, S.; Han, G. PEGylated solanesol for oral delivery of coenzyme Q10. J. Agric. Food Chem., 2017, 65(16), 3360-3367.
[http://dx.doi.org/10.1021/acs.jafc.7b00165] [PMID: 28418660]
[6]
Biswas, T.K.; Mukherjee, B. Plant medicines of Indian origin for wound healing activity: A review. Int. J. Low. Extrem. Wounds, 2003, 2(1), 25-39.
[http://dx.doi.org/10.1177/1534734603002001006] [PMID: 15866825]
[7]
Kunnumakkara, A.B.; Anand, P.; Aggarwal, B.B. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett., 2008, 269(2), 199-225.
[http://dx.doi.org/10.1016/j.canlet.2008.03.009] [PMID: 18479807]
[8]
Lantz, R.C.; Chen, G.J.; Solyom, A.M.; Jolad, S.D.; Timmermann, B.N. The effect of turmeric extracts on inflammatory mediator production. Phytomedicine, 2005, 12(6-7), 445-452.
[http://dx.doi.org/10.1016/j.phymed.2003.12.011] [PMID: 16008121]
[9]
Sanidad, K.Z.; Sukamtoh, E.; Xiao, H.; McClements, D.J.; Zhang, G. Curcumin: Recent advances in the development of strategies to improve oral bioavailability. Annu. Rev. Food Sci. Technol., 2019, 10, 597-617.
[http://dx.doi.org/10.1146/annurev-food-032818-121738] [PMID: 30633561]
[10]
Tønnesen, H.H. Solubility, chemical and photochemical stability of curcumin in surfactant solutions. Studies of curcumin and curcuminoids, XXVIII. Pharmazie, 2002, 57(12), 820-824.
[PMID: 12561244]
[11]
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[12]
Valverde, Y.; Benson, B.; Gupta, M.; Gupta, K. Spinal glial activation and oxidative stress are alleviated by treatment with curcumin or coenzyme Q in sickle mice. Haematologica, 2016, 101(2), e44-e47.
[http://dx.doi.org/10.3324/haematol.2015.137489] [PMID: 26546503]
[13]
Parohan, M.; Sarraf, P.; Javanbakht, M.H.; Foroushani, A.R.; Ranji-Burachaloo, S.; Djalali, M. The synergistic effects of nano-curcumin and coenzyme Q10 supplementation in migraine prophylaxis: A randomized, placebo-controlled, double-blind trial. Nutr. Neurosci., 2021, 24(4), 317-326.
[http://dx.doi.org/10.1080/1028415X.2019.1627770] [PMID: 31241007]
[14]
Devadasu, V.R.; Wadsworth, R.M.; Kumar, M.N. Protective effects of nanoparticulate coenzyme Q10 and curcumin on inflammatory markers and lipid metabolism in streptozotocin-induced diabetic rats: A possible remedy to diabetic complications. Drug Deliv. Transl. Res., 2011, 1(6), 448-455.
[http://dx.doi.org/10.1007/s13346-011-0041-3] [PMID: 25786365]
[15]
Neethirajan, S.; Jayas, D.S. Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol., 2011, 4(1), 39-47.
[http://dx.doi.org/10.1007/s11947-010-0328-2] [PMID: 32215165]
[16]
Limongi, T.; Susa, F.; Marini, M.; Allione, M.; Torre, B.; Pisano, R.; di Fabrizio, E. Lipid-based nanovesicular drug delivery systems. Nanomaterials (Basel), 2021, 11(12), 3391.
[http://dx.doi.org/10.3390/nano11123391] [PMID: 34947740]
[17]
Shen, X.; Liu, X.; Li, T.; Chen, Y.; Chen, Y.; Wang, P.; Zheng, L.; Yang, H.; Wu, C.; Deng, S.; Liu, Y. Recent advancements in serum albumin-based nanovehicles toward potential cancer diagnosis and therapy. Front Chem., 2021, 9, 746646.
[http://dx.doi.org/10.3389/fchem.2021.746646] [PMID: 34869202]
[18]
McClements, D.J.; Jafari, S.M. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Adv. Colloid Interface Sci., 2018, 251, 55-79.
[http://dx.doi.org/10.1016/j.cis.2017.12.001] [PMID: 29248154]
[19]
Gupta, A.; Eral, H.B.; Hatton, T.A.; Doyle, P.S. Nanoemulsions: Formation, properties and applications. Soft Matter, 2016, 12(11), 2826-2841.
[http://dx.doi.org/10.1039/C5SM02958A] [PMID: 26924445]
[20]
McClements, D. Application of advanced emulsion technology in the food industry: A review and critical evaluation. J. Am. Oil Chem. Soc., 2021, 98, 5-5.
[21]
Gutierrez, G.; Matos, M.; Barrero, P.; Pando, D.; Iglesias, O.; Pazos, C. Iron-entrapped niosomes and their potential application for yogurt fortification. Lebensm. Wiss. Technol., 2016, 74, 550-556.
[http://dx.doi.org/10.1016/j.lwt.2016.08.025]
[22]
Li, F.; Hurley, B.; Liu, Y.; Leonard, B.; Griffith, M. Controlled release of bevacizumab through nanospheres for extended treatment of age-related macular degeneration. Open Ophthalmol. J., 2012, 6, 54-58.
[http://dx.doi.org/10.2174/1874364101206010054] [PMID: 22798970]
[23]
Jimenez-Colmenero, F. Healthier lipid formulation approaches in meat-based functional foods. Technological options for replacement of meat fats by non-meat fats. Trends Food Sci. Technol., 2007, 18(11), 567-578.
[http://dx.doi.org/10.1016/j.tifs.2007.05.006]
[24]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[25]
Azzi, J.; Jraij, A.; Auezova, L.; Fourmentin, S.; Greige-Gerges, H. Novel findings for quercetin encapsulation and preservation with cyclodextrins, liposomes, and drug-in-cyclodextrin-in-liposomes. Food Hydrocoll., 2018, 81, 328-340.
[http://dx.doi.org/10.1016/j.foodhyd.2018.03.006]
[26]
Lopez-Polo, J.; Silva-Weiss, A.; Giménez, B.; Cantero-López, P.; Vega, R.; Osorio, F.A. Effect of lyophilization on the physicochemical and rheological properties of food grade liposomes that encapsulate rutin. Food Res. Int., 2020, 130, 108967.
[http://dx.doi.org/10.1016/j.foodres.2019.108967] [PMID: 32156401]
[27]
Tan, C.; Xue, J.; Abbas, S.; Feng, B.; Zhang, X.; Xia, S. Liposome as a delivery system for carotenoids: Comparative antioxidant activity of carotenoids as measured by ferric reducing antioxidant power, DPPH assay and lipid peroxidation. J. Agric. Food Chem., 2014, 62(28), 6726-6735.
[http://dx.doi.org/10.1021/jf405622f] [PMID: 24745755]
[28]
Liu, X.; Wang, P.; Zou, Y-X.; Luo, Z-G.; Tamer, T.M. Co-encapsulation of Vitamin C and β-Carotene in liposomes: Storage stability, antioxidant activity, and in vitro gastrointestinal digestion. Food Res. Int., 2020, 136, 109587.
[http://dx.doi.org/10.1016/j.foodres.2020.109587] [PMID: 32846615]
[29]
Tai, K.; Rappolt, M.; Mao, L.; Gao, Y.; Yuan, F. Stability and release performance of curcumin-loaded liposomes with varying content of hydrogenated phospholipids. Food Chem., 2020, 326, 126973.
[http://dx.doi.org/10.1016/j.foodchem.2020.126973] [PMID: 32413757]
[30]
Gokce, E.H.; Korkmaz, E.; Tuncay-Tanrıverdi, S.; Dellera, E.; Sandri, G.; Bonferoni, M.C.; Ozer, O. A comparative evaluation of coenzyme Q10-loaded liposomes and solid lipid nanoparticles as dermal antioxidant carriers. Int. J. Nanomedicine, 2012, 7, 5109-5117.
[PMID: 23055723]
[31]
Kean, T.; Thanou, M. Biodegradation, biodistribution and toxicity of chitosan. Adv. Drug Deliv. Rev., 2010, 62(1), 3-11.
[http://dx.doi.org/10.1016/j.addr.2009.09.004] [PMID: 19800377]
[32]
Hasan, M.; Ben Messaoud, G.; Michaux, F.; Tamayol, A.; Kahn, C.J.F.; Belhaj, N.; Linder, M.; Arab-Tehrany, E. Chitosan-coated liposomes encapsulating curcumin: Study of lipid-polysaccharide interactions and nanovesicle behavior. RSC Advances, 2016, 6(51), 45290-45304.
[http://dx.doi.org/10.1039/C6RA05574E]
[33]
Takeuchi, H.; Yamamoto, H.; Niwa, T.; Hino, T.; Kawashima, Y. Enteral absorption of insulin in rats from mucoadhesive chitosan-coated liposomes. Pharm. Res., 1996, 13(6), 896-901.
[http://dx.doi.org/10.1023/A:1016009313548] [PMID: 8792429]
[34]
Hasan, M.; Elkhoury, K.; Kahn, C.J.F.; Arab-Tehrany, E.; Linder, M. Preparation, characterization, and release kinetics of chitosan-coated nanoliposomes encapsulating curcumin in simulated environments. Molecules, 2019, 24(10), E2023.
[http://dx.doi.org/10.3390/molecules24102023] [PMID: 31137865]
[35]
Xia, S.; Xu, S.; Zhang, X. Optimization in the preparation of coenzyme Q10 nanoliposomes. J. Agric. Food Chem., 2006, 54(17), 6358-6366.
[http://dx.doi.org/10.1021/jf060405o] [PMID: 16910731]
[36]
Zhou, F.; Xu, T.; Zhao, Y.; Song, H.; Zhang, L.; Wu, X.; Lu, B. Chitosan-coated liposomes as delivery systems for improving the stability and oral bioavailability of acteoside. Food Hydrocoll., 2018, 83, 17-24.
[http://dx.doi.org/10.1016/j.foodhyd.2018.04.040]
[37]
Hsu, C-H.; Cui, Z.; Mumper, R.J.; Jay, M. Preparation and characterization of novel coenzyme Q10 nanoparticles engineered from microemulsion precursors. AAPS PharmSciTech, 2003, 4(3), E32.
[http://dx.doi.org/10.1208/pt040332] [PMID: 14621964]
[38]
Huang, M.; Liang, C.; Tan, C.; Huang, S.; Ying, R.; Wang, Y.; Wang, Z.; Zhang, Y. Liposome co-encapsulation as a strategy for the delivery of curcumin and resveratrol. Food Funct., 2019, 10(10), 6447-6458.
[http://dx.doi.org/10.1039/C9FO01338E] [PMID: 31524893]
[39]
Zhou, H.; Wang, W.; Hu, H.; Ni, X.; Ni, S.; Xu, Y.; Yang, L.; Xu, D. Co-precipitation of calcium carbonate and curcumin in an ethanol medium as a novel approach for curcumin dissolution enhancement. J. Drug Deliv. Sci. Technol., 2019, 51, 397-402.
[http://dx.doi.org/10.1016/j.jddst.2019.03.012]
[40]
Lee, W.C.; Tsai, T.H. Preparation and characterization of liposomal coenzyme Q10 for in vivo topical application. Int. J. Pharm., 2010, 395(1-2), 78-83.
[http://dx.doi.org/10.1016/j.ijpharm.2010.05.006] [PMID: 20635514]
[41]
Ng, Z.Y.; Wong, J.Y.; Panneerselvam, J.; Madheswaran, T.; Kumar, P.; Pillay, V.; Hsu, A.; Hansbro, N.; Bebawy, M.; Wark, P.; Hansbro, P.; Dua, K.; Chellappan, D.K. Assessing the potential of liposomes loaded with curcumin as a therapeutic intervention in asthma. Colloids Surf. B Biointerfaces, 2018, 172, 51-59.
[http://dx.doi.org/10.1016/j.colsurfb.2018.08.027] [PMID: 30134219]
[42]
Grzybek, M.; Stebelska, K.; Wyrozumska, P.; Grieb, P.; Langner, M.; Jaszewski, A.; Jezierski, A.; Sikorski, A.F. ESR and monolayer study of the localization of coenzyme Q10 in artificial membranes. Gen. Physiol. Biophys., 2005, 24(4), 449-460.
[PMID: 16474188]
[43]
Samorì, B.; Lenaz, G.; Battino, M.; Marconi, G.; Domini, I. On coenzyme Q orientation in membranes: A linear dichroism study of ubiquinones in a model bilayer. J. Membr. Biol., 1992, 128(3), 193-203.
[http://dx.doi.org/10.1007/BF00231812] [PMID: 1501247]
[44]
Lenaz, G.; Samori, B.; Fato, R.; Battino, M.; Parenti Castelli, G.; Domini, I. Localization and preferred orientations of ubiquinone homologs in model bilayers. Biochem. Cell Biol., 1992, 70(6), 504-514.
[http://dx.doi.org/10.1139/o92-078]
[45]
Tai, K.; Rappolt, M.; Mao, L.; Gao, Y.; Li, X.; Yuan, F. The stabilization and release performances of curcumin-loaded liposomes coated by high and low molecular weight chitosan. Food Hydrocoll., 2020, 99, 105355.
[http://dx.doi.org/10.1016/j.foodhyd.2019.105355]
[46]
Li, J.; Wang, X.; Zhang, T.; Wang, C.; Huang, Z.; Luo, X.; Deng, Y. A review on phospholipids and their main applications in drug delivery systems. Asian J. Pharma. Sci., 2015, 10(2), 81-98.
[http://dx.doi.org/10.1016/j.ajps.2014.09.004]
[47]
Gu, J.; Chi, S-M.; Zhao, Y.; Zheng, P.; Ruan, Q.; Zhao, Y.; Zhu, H-Y. Inclusion complexes of coenzyme Q10 with polyamine-modified beta-cyclodextrins: Characterization, solubilization, and inclusion mode. Helv. Chim. Acta, 2011, 94(9), 1608-1617.
[http://dx.doi.org/10.1002/hlca.201100026]
[48]
Chen, X.; Zou, L-Q.; Niu, J.; Liu, W.; Peng, S-F.; Liu, C-M. The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes. Molecules, 2015, 20(8), 14293-14311.
[http://dx.doi.org/10.3390/molecules200814293] [PMID: 26251892]
[49]
Yallapu, M.M.; Jaggi, M.; Chauhan, S.C. beta-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surf. B Biointerfaces, 2010, 79(1), 113-125.
[http://dx.doi.org/10.1016/j.colsurfb.2010.03.039] [PMID: 20456930]
[50]
Wang, Y.J.; Pan, M.H.; Cheng, A.L.; Lin, L.I.; Ho, Y.S.; Hsieh, C.Y.; Lin, J.K. Stability of curcumin in buffer solutions and characterization of its degradation products. J. Pharm. Biomed. Anal., 1997, 15(12), 1867-1876.
[http://dx.doi.org/10.1016/S0731-7085(96)02024-9] [PMID: 9278892]
[51]
Liu, Y.; Liu, D.; Zhu, L.; Gan, Q.; Le, X. Temperature-dependent structure stability and in vitro release of chitosan-coated curcumin liposome. Food Res. Int., 2015, 74, 97-105.
[http://dx.doi.org/10.1016/j.foodres.2015.04.024] [PMID: 28412008]
[52]
Çelik, B.; Sağıroğlu, A.A.; Özdemir, S. Design, optimization and characterization of coenzyme Q10- and D-panthenyl triacetate-loaded liposomes. Int. J. Nanomedicine, 2017, 12, 4869-4878.
[http://dx.doi.org/10.2147/IJN.S140835] [PMID: 28744121]
[53]
Li, Z.L.; Huang, Y.S.; Peng, S.F.; Chen, X.; Zou, L.Q.; Liu, W. Liposomes consisting of pluronic F127 and phospholipid: Effect of matrix on morphology, stability and curcumin delivery. J. Dispers. Sci. Technol., 2020, 41(2), 207-213.
[http://dx.doi.org/10.1080/01932691.2018.1562353]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy