Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Current Overview of Cyclodextrin Inclusion Complexes of Volatile Oils and their Constituents

Author(s): Vasanti Suvarna* and Srilaxmi Chippa

Volume 20, Issue 6, 2023

Published on: 07 September, 2022

Page: [770 - 791] Pages: 22

DOI: 10.2174/1567201819666220630121939

Price: $65

Abstract

Background: Volatile oils and their constituents have been considered major bioactive natural compounds due to their wide therapeutic and biological activities in pharmaceuticals in human healthcare. However, due to their poor solubility, their applications are limited. The inclusion complexation of volatile oils and their volatile constituents with cyclodextrins has emerged as a promising approach for the improvement of aqueous solubility, bioavailability, and stability.

Objective: The present review summarizes various research investigations highlighting the complexation of volatile oils and their constituents with cyclodextrins and their derivatives. Additionally, we present an overview of patents published between 1998-2021 to highlight the significance of including volatile oil in cyclodextrins.

Methods: The selection of articles for the current review was carried out by using keywords ‘Cyclodextrin’, ‘Essential oil’, ‘Inclusion Complex’, ‘Encapsulation’ and ‘Essential oils/ volatile oils constituents’ in certain specific databases, such as Elsevier (Science Direct), Pubmed Medical subject headings (MeSH) and Medline.

Results: A total of 199 studies published were included in the review. In vitro and in vivo studies revealed the efficacy of EOs and their VCs complexed with various types of CD compared to free forms.

Conclusion: This review shows the impact of cyclodextrin complexation on the solubility, bioavailability, stability, and biological activities of volatile oils and their constituents.

Keywords: Essential oils, volatile constituents, solubility, cyclodextrins, stability, patent.

Graphical Abstract

[1]
Bhavaniramya, S.; Vishnupriya, S.; Al-Aboody, M.S.; Vijayakumar, R.; Baskaran, D. Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain Oil Sci. Technol., 2019, 2(2), 49-55.
[http://dx.doi.org/10.1016/j.gaost.2019.03.001]
[2]
Tajkarimi, M.M.; Ibrahim, S.A.; Cliver, D.O. Antimicrobial herb and spice compounds in food. Food Control, 2010, 21(9), 1199-1218.
[http://dx.doi.org/10.1016/j.foodcont.2010.02.003]
[3]
Abada, M.B.; Hamdi, S.H.; Gharib, R.; Messaoud, C.; Fourmentin, S.; Greige-Gerges, H.; Jemâa, J.M.B. Post-harvest management control of ectomyelois ceratoniae (zeller) (Lepidoptera: Pyralidae): New insights through essential oil encapsulation in cyclodextrin. Pest Manag. Sci., 2019, 75(7), 2000-2008.
[http://dx.doi.org/10.1002/ps.5315] [PMID: 30610757]
[4]
Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines (Basel), 2016, 3(4), 25.
[http://dx.doi.org/10.3390/medicines3040025] [PMID: 28930135]
[5]
Fitzgerald, D.J.; Stratford, M.; Narbad, A. Analysis of the inhibition of food spoilage yeasts by vanillin. Int. J. Food Microbiol., 2003, 86(1-2), 113-122.
[http://dx.doi.org/10.1016/S0168-1605(03)00059-X] [PMID: 12892926]
[6]
Oussalah, M.; Caillet, S.; Saucier, L.; Lacroix, M. Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. Coli O157:H7, Salmonella typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control, 2007, 18(5), 414-420.
[http://dx.doi.org/10.1016/j.foodcont.2005.11.009]
[7]
Robu, V.; Covaci, G.; Popescu, I.M. The use of essential oils in organic farming. Res. J. Agric. Sci., 2015, 47(4), 134-137.
[8]
Schnitzler, P.; Koch, C.; Reichling, J. Susceptibility of drug-resistant clinical herpes simplex virus type 1 strains to essential oils of ginger, thyme, hyssop, and sandalwood. Antimicrob. Agents Chemother., 2007, 51(5), 1859-1862.
[http://dx.doi.org/10.1128/AAC.00426-06] [PMID: 17353250]
[9]
Del Valle, E.M.M. Cyclodextrins and their uses: A review. Process Biochem., 2004, 39(9), 1033-1046.
[http://dx.doi.org/10.1016/S0032-9592(03)00258-9]
[10]
Loftsson, T.; Brewster, M.E. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci., 1996, 85(10), 1017-1025.
[http://dx.doi.org/10.1021/js950534b] [PMID: 8897265]
[11]
Mirmehrabi, M.; Rohani, S.; Perry, L. Thermodynamic modeling of activity coefficient and prediction of solubility: Part 2. Semipredictive or semiempirical models. J. Pharm. Sci., 2006, 95(4), 798-809.
[http://dx.doi.org/10.1002/jps.20576] [PMID: 16493593]
[12]
Duan, M.S.; Zhao, N.; Ossurardóttir, Í.B.; Thorsteinsson, T.; Loftsson, T. Cyclodextrin solubilization of the antibacterial agents triclosan and triclocarban: Formation of aggregates and higher-order complexes. Int. J. Pharm., 2005, 297(1-2), 213-222.
[http://dx.doi.org/10.1016/j.ijpharm.2005.04.007] [PMID: 15885935]
[13]
John de Oliveira Melo, A.; Heimarth, L.; Maria Dos Santos Carvalho, A.; de Souza Siqueira Quintans, J.; Serafini, M.R.; Antunes de Souza Araujo, A.; Alves, P.B.; Ribeiro, A.M.; Shanmugam, S.; Quintans-Junior, L.J. Eplingiella fruticosa (Lamiaceae) essential oil complexed with beta-cyclodextrin improves its anti-hyperalgesic effect in a chronic widespread non-inflammatory muscle pain animal model. Food Chem. Toxicol., 2019, 135, 110940.
[http://dx.doi.org/10.1016/j.fct.2019.110940] [PMID: 31693914]
[14]
Beserra-Filho, J.I.A.; de Macêdo, A.M.; Leão, A.H.F.F.; Bispo, J.M.M.; Santos, J.R.; de Oliveira-Melo, A.J.; Menezes, P.D.P.; Duarte, M.C.; de Souza Araújo, A.A.; Silva, R.H.; Quintans-Júnior, L.J.; Ribeiro, A.M. Eplingiella fruticosa leaf essential oil complexed with β-cyclodextrin produces a superior neuroprotective and behavioral profile in a mice model of Parkinson’s disease. Food Chem. Toxicol., 2019, 124, 17-29.
[http://dx.doi.org/10.1016/j.fct.2018.11.056] [PMID: 30481574]
[15]
Ding, P. Myristica fragrans Houtt. (Roudoukou, Nutmeg). In: Liu, Y.; Wang, Z.; Zhang, J.; Eds. Dietary Chinese Herbs; Springer: Vienna, 2015, pp. 439-445.
[http://dx.doi.org/10.1007/978-3-211-99448-1_50]
[16]
Su, Z.; Qin, Y.; Zhang, K.; Bi, Y.; Kong, F. Inclusion complex of Exocarpium citri grandis essential oil with β-cyclodextrin: Characterization, stability, and antioxidant activity. J. Food Sci., 2019, 84(6), 1592-1599.
[http://dx.doi.org/10.1111/1750-3841.14623] [PMID: 31162880]
[17]
Dias Antunes, M.; da Silva Dannenberg, G.; Fiorentini, Â.M.; Pinto, V.Z.; Lim, L.T.; da Rosa Zavareze, E.; Dias, A.R.G. Antimicrobial electrospun ultrafine fibers from zein containing eucalyptus essential oil/cyclodextrin inclusion complex. Int. J. Biol. Macromol.,, 2017, 104(Pt A), 874-882.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.06.095] [PMID: 28652153]
[18]
Rakmai, J.; Cheirsilp, B.; Mejuto, J.C.; Torrado-Agrasar, A.; Simal-Gándara, J. Physico-chemical characterization and evaluation of bio-efficacies of black pepper essential oil encapsulated in hydroxypropyl-beta-cyclodextrin. Food Hydrocoll., 2017, 65, 157-164.
[http://dx.doi.org/10.1016/j.foodhyd.2016.11.014]
[19]
Cetin, H.; Ali, B.; Necla, B.; Nuriye, O. Encapsulation of clove essential oil in hydroxypropyl beta-cyclodextrin for characterization, controlled release, and antioxidant activity. J. Food Process. Preserv., 2017, 41(5), e13202.
[http://dx.doi.org/10.1111/jfpp.13202]
[20]
Estrada-cano, C.; Antonieta, M.; Castro, A.; Muñoz-castellanos, L. Antifungal activity of microcapsulated clove (Eugenia Caryophyllata) and Mexican oregano (Lippia berlandieri) essential oils against Fusarium oxysporum. J. Microb. Biochem. Technol., 2017, 9(1), 567-571.
[http://dx.doi.org/10.4172/1948-5948.1000342]
[21]
Arana-Sánchez, A.; Estarrón-Espinosa, M.; Obledo-Vázquez, E.N.; Padilla-Camberos, E.; Silva-Vázquez, R.; Lugo-Cervantes, E. Antimicrobial and antioxidant activities of Mexican oregano essential oils (Lippia graveolens H. B. K.) with different composition when microencapsulated in β-cyclodextrin. Lett. Appl. Microbiol., 2010, 50(6), 585-590.
[http://dx.doi.org/10.1111/j.1472-765X.2010.02837.x] [PMID: 20406376]
[22]
Gaur, S.; Lopez, E.C.; Ojha, A.; Andrade, J.E. Functionalization of lipid-based nutrient supplement with β-cyclodextrin inclusions of oregano essential oil. J. Food Sci., 2018, 83(6), 1748-1756.
[http://dx.doi.org/10.1111/1750-3841.14178] [PMID: 29771453]
[23]
Papajani, V.; Haloci, E.; Goci, E.; Shkreli, R.; Manfredini, S. Evaluation of antifungal activity of Origanum vulgare and Rosmarinus officinalis essential oil before and after inclusion in β - cyclodextrine. 2015, 7(5), 270-273.
[24]
Wang, J.; Cao, Y.; Sun, B.; Wang, C. Physicochemical and release characterisation of garlic oil-β- cyclodextrin inclusion complexes. Food Chem., 2011, 127(4), 1680-1685.
[http://dx.doi.org/10.1016/j.foodchem.2011.02.036]
[25]
Mourtzinos, I.; Salta, F.; Yannakopoulou, K.; Chiou, A.; Karathanos, V.T. Encapsulation of olive leaf extract in β-cyclodextrin. J. Agric. Food Chem., 2007, 55(20), 8088-8094.
[http://dx.doi.org/10.1021/jf0709698] [PMID: 17764146]
[26]
Dima, C.; Dunarea, U.; Galati, D.J.; Cotarlet, M.; Dunarea, U.; Galati, D.J.; Balaes, T.; Alexandru, U.; Cuza, I.; Bahrim, G. Encapsulation of coriander essential oil in beta-cyclodextrin: Antioxidant and antimicrobial properties evaluation encapsulation of coriander essential oil in beta-cyclodextrin: Antioxidant and antimicrobial properties evaluation. Rom. Biotechnol. Lett., 2014, 19(2), 9128-9140.
[27]
Delogu, G.; Juliano, C.C.A.; Usai, M. Thymus catharinae camarda essential oil: β-cyclodextrin inclusion complexes, evaluation of antimicrobial activity. Nat. Prod. Res., 2016, 30(18), 2049-2057.
[http://dx.doi.org/10.1080/14786419.2015.1107558] [PMID: 26611617]
[28]
Das, S.; Gazdag, Z.; Szente, L.; Meggyes, M.; Horváth, G.; Lemli, B.; Kunsági-Máté, S.; Kuzma, M. Kőszegi, T. Antioxidant and antimicrobial properties of randomly methylated β cyclodextrin - captured essential oils. Food Chem., 2019, 278, 305-313.
[http://dx.doi.org/10.1016/j.foodchem.2018.11.047] [PMID: 30583377]
[29]
Rodrigues, L.B.; Martins, A.O.B.P.B.; Ribeiro-Filho, J.; Cesário, F.R.A.S.; E., Castro F.F.; de Albuquerque, T.R.; Fernandes, M.N.M.; da Silva, B.A.F.; Quintans Júnior, L.J.; Araújo, A.A.S.; Menezes, P.D.P.; Nunes, P.S.; Matos, I.G.; Coutinho, H.D.M.; Goncalves Wanderley, A.; de Menezes, I.R.A. Anti-inflammatory activity of the essential oil obtained from Ocimum basilicum complexed with β-cyclodextrin (β-CD) in mice. Food Chem. Toxicol., 2017, 109(Pt 2), 836-846.
[http://dx.doi.org/10.1016/j.fct.2017.02.027] [PMID: 28235614]
[30]
Nascimento, S.S.; Araújo, A.A.S.; Brito, R.G.; Serafini, M.R.; Menezes, P.P.; DeSantana, J.M.; Lucca, W., Jr; Alves, P.B.; Blank, A.F.; Oliveira, R.C.M.; Oliveira, A.P.; Albuquerque, R.L., Jr; Almeida, J.R.; Quintans, L.J., Jr Cyclodextrin-complexed Ocimum basilicum leaves essential oil increases Fos protein expression in the central nervous system and produce an antihyperalgesic effect in animal models for fibromyalgia. Int. J. Mol. Sci., 2014, 16(1), 547-563.
[http://dx.doi.org/10.3390/ijms16010547] [PMID: 25551603]
[31]
Hădărugă, D.I.; Hădărugă, N.G.; Costescu, C.I.; David, I.; Gruia, A.T. Thermal and oxidative stability of the Ocimum basilicum L. essential oil/β-cyclodextrin supramolecular system. Beilstein J. Org. Chem., 2014, 10, 2809-2820.
[http://dx.doi.org/10.3762/bjoc.10.298] [PMID: 25550747]
[32]
Rakmai, J.; Cheirsilp, B.; Torrado-agrasar, A.; Simal-Gándara, J.; Mejuto, J.C. Encapsulation of yarrow essential oil in hydroxypropyl-beta-cyclodextrin: Physiochemical characterization and evaluation of bio-efficacies. CYTA J. Food, 2017, 15(3), 409-417.
[http://dx.doi.org/10.1080/19476337.2017.1286523]
[33]
Yim, W.T.; Bhandari, B.; Jackson, L.; James, P. Repellent effects of Melaleuca alternifolia (tea tree) oil against cattle tick larvae (Rhipicephalus australis) when formulated as emulsions and in β-cyclodextrin inclusion complexes. Vet. Parasitol., 2016, 225, 99-103.
[http://dx.doi.org/10.1016/j.vetpar.2016.06.007] [PMID: 27369582]
[34]
Li, M.; Zhu, L.; Zhang, T.; Liu, B.; Du, L.; Jin, Y. Pulmonary delivery of tea tree oil-β-cyclodextrin inclusion complexes for the treatment of fungal and bacterial pneumonia. J. Pharm. Pharmacol., 2017, 69(11), 1458-1467.
[http://dx.doi.org/10.1111/jphp.12788] [PMID: 28809447]
[35]
Bomfim, L.M.; Menezes, L.R.A.; Rodrigues, A.C.B.C.; Dias, R.B.; Rocha, C.A.; Soares, M.B.P.; Neto, A.F.S.; Nascimento, M.P.; Campos, A.F.; Silva, L.C.R.C.E.; Costa, E.V.; Bezerra, D.P. Antitumour activity of the microencapsulation of Annona vepretorum essential oil. Basic Clin. Pharmacol. Toxicol., 2016, 118(3), 208-213.
[http://dx.doi.org/10.1111/bcpt.12488] [PMID: 26348780]
[36]
Menezes, P.P.; Araujo, A.A.; Doria, G.A.; Quintans-Junior, L.J.; de Oliveira, M.G.; dos Santos, M.R.; de Oliveira, J.F.; Matos, J.R.; Carvalho, F.M.; Alves, P.B.; de Matos, I.L.; dos Santos, D.A.; Marreto, R.N.; da Silva, G.F.; Serafini, M.R. Physicochemical characterization and analgesic effect of inclusion complexes of essential oil from Hyptis pectinata L. poit leaves with β-cyclodextrin. Curr. Pharm. Biotechnol., 2015, 16(5), 440-450.
[http://dx.doi.org/10.2174/1389201015666141202101909] [PMID: 25483719]
[37]
Andrade, T.A.; Freitas, T.S.; Araújo, F.O.; Menezes, P.P.; Dória, G.A.A.; Rabelo, A.S.; Quintans-Júnior, L.J.; Santos, M.R.V.; Bezerra, D.P.; Serafini, M.R.; Menezes, I.R.A.; Nunes, P.S.; Araújo, A.A.S.; Costa, M.S.; Campina, F.F.; Santos, A.T.L.; Silva, A.R.P.; Coutinho, H.D.M. Physico-chemical characterization and antibacterial activity of inclusion complexes of Hyptis martiusii benth essential oil in β-cyclodextrin. Biomed. Pharmacother., 2017, 89, 201-207.
[http://dx.doi.org/10.1016/j.biopha.2017.01.158] [PMID: 28226293]
[38]
Nait Bachir, Y.; Nait Bachir, R.; Hadj-Ziane-Zafour, A. Nanodispersions stabilized by β-cyclodextrin nanosponges: Application for simultaneous enhancement of bioactivity and stability of sage essential oil. Drug Dev. Ind. Pharm., 2019, 45(2), 333-347.
[http://dx.doi.org/10.1080/03639045.2018.1542705] [PMID: 30388376]
[39]
Leite, L.H.I.; Leite, G.O.; da Silva, B.A.F.; Santos, S.A.A.R.; Magalhães, F.E.A.; Menezes, P.P.; Serafini, M.R.; Teixeira, C.S.; Brito, R.G.; Santos, P.L.; da Costa, J.G.M.; Araújo, A.A.S.; Quintans-Júnior, L.J.; de Menezes, I.R.A.; Coutinho, H.D.M.; Campos, A.R. Molecular mechanism underlying orofacial antinociceptive activity of Vanillosmopsis arborea baker (Asteraceae) essential oil complexed with β-cyclodextrin. Phytomedicine, 2019, 55, 293-301.
[http://dx.doi.org/10.1016/j.phymed.2018.09.173] [PMID: 30293859]
[40]
Kumar, S.; Trotta, F.; Rao, R. Encapsulation of Babchi oil in cyclodextrin-based nanosponges: Physicochemical characterization, photodegradation, and in vitro cytotoxicity studies. Pharmaceutics, 2018, 10(4), 1-18.
[http://dx.doi.org/10.3390/pharmaceutics10040169] [PMID: 30261580]
[41]
Kumar, S.; Singh, K.K.; Rao, R. Enhanced anti-psoriatic efficacy and regulation of oxidative stress of a novel topical babchi oil (Psoralea corylifolia) cyclodextrin-based nanogel in a mouse tail model. J. Microencapsul., 2019, 36(2), 140-155.
[http://dx.doi.org/10.1080/02652048.2019.1612475] [PMID: 31030587]
[42]
Siqueira-Lima, P.S. Araújo, A.A.S.; Lucchese, A.M.; Quintans, J.S.S.; Menezes, P.P.; Alves, P.B.; de Lucca Júnior, W.; Santos, M.R.V.; Bonjardim, L.R.; Quintans-Júnior, L.J. β-cyclodextrin complex containing Lippia grata leaf essential oil reduces orofacial nociception in mice - evidence of possible involvement of descending inhibitory pain modulation pathway. Basic Clin. Pharmacol. Toxicol., 2014, 114(2), 188-196.
[http://dx.doi.org/10.1111/bcpt.12145] [PMID: 24119304]
[43]
Pires, F.Q.; da Silva, J.K.R.; Sa-Barreto, L.L.; Gratieri, T.; Gelfuso, G.M.; Cunha-Filho, M. Lipid nanoparticles as carriers of cyclodextrin inclusion complexes: A promising approach for cutaneous delivery of a volatile essential oil. Colloids Surf. B Biointerfaces, 2019, 182, 110382.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110382] [PMID: 31352250]
[44]
Galvão, J.G.; Cerpe, P.; Santos, D.A.; Gonsalves, J.K.M.C.; Santos, A.J.; Nunes, R.K.V.; Lira, A.A.M.; Alves, P.B.; La Corte, R.; Blank, A.F.; Silva, G.F.; Cavalcanti, S.C.; Nunes, R.S. Lippia gracilis essential oil in β-cyclodextrin inclusion complexes: An environmentally safe formulation to control Aedes aegypti larvae. Pest Manag. Sci., 2019, 75(2), 452-459.
[http://dx.doi.org/10.1002/ps.5138] [PMID: 29998608]
[45]
Siqueira-Lima, P.S.; Brito, R.G.; Araújo-Filho, H.G.; Santos, P.L.; Lucchesi, A.; Araújo, A.A.S.; Menezes, P.P.; Scotti, L.; Scotti, M.T.; Menezes, I.R.A.; Coutinho, H.D.M.; Zengin, G.; Aktumsek, A.; Antoniolli, A.R.; Quintans-Júnior, L.J.; Quintans, J.S.S. Anti-hyperalgesic effect of Lippia grata leaf essential oil complexed with β-cyclodextrin in a chronic musculoskeletal pain animal model: Complemented with a molecular docking and antioxidant screening. Biomed. Pharmacother., 2017, 91, 739-747.
[http://dx.doi.org/10.1016/j.biopha.2017.05.009] [PMID: 28499245]
[46]
Zhang, G.; Yuan, C.; Sun, Y. Effect of selective encapsulation of hydroxypropyl-β-cyclodextrin on components and antibacterial properties of star anise essential oil. Molecules, 2018, 23(5), E1126.
[http://dx.doi.org/10.3390/molecules23051126] [PMID: 29747430]
[47]
Xi, J.; Qian, D.; Duan, J.; Liu, P.; Zhu, Z.; Guo, J.; Zhang, Y.; Pan, Y. Preparation, characterization and pharmacokinetic study of Xiangfu Siwu decoction essential oil/β-cyclodextrin inclusion complex. Molecules, 2015, 20(6), 10705-10720.
[http://dx.doi.org/10.3390/molecules200610705] [PMID: 26065835]
[48]
Tonglairoum, P.; Chuchote, T.; Ngawhirunpat, T.; Rojanarata, T.; Opanasopit, P. Encapsulation of plai oil/2-hydroxypropyl-β-cyclodextrin inclusion complexes in polyvinylpyrrolidone (PVP) electrospun nanofibers for topical application. Pharm. Dev. Technol., 2014, 19(4), 430-437.
[http://dx.doi.org/10.3109/10837450.2013.788659] [PMID: 23651060]
[49]
Perez-Perez, L.M.; Armenta-Villegas, L.; Santacruz-Ortega, H.; Gutiérrez-Lomelí, M.; Aguilar, J.A.; Reynoso-Marin, F.J.; Robles-García, M.A.; Robles-Zepeda, R.E.; Ruiz-Cruz, S.; Del-Toro-Sánchez, C.L. Characterization of Anemopsis californica essential oil-β-cyclodextrin inclusion complex as antioxidant prolonged-release system. Chem. Pap., 2017, 71(7), 1331-1342.
[http://dx.doi.org/10.1007/s11696-016-0125-0]
[50]
Haloci, E.; Toska, V.; Shkreli, R.; Goci, E.; Vertuani, S.; Manfredini, S. Encapsulation of Satureja montana essential oil in β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem., 2015, 80(1-2), 147-153.
[http://dx.doi.org/10.1007/s10847-014-0437-z]
[51]
Entela Haloc, I.; Toska, V.; Baldisserotto, A.; Goci, E.; Vertuani, S.; Manfredini, S. Evaluation of antifungal activity of Satureja montana essential oil before and after inclusion in beta-cyclodextrine. Int. J. Pharm. Pharm. Sci., 2014, 6(7), 189-191.
[52]
Martins, A.O.B.P.B.; Rodrigues, L.B.; Cesário, F.R.A.S.; de Oliveira, M.R.C.; Tintino, C.D.M.; Castro, F.F.E.; Alcântara, I.S.; Fernandes, M.N.M.; de Albuquerque, T.R.; da Silva, M.S.A.; de Sousa Araújo, A.A.; Júniur, L.J.Q.; da Costa, J.G.M.; de Menezes, I.R.A.; Wanderley, A.G. Anti-edematogenic and anti-inflammatory activity of the essential oil from Croton rhamnifolioides leaves and its major constituent 1,8-cineole (eucalyptol). Biomed. Pharmacother., 2017, 96, 384-395.
[http://dx.doi.org/10.1016/j.biopha.2017.10.005] [PMID: 29031196]
[53]
Martins, L.N.S.B.; Venceslau, A.F.A.; Brandão, R.M.; Braga, M.A.; Batista, L.R.; Cardoso, M.D.G.; Pinto, L.M.A. Antibacterial and antifungal activities and toxicity of the essential oil from Callistemon viminalis complexed with β-cyclodextrin. Curr. Microbiol., 2021, 78(6), 2251-2258.
[http://dx.doi.org/10.1007/s00284-021-02480-2] [PMID: 33837817]
[54]
Cao, C.; Wei, D.; Xu, L.; Hu, J.; Qi, J.; Zhou, Y. Characterization of tea tree essential oil and large-ring cyclodextrins (CD9 -CD22) inclusion complex and evaluation of its thermal stability and volatility. J. Sci. Food Agric., 2021, 101(7), 2877-2883.
[http://dx.doi.org/10.1002/jsfa.10919] [PMID: 33155673]
[55]
Torres-Alvarez, C.; Castillo, S.; Sánchez-García, E.; Aguilera González, C.; Galindo-Rodríguez, S.A.; Gabaldón-Hernández, J.A.; Báez-González, J.G. Inclusion complexes of concentrated orange oils and β-cyclodextrin: Physicochemical and biological characterizations. Molecules, 2020, 25(21), 5109.
[http://dx.doi.org/10.3390/molecules25215109] [PMID: 33153206]
[56]
López-Miranda, S.; Berdejo, D.; Pagán, E.; García-Gonzalo, D.; Pagán, R. Modified cyclodextrin type and dehydration methods exert a significant effect on the antimicrobial activity of encapsulated carvacrol and thymol. J. Sci. Food Agric., 2021, 101(9), 3827-3835.
[http://dx.doi.org/10.1002/jsfa.11017] [PMID: 33314093]
[57]
Zhou, Y.; Zhang, M.; Wang, C.; Ren, X.; Guo, T.; Cao, Z.; Zhang, J.; Sun, L.; Wu, L. Solidification of volatile D-limonene by cyclodextrin metal-organic framework for pulmonary delivery via dry powder inhalers: In vitro and in vivo evaluation. Int. J. Pharm., 2021, 606, 120825.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120825] [PMID: 34171430]
[58]
Vasconcelos, A.C.C.G.; Vasconcelos, D.F.P.; da Silva, F.R.P.; França, L.F.C.; Alves, E.H.P.; Di Lenardo, D.; Pessoa, L.D.S.; Nascimento, H.M.S.; Carvalho, A.D.S.; Sousa, F.B.M.; Barbosa, A.L.D.R.; Medeiros, J.R.; Novaes, P.D.; Mariano, F.S.; Lima, B.D.S.; Araujo, A.A.S.; Júnior, L.J.Q.; de Oliveira, A.P. Alpha-terpineol complexed with beta-cyclodextrin reduces damages caused by periodontitis in rats. J. Periodontal Res., 2020, 55(6), 877-886.
[http://dx.doi.org/10.1111/jre.12780] [PMID: 32583890]
[59]
Jo, Y-J.; Cho, H-S.; Chun, J-Y. Antioxidant activity of β-cyclodextrin inclusion complexes containing trans-cinnamaldehyde by DPPH, ABTS and FRAP. Food Sci. Biotechnol., 2021, 30(6), 807-814.
[http://dx.doi.org/10.1007/s10068-021-00914-y] [PMID: 34249386]
[60]
Truzzi, E.; Rustichelli, C.; de Oliveira, Junior E.R.; Ferraro, L.; Maretti, E.; Graziani, D.; Botti, G.; Beggiato, S.; Iannuccelli, V.; Lima, E.M.; Dalpiaz, A.; Leo, E. Nasal biocompatible powder of Geraniol oil complexed with cyclodextrins for neurodegenerative diseases: Physicochemical characterization and in vivo evidences of nose to brain delivery. J. Control. Release. 2021, 335, 191-202.https://doi.org/
[http://dx.doi.org/10.1016/j.jconrel.2021.05.020] [PMID: 34019946]
[61]
Silva, E.A.P.; Carvalho, J.S.; Dos Santos, D.M.; Oliveira, A.M.S.; de Souza Araújo, A.A.; Serafini, M.R.; Oliveira Santos, L.A.B.; Batista, M.V.A.; Viana Santos, M.R.; Siqueira Quintans, J.S.; Quintans-Júnior, L.J.; Barreto, A.S. Cardiovascular effects of farnesol and its β-cyclodextrin complex in normotensive and hypertensive rats. Eur. J. Pharmacol., 2021, 901, 174060.
[http://dx.doi.org/10.1016/j.ejphar.2021.174060] [PMID: 33819466]
[62]
Chen, Y.; Mensah, A.; Wang, Q.; Li, D.; Qiu, Y.; Wei, Q. Hierarchical porous nanofibers containing thymol/beta-cyclodextrin: Physico-chemical characterization and potential biomedical applications. Mater. Sci. Eng. C, 2020, 115, 111155.
[http://dx.doi.org/10.1016/j.msec.2020.111155] [PMID: 32600736]
[63]
de Souza, E.P.B.S.S.; Gomes, M.V.L.D.; Dos Santos Lima, B.; Silva, L.A.S.; Shanmugan, S.; Cavalcanti, M.D.; de Albuquerque Júnior, R.L.C.; de Souza Carvalho, F.M.; Marreto, R.N.; de Lima, C.M.; Júnior, L.J.Q.; de Souza Araújo, A.A. Nerolidol-beta-cyclodextrin inclusion complex enhances anti-inflammatory activity in arthritis model and improves gastric protection. Life Sci., 2021, 265, 118742.
[http://dx.doi.org/10.1016/j.lfs.2020.118742] [PMID: 33181176]
[64]
Barreto da Silva, L.; Camargo, S.B.; Moraes, R.D.A.; Medeiros, C.F.; Jesus, A.M.; Evangelista, A.; Villarreal, C.F.; Quintans-Júnior, L.J.; Silva, D.F. Antihypertensive effect of carvacrol is improved after incorporation in β-cyclodextrin as a drug delivery system. Clin. Exp. Pharmacol. Physiol., 2020, 47(11), 1798-1807.
[http://dx.doi.org/10.1111/1440-1681.13364] [PMID: 32568422]
[65]
Chang, H-T.; Lin, C-Y.; Hsu, L-S.; Chang, S-T. Thermal degradation of linalool-chemotype Cinnamomum osmophloeum leaf essential oil and its stabilization by microencapsulation with β-cyclodextrin. Molecules, 2021, 26(2), 409.
[http://dx.doi.org/10.3390/molecules26020409] [PMID: 33466765]
[66]
Aytac, Z.; Yildiz, Z.I.; Kayaci-Senirmak, F.; Tekinay, T.; Uyar, T. Electrospinning of cyclodextrin/linalool-inclusion complex nanofibers: Fast-dissolving nanofibrous web with prolonged release and antibacterial activity. Food Chem., 2017, 231, 192-201.
[http://dx.doi.org/10.1016/j.foodchem.2017.03.113] [PMID: 28449997]
[67]
Quintans-Júnior, L.J. Barreto, R.S.S.; Menezes, P.P.; Almeida, J.R.G.S.; Viana, A.F.S.C.; Oliveira, R.C.M.; Oliveira, A.P.; Gelain, D.P.; de Lucca Júnior, W.; Araújo, A.A.S. β-cyclodextrin-complexed (-)-linalool produces antinociceptive effect superior to that of (-)-linalool in experimental pain protocols. Basic Clin. Pharmacol. Toxicol., 2013, 113(3), 167-172.
[http://dx.doi.org/10.1111/bcpt.12087] [PMID: 23692366]
[68]
da Silva, F.V.; de Barros Fernandes, H.; Oliveira, I.S.; Viana, A.F.S.C.; da Costa, D.S.; Lopes, M.T.P.; de Lira, K.L.; Quintans-Júnior, L.J.; de Sousa, A.A.; de Cássia Meneses Oliveira, R. Beta-cyclodextrin enhanced gastroprotective effect of (-)-linalool, a monoterpene present in rosewood essential oil, in gastric lesion models. Naunyn Schmiedebergs Arch. Pharmacol., 2016, 389(11), 1245-1251.
[http://dx.doi.org/10.1007/s00210-016-1298-3] [PMID: 27629579]
[69]
Al-Shar’i, N.A.; Obaidat, R.M. Experimental and computational comparative study of the Supercritical Fluid Technology (SFT) and kneading method in preparing β-cyclodextrin complexes with two essential oils (linalool and carvacrol). AAPS PharmSciTech, 2018, 19(3), 1037-1047.
[http://dx.doi.org/10.1208/s12249-017-0915-x] [PMID: 29134578]
[70]
Liang, H.; Yuan, Q.; Vriesekoop, F.; Lv, F. Effects of cyclodextrins on the antimicrobial activity of plant-derived essential oil compounds. Food Chem., 2012, 135(3), 1020-1027.
[http://dx.doi.org/10.1016/j.foodchem.2012.05.054] [PMID: 22953819]
[71]
Nascimento, S.S.; Camargo, E.A.; DeSantana, J.M.; Araújo, A.A.S.; Menezes, P.P.; Lucca-Júnior, W.; Albuquerque-Júnior, R.L.C.; Bonjardim, L.R.; Quintans-Júnior, L.J. Linalool and linalool complexed in β-cyclodextrin produce anti-hyperalgesic activity and increase Fos protein expression in animal model for fibromyalgia. Naunyn Schmiedebergs Arch. Pharmacol., 2014, 387(10), 935-942.
[http://dx.doi.org/10.1007/s00210-014-1007-z] [PMID: 24958161]
[72]
Aytac, Z.; Yildiz, Z.I.; Kayaci-Senirmak, F.; San Keskin, N.O.; Kusku, S.I.; Durgun, E.; Tekinay, T.; Uyar, T. Fast-dissolving, prolonged release, and antibacterial cyclodextrin/limonene-inclusion complex nanofibrous webs via polymer-free electrospinning. J. Agric. Food Chem., 2016, 64(39), 7325-7334.
[http://dx.doi.org/10.1021/acs.jafc.6b02632] [PMID: 27616160]
[73]
Araújo-Filho, H.G.; Pereira, E.W.M.; Rezende, M.M.; Menezes, P.P.; Araújo, A.A.S.; Barreto, R.S.S.; Martins, A.O.B.P.B.; Albuquerque, T.R.; Silva, B.A.F.; Alcantara, I.S.; Coutinho, H.D.M.; Menezes, I.R.A.; Quintans-Júnior, L.J.; Quintans, J.S.S. D-limonene exhibits superior antihyperalgesic effects in a β-cyclodextrin-complexed form in chronic musculoskeletal pain reducing Fos protein expression on spinal cord in mice. Neuroscience, 2017, 358, 158-169.
[http://dx.doi.org/10.1016/j.neuroscience.2017.06.037] [PMID: 28673718]
[74]
Santos, P.S.; Souza, L.K.M.; Araújo, T.S.L.; Medeiros, J.V.R.; Nunes, S.C.C.; Carvalho, R.A.; Pais, A.C.C.; Veiga, F.J.B.; Nunes, L.C.C.; Figueiras, A. Methyl-β-cyclodextrin Inclusion Complex with β-Caryophyllene: Preparation, characterization, and improvement of pharmacological activities. ACS Omega, 2017, 2(12), 9080-9094.
[http://dx.doi.org/10.1021/acsomega.7b01438] [PMID: 30023600]
[75]
Lou, J. Teng, Z.; Zhang, L.; Yang, J.; Ma, L.; Wang, F.; Tian, X.; An, R.; Yang, M.; Zhang, Q.; Xu, L.; Dong, Z. β-caryophyllene/hydroxypropyl-β-cyclodextrin inclusion complex improves cognitive deficits in rats with vascular dementia through the cannabinoid receptor type 2 -mediated pathway. Front. Pharmacol., 2017, 8, 2.
[http://dx.doi.org/10.3389/fphar.2017.00002] [PMID: 28154534]
[76]
Quintans-Júnior, L.J. Araújo, A.A.S.; Brito, R.G.; Santos, P.L.; Quintans, J.S.S.; Menezes, P.P.; Serafini, M.R.; Silva, G.F.; Carvalho, F.M.S.; Brogden, N.K.; Sluka, K.A. β-caryophyllene, a dietary cannabinoid, complexed with β-cyclodextrin produced anti-hyperalgesic effect involving the inhibition of Fos expression in superficial dorsal horn. Life Sci., 2016, 149, 34-41.
[http://dx.doi.org/10.1016/j.lfs.2016.02.049] [PMID: 26883973]
[77]
Santos, E.H.; Kamimura, J.A.; Hill, L.E.; Gomes, C.L. Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications. Lebensm. Wiss. Technol., 2015, 60(1), 583-592.
[http://dx.doi.org/10.1016/j.lwt.2014.08.046]
[78]
Kamimura, J.A.; Santos, E.H.; Hill, L.E.; Gomes, C.L. Antimicrobial and antioxidant activities of carvacrol microencapsulated in hydroxypropyl-beta-cyclodextrin. Lebensm. Wiss. Technol., 2014, 57(2), 701-709.
[http://dx.doi.org/10.1016/j.lwt.2014.02.014]
[79]
Silva, J.C.; Almeida, J.R.G.S.; Quintans, J.S.S.; Gopalsamy, R.G.; Shanmugam, S.; Serafini, M.R.; Oliveira, M.R.C.; Silva, B.A.F.; Martins, A.O.B.P.B.; Castro, F.F.; Menezes, I.R.A.; Coutinho, H.D.M.; Oliveira, R.C.M.; Thangaraj, P.; Araújo, A.A.S.; Quintans-Júnior, L.J. Enhancement of orofacial antinociceptive effect of carvacrol, a monoterpene present in oregano and thyme oils, by β-cyclodextrin inclusion complex in mice. Biomed. Pharmacother., 2016, 84, 454-461.
[http://dx.doi.org/10.1016/j.biopha.2016.09.065] [PMID: 27685788]
[80]
Trindade, G.G.G.; Thrivikraman, G.; Menezes, P.P.; França, C.M.; Lima, B.S.; Carvalho, Y.M.B.G.; Souza, E.P.B.S.S.; Duarte, M.C.; Shanmugam, S.; Quintans-Júnior, L.J.; Bezerra, D.P.; Bertassoni, L.E.; Araújo, A.A.S. Carvacrol/β-cyclodextrin inclusion complex inhibits cell proliferation and migration of prostate cancer cells. Food Chem. Toxicol., 2019, 125, 198-209.
[http://dx.doi.org/10.1016/j.fct.2019.01.003] [PMID: 30615955]
[81]
Guimarães, A.G.; Oliveira, M.A.; Alves, R.S.; Menezes, P.P.; Serafini, M.R.; Araújo, A.A.; Bezerra, D.P.; Quintans Júnior, L.J. Encapsulation of carvacrol, a monoterpene present in the essential oil of oregano, with β-cyclodextrin, improves the pharmacological response on cancer pain experimental protocols. Chem. Biol. Interact., 2015, 227, 69-76.
[http://dx.doi.org/10.1016/j.cbi.2014.12.020] [PMID: 25557507]
[82]
Tiefensee Ribeiro, C.; Gasparotto, J.; Petiz, L.L.; Brum, P.O.; Peixoto, D.O.; Kunzler, A.; da Rosa Silva, H.T.; Bortolin, R.C.; Almeida, R.F.; Quintans-Junior, L.J.; Araújo, A.A.; Moreira, J.C.F.; Gelain, D.P. Oral administration of carvacrol/β-cyclodextrin complex protects against 6-hydroxydopamine-induced dopaminergic denervation. Neurochem. Int., 2019, 126, 27-35.
[http://dx.doi.org/10.1016/j.neuint.2019.02.021] [PMID: 30849398]
[83]
Yang, Z.; Xiao, Z.; Ji, H. Solid inclusion complex of terpinen-4-Ol/β-cyclodextrin: Kinetic release, mechanism and its antibacterial activity. Flavour Fragrance J., 2015, 30(2), 179-187.
[http://dx.doi.org/10.1002/ffj.3229]
[84]
Silva, J.C. Almeida, J. R. G. S.; Scotti, L.; Scotti, M. T.; Saravanan, S.; Parimelazhagan, T.; Araújo, A. A. S.; Lucindo, J. α-terpineol, a monoterpene alcohol, complexed with β-cyclodextrin exerts antihyperalgesic effect in animal model for fibromyalgia aided with docking study. Chem. Biol. Interact., 2016, 254, 54-62.
[http://dx.doi.org/10.1016/j.cbi.2016.05.029]
[85]
Carlotti, M.E.; Sapino, S.; Cavalli, R.; Trotta, M.; Trotta, F.; Martina, K. Inclusion of cinnamaldehyde in modified γ-cyclodextrins. J. Incl. Phenom. Macrocycl. Chem., 2007, 57(1-4), 445-450.
[http://dx.doi.org/10.1007/s10847-006-9232-9]
[86]
Jiang, S.; Li, J.N.; Jiang, Z.T. Inclusion reactions of β-cyclodextrin and its derivatives with cinnamaldehyde in Cinnamomum loureirii essential oil. Eur. Food Res. Technol., 2010, 230(4), 543-550.
[http://dx.doi.org/10.1007/s00217-009-1192-z]
[87]
Herrera, A.; Rodríguez, F.J.; Bruna, J.E.; Abarca, R.L.; Galotto, M.J.; Guarda, A.; Mascayano, C.; Sandoval-Yáñez, C.; Padula, M.; Felipe, F.R.S. Antifungal and physicochemical properties of inclusion complexes based on β-cyclodextrin and essential oil derivatives. Food Res. Int., 2019, 121(121), 127-135.
[http://dx.doi.org/10.1016/j.foodres.2019.03.026] [PMID: 31108733]
[88]
Cui, H.; Siva, S.; Lin, L. Ultrasound processed cuminaldehyde/2-hydroxypropyl-β-cyclodextrin inclusion complex: Preparation, characterization and antibacterial activity. Ultrason. Sonochem., 2019, 56(April), 84-93.
[http://dx.doi.org/10.1016/j.ultsonch.2019.04.001] [PMID: 31101292]
[89]
Aytac, Z.; Celebioglu, A.; Yildiz, Z.I.; Uyar, T. Efficient encapsulation of citral in fast-dissolving polymer-free electrospun nanofibers of cyclodextrin inclusion complexes: High thermal stability, longer shelf-life, and enhanced water solubility of citral. Nanomaterials (Basel), 2018, 8(10), 1-15.
[http://dx.doi.org/10.3390/nano8100793] [PMID: 30301193]
[90]
Campos, C.A.; Lima, B.S.; Trindade, G.G.G.; Souza, E.P.B.S.S.; Mota, D.S.A.; Heimfarth, L.; Quintans, J.S.S.; Quintans-Júnior, L.J.; Sussuchi, E.M.; Sarmento, V.H.V.; Carvalho, F.M.S.; Marreto, R.N.; Costa, R.M.R.; Nunes, R.S.; Araújo, A.A.S.; Shanmugam, S.; Thangaraj, P. Anti-hyperalgesic and anti-inflammatory effects of citral with β-cyclodextrin and hydroxypropyl-β-cyclodextrin inclusion complexes in animal models. Life Sci., 2019, 229(May), 139-148.
[http://dx.doi.org/10.1016/j.lfs.2019.05.026] [PMID: 31085246]
[91]
Abril- Sánchez. C.; Matencio, A.; Navarro-Orcajada, S.; García-Carmona, F.; López-Nicolás, J.M. Evaluation of the properties of the essential oil citronellal nanoencapsulated by cyclodextrins. Chem. Phys. Lipids, 2019, 219, 72-78.
[http://dx.doi.org/10.1016/j.chemphyslip.2019.02.001]
[92]
Santos, P.L.; Brito, R.G.; Oliveira, M.A.; Quintans, J.S.S.; Guimarães, A.G.; Santos, M.R.V.; Menezes, P.P.; Serafini, M.R.; Menezes, I.R.A.; Coutinho, H.D.M.; Araújo, A.A.; Quintans-Júnior, L.J. Docking, characterization and investigation of β-cyclodextrin complexed with citronellal, a monoterpene present in the essential oil of Cymbopogon species, as an anti-hyperalgesic agent in chronic muscle pain model. Phytomedicine, 2016, 23(9), 948-957.
[http://dx.doi.org/10.1016/j.phymed.2016.06.007] [PMID: 27387403]
[93]
Aytac, Z.; Yildiz, Z.I.; Kayaci-Senirmak, F.; San Keskin, N.O.; Tekinay, T.; Uyar, T. Electrospinning of polymer-free cyclodextrin/geraniol-inclusion complex nanofibers: Enhanced shelf-life of geraniol with antibacterial and antioxidant properties. RSC Advances, 2016, 6(52), 46089-46099.
[http://dx.doi.org/10.1039/C6RA07088D]
[94]
Kayaci, F.; Sen, H.S.; Durgun, E.; Uyar, T. Functional electrospun polymeric nanofibers incorporating geraniol-cyclodextrin inclusion complexes: High thermal stability and enhanced durability of geraniol. Food Res. Int., 2014, 62, 424-431.
[http://dx.doi.org/10.1016/j.foodres.2014.03.033]
[95]
Hadian, Z.; Maleki, M.; Abdi, K.; Atyabi, F.; Mohammadi, A.; Khaksar, R. Preparation and characterization of nanoparticle β-cyclodextrin: Geraniol inclusion complexes. Iran. J. Pharm. Res., 2018, 17(1), 39-51.
[PMID: 29755537]
[96]
Rf Lins, L.C.; Santos, I.M.A.; de Melo, M.S.; Menezes, P. The anticonvulsant effect of geraniol and inclusion complex geraniol: β -cyclodextrin. Bol. Latinoam. Caribe Plantas Med. Aromat., 2014, 13(6), 557-565.
[97]
Karathanos, V.T.; Mourtzinos, I.; Yannakopoulou, K.; Andrikopoulos, N.K. Study of the solubility, antioxidant activity and structure of inclusion complex of vanillin with β-cyclodextrin. Food Chem., 2007, 101(2), 652-658.
[http://dx.doi.org/10.1016/j.foodchem.2006.01.053]
[98]
Zeng, Z.; Fang, Y.; Ji, H. Side chain influencing the interaction between β-cyclodextrin and vanillin. Flavour Fragrance J., 2012, 27(5), 378-385.
[http://dx.doi.org/10.1002/ffj.3115]
[99]
Celebioglu, A. Kayaci-Senirmak, F.; İpek, S.; Durgun, E.; Uyar, T. Polymer-free nanofibers from vanillin/cyclodextrin inclusion complexes: High thermal stability, enhanced solubility and antioxidant property. Food Funct., 2016, 7(7), 3141-3153.
[http://dx.doi.org/10.1039/C6FO00569A] [PMID: 27353870]
[100]
Azzi, J.; Danjou, P.E.; Landy, D.; Ruellan, S.; Auezova, L.; Greige-Gerges, H.; Fourmentin, S. The effect of cyclodextrin complexation on the solubility and photostability of nerolidol as pure compound and as main constituent of Cabreuva essential oil. Beilstein J. Org. Chem., 2017, 13, 835-844.
[http://dx.doi.org/10.3762/bjoc.13.84] [PMID: 28546841]
[101]
Gharib, R.; Auezova, L.; Charcosset, C.; Greige-Gerges, H. Drug-in-cyclodextrin-in-liposomes as a carrier system for volatile essential oil components: Application to anethole. Food Chem., 2017, 218, 365-371.
[http://dx.doi.org/10.1016/j.foodchem.2016.09.110] [PMID: 27719922]
[102]
Kfoury, M.; Auezova, L.; Ruellan, S.; Greige-Gerges, H.; Fourmentin, S. Complexation of estragole as pure compound and as main component of basil and tarragon essential oils with cyclodextrins. Carbohydr. Polym., 2015, 118, 156-164.
[http://dx.doi.org/10.1016/j.carbpol.2014.10.073] [PMID: 25542121]
[103]
Waleczek, K.J.; Marques, H.M.; Hempel, B.; Schmidt, P.C. Phase solubility studies of pure (-)-α-bisabolol and Camomile essential oil with β-cyclodextrin. Eur. J. Pharm. Biopharm., 2003, 55(2), 247-251.
[http://dx.doi.org/10.1016/S0939-6411(02)00166-2] [PMID: 12637105]
[104]
Yin, H.; Wang, C.; Yue, J.; Deng, Y.; Jiao, S.; Zhao, Y.; Zhou, J.; Cao, T. Optimization and characterization of 1,8-cineole/hydroxypropyl-β-cyclodextrin inclusion complex and study of its release kinetics. Food Hydrocoll., 2021, 110, 106159.
[http://dx.doi.org/10.1016/j.foodhyd.2020.106159]
[105]
Celebioglu, A.; Yildiz, Z.I.; Uyar, T. Electrospun nanofibers from cyclodextrin inclusion complexes with cineole and P-cymene: Enhanced water solubility and thermal stability. Int. J. Food Sci. Technol., 2018, 53(1), 112-120.
[http://dx.doi.org/10.1111/ijfs.13564]
[106]
Lawtrakul, L.; Inthajak, K.; Toochinda, P. Molecular calculations on β -cyclodextrin inclusion complexes with five essential oil compounds from Ocimum basilicum (Sweet Basil) 2014, 40, 145-151.
[http://dx.doi.org/10.2306/scienceasia1513-1874.2014.40.145]
[107]
Oliveira, B.P.B.M.A.; Wanderley, A.G.; Alcântara, I.S.; Rodrigues, L.B.; Cesário, F.R.; Correia de Oliveira, M.R.; Castro, F.F. Albuquerque, T.R.; da Silva, M.S., Ribeiro-Filho, J.; Coutinho, H.D. Anti-inflammatory and physicochemical characterization of the croton rhamnifolioides essential oil inclusion complex in β-cyclodextrin. Biology, 2020, 9(6), 114.
[108]
Menezes, P.P.; Serafini, M.R.; Quintans-Júnior, L.J.; Silva, G.F.; Oliveira, J.F.; Carvalho, F.M.S.; Souza, J.C.C.; Matos, J.R.; Alves, P.B.; Matos, I.L. Hădărugă, D.I.; Araújo, A.A.S. Inclusion complex of (-)-linalool and β-cyclodextrin. J. Therm. Anal. Calorim., 2014, 115(3), 2429-2437.
[http://dx.doi.org/10.1007/s10973-013-3367-x]
[109]
Liu, H.; Yang, G.; Tang, Y.; Cao, D.; Qi, T.; Qi, Y.; Fan, G. Physicochemical characterization and pharmacokinetics evaluation of β-caryophyllene/β-cyclodextrin inclusion complex. Int. J. Pharm., 2013, 450(1-2), 304-310.
[http://dx.doi.org/10.1016/j.ijpharm.2013.04.013] [PMID: 23598076]
[110]
Mazzobre, M. F.; Isabel, C.; Buera, P. Solubility and stability of β - cyclodextrin - terpineol inclusion complex as affected by water. 2011, 274-280.
[http://dx.doi.org/10.1007/s11483-011-9208-1]
[111]
Santos, C.; Buera, P.; Mazzobre, M.F. Phase solubility studies of terpineol with β -cyclodextrins and stability of the freeze-dried inclusion complex procedia food science phase solubility studies of terpineol with β -cyclodextrins and stability of the freeze-dried inclusion complex. 2011, 1, 355-362.
[http://dx.doi.org/10.1016/j.profoo.2011.09.055]
[112]
De Sousa, D.P.; Quintans, L., Jr; De Almeida, R.N. Evolution of the anticonvulsant activity of α-terpineol. Pharm. Biol., 2007, 45(1), 69-70.
[http://dx.doi.org/10.1080/13880200601028388]
[113]
Songkro, S.; Hayook, N.; Jaisawang, J.; Maneenuan, D.; Chuchome, T.; Kaewnopparat, N. Investigation of inclusion complexes of Citronella oil, Citronellal and Citronellol with b-cyclodextrin for mosquito repellent. J. Incl. Phenom. Macrocycl. Chem., 2012, 72(3-4), 339-355.
[http://dx.doi.org/10.1007/s10847-011-9985-7]
[114]
Kane, S.N.; Mishra, A.; Dutta, A.K. Preface: International conference on recent trends in physics (ICRTP 2016). J. Phys. Conf. Ser., 2016, 755(1), 011001.
[http://dx.doi.org/10.1088/1742-6596/755/1/011001]
[115]
Menezes, P.P.; Serafini, M.R.; Santana, B.V.; Nunes, R.S.; Quintans, L.J., Jr; Silva, G.F.; Medeiros, I.A.; Marchioro, M.; Fraga, B.P.; Santos, M.R.V.; Araújo, A.A.S. Solid-state β-cyclodextrin complexes containing geraniol. Thermochim. Acta, 2012, 548, 45-50.
[http://dx.doi.org/10.1016/j.tca.2012.08.023]
[116]
Moreira, I.J.; Menezes, P.P.; Serafini, M.R.; Araújo, A.A.; Quintans-Júnior, L.J.; Bonjardim, L.R.; Filho, V.J.; B P, Júnior D.; Santos, S.L.; Júnior, W.L.; Scotti, L.; Scotti, M.T.; Santos, M.R. Characterization and antihypertensive effect of the complex of (-)-β- pinene in β-cyclodextrin. Curr. Pharm. Biotechnol., 2016, 17(9), 837-845.
[http://dx.doi.org/10.2174/1389201017666160425115724] [PMID: 27109904]
[117]
Guzmán-Gutiérrez, S.L.; Bonilla-Jaime, H.; Gómez-Cansino, R.; Reyes-Chilpa, R. Linalool and β-pinene exert their antidepressant-like activity through the monoaminergic pathway. Life Sci., 2015, 128, 24-29.
[http://dx.doi.org/10.1016/j.lfs.2015.02.021] [PMID: 25771248]
[118]
Serafini, M.R.; Menezes, P.P.; Costa, L.P.; Lima, C.M.; Quintans, L.J., Jr; Cardoso, J.C.; Matos, J.R.; Soares-Sobrinho, J.L.; Grangeiro, S., Jr; Nunes, P.S.; Bonjadim, L.R.; Araújo, A.A.S. Interaction of P-cymene with b-cyclodextrin. J. Therm. Anal. Calorim., 2012, 109(2), 951-955.
[http://dx.doi.org/10.1007/s10973-011-1736-x]
[119]
Quintans, J.S.; Menezes, P.P.; Santos, M.R.V.; Bonjardim, L.R.; Almeida, J.R.G.S.; Gelain, D.P.; Araújo, A.A.D.S.; Quintans-Júnior, L.J. Improvement of p-cymene antinociceptive and anti-inflammatory effects by inclusion in β-cyclodextrin. Phytomedicine, 2013, 20(5), 436-440.
[http://dx.doi.org/10.1016/j.phymed.2012.12.009] [PMID: 23357360]
[120]
Silva, J.C.; de Moraes Alcantara, L.F.; Dias Soares, J.M.; Silva, M.G.; de Lavor, É.M.; Andrade, V.M.; dos Passos Menezes, P.; de Souza Araújo, A.A.; Leite, L.H.I.; de Menezes, I.R.A. Docking, Characterization and investigation of β-cyclodextrin complexed with farnesol, an acyclic sesquiterpene alcohol, produces orofacial antinociceptive profile in experimental protocols. Process Biochem., 2017, 62, 193-204.
[http://dx.doi.org/10.1016/j.procbio.2017.07.022]
[121]
Petrovi, G.M.; Stojanovi, G.S. Radulović N.S. Encapsulation of Cinnamon oil in B-cyclodextrin. J. Med. Plants Res., 2013, 4(14), 1382-1390.
[http://dx.doi.org/10.5897/JMPR10.146]
[122]
Li, X.; Yun, J.; Xing, Y.; Xiao, Y.; Tang, Y. Complexation of Cinnamon essential oil by β-cyclodextrin and its release characteristics at high temperature. Adv. Mat. Res., 2011, 146-147, 619-622.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.146-147.619]
[123]
Pan, J.; Ai, F.; Shao, P.; Chen, H.; Gao, H. Development of polyvinyl alcohol/β-cyclodextrin antimicrobial nanofibers for fresh mushroom packaging. Food Chem., 2019, 300(March), 125249.
[http://dx.doi.org/10.1016/j.foodchem.2019.125249] [PMID: 31352291]
[124]
Simionato, I.; Domingues, F.C.; Nerín, C.; Silva, F. Encapsulation of cinnamon oil in cyclodextrin nanosponges and their potential use for antimicrobial food packaging. Food Chem. Toxicol., 2019, 132(June), 110647.
[http://dx.doi.org/10.1016/j.fct.2019.110647] [PMID: 31260710]
[125]
Matshetshe, K.I.; Parani, S.; Manki, S.M.; Oluwafemi, O.S. Preparation, characterization and in vitro release study of β- cyclodextrin/chitosan nanoparticles loaded Cinnamomum zeylanicum essential oil. Int. J. Biol. Macromol, 2018, 118(Pt A), 676-682.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.125] [PMID: 29959997]
[126]
Lin, L.; Dai, Y.; Cui, H. Antibacterial poly(ethylene oxide) electrospun nanofibers containing cinnamon essential oil/beta-cyclodextrin proteoliposomes. Carbohydr. Polym., 2017, 178, 131-140.
[http://dx.doi.org/10.1016/j.carbpol.2017.09.043] [PMID: 29050578]
[127]
Kringel, D.H.; Antunes, M.D.; Klein, B.; Crizel, R.L.; Wagner, R.; de Oliveira, R.P.; Dias, A.R.G.; Zavareze, E.D.R. Production, characterization, and stability of orange or Eucalyptus essential oil/β-cyclodextrin inclusion complex. J. Food Sci., 2017, 82(11), 2598-2605.
[http://dx.doi.org/10.1111/1750-3841.13923] [PMID: 29083485]
[128]
Ren, X.; Yue, S.; Xiang, H.; Xie, M. Inclusion complexes of eucalyptus essential oil with β-cyclodextrin: Preparation, characterization and controlled release. J. Porous Mater., 2018, 25(6), 1577-1586.
[http://dx.doi.org/10.1007/s10934-018-0571-x]
[129]
Anaya-castro, M.A. Ayala-zavala, J.F.; Muñoz-castellanos, L.; Hernández-Ochoa, L.; Peydecastaing, J.; Durrieu, V. β -cyclodextrin inclusion complexes containing clove (Eugenia caryophyllata) and Mexican oregano (Lippia berlandieri) essential oils: Preparation, physicochemical and antimicrobial characterization. Food Packag. Shelf Life, 2017, 14, 96-101.
[http://dx.doi.org/10.1016/j.fpsl.2017.09.002]
[130]
Navarro-Segura, L.; Ros-Chumillas, M.; López-Cánovas, A.E.; García-Ayala, A.; López-Gómez, A. Nanoencapsulated essential oils embedded in ice improve the quality and shelf life of fresh whole seabream stored on ice. Heliyon, 2019, 5(6), e01804.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01804] [PMID: 31286075]
[131]
Kotronia, M.; Kavetsou, E.; Loupassaki, S.; Kikionis, S.; Vouyiouka, S.; Detsi, A. Encapsulation of oregano (Origanum onites L.) essential oil in β -cyclodextrin ( β -CD ): Synthesis and characterization of the inclusion complexes. Bioeng., 4(3), 74.
[http://dx.doi.org/10.3390/bioengineering4030074]
[132]
Benberkane, A.; Khellouf, A.; Benhenia, K.; Fatmi, S.; Iguer-Ouada, M. Rosmarinus officinalis essential oil preloaded in β-cyclodextrin: Effect on Ram spermatozoa motility, membrane integrity and oxidative status during 4°C storage. Cryo Lett., 2019, 40(4), 219-225.
[PMID: 31278402]
[133]
Rakmai, J.; Cheirsilp, B.; Mejuto, J.C.; Simal-Gándara, J.; Torrado-Agrasar, A. Antioxidant and antimicrobial properties of encapsulated Guava leaf oil in hydroxypropyl-beta-cyclodextrin. Ind. Crops Prod., 2017, 2018(111), 219-225.
[http://dx.doi.org/10.1016/j.indcrop.2017.10.027]
[134]
Ayala-zavala, J.F.; Development, A.C.; Leon, A.G.; Development, A.C.; Alvarez-parrilla, E. Microencapsulation of cinnamon leaf (Cinnamomum zelanycum) and garlic (Allium sativum) oils in β -cyclodextrin controlled release of antifungal volatiles of thyme essential oil from b-cyclodextrin capsules. J. Incl. Phenom. Macrocycl. Chem., 2008, 60, 359-368.
[http://dx.doi.org/10.1007/s10847-007-9385-1]
[135]
Lin, L.; Zhu, Y.; Thangaraj, B.; Abdel-Samie, M.A.S.; Cui, H. Improving the stability of thyme essential oil solid liposome by using β-cyclodextrin as a cryoprotectant. Carbohydr. Polym., 2018, 188, 243-251.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.010] [PMID: 29525162]
[136]
Shrestha, M.; Ho, T.M.; Bhandari, B.R. Encapsulation of tea tree oil by amorphous beta-cyclodextrin powder. Food Chem., 2017, 221, 1474-1483.
[http://dx.doi.org/10.1016/j.foodchem.2016.11.003] [PMID: 27979118]
[137]
Galvão, J.G. Silva, V.F.; Ferreira, S.G.; França, F.R.M.; Santos, D.A.; Freitas, L.S.; Alves, P.B.; Araújo, A.A.S.; Cavalcanti, S.C.H.; Nunes, R.S. β-cyclodextrin inclusion complexes containing Citrus sinensis (L.) Osbeck essential oil: An alternative to control Aedes aegypti larvae. Thermochim. Acta, 2015, 608, 14-19.
[http://dx.doi.org/10.1016/j.tca.2015.04.001]
[138]
Garg, A.; Gupta, B.; Prakash, R.; Singh, S. Preparation and characterization of hydroxypropyl-β-cyclodextrin inclusion complex of eugenol: Differential pulse voltammetry and (1)H-NMR. Chem. Pharm. Bull. (Tokyo), 2010, 58(10), 1313-1319.
[http://dx.doi.org/10.1248/cpb.58.1313] [PMID: 20930396]
[139]
Gong, L.; Li, T.; Chen, F.; Duan, X.; Yuan, Y.; Zhang, D.; Jiang, Y. An inclusion complex of eugenol into β-cyclodextrin: Preparation, and physicochemical and antifungal characterization. Food Chem., 2016, 196, 324-330.
[http://dx.doi.org/10.1016/j.foodchem.2015.09.052] [PMID: 26593497]
[140]
Kayaci, F.; Ertas, Y.; Uyar, T. Enhanced thermal stability of eugenol by cyclodextrin inclusion complex encapsulated in electrospun polymeric nanofibers. J. Agric. Food Chem., 2013, 61(34), 8156-8165.
[http://dx.doi.org/10.1021/jf402923c] [PMID: 23898890]
[141]
Li, X.; Jin, Z.; Wang, J. Complexation of allyl isothiocyanate by α- and β-cyclodextrin and its controlled release characteristics. Food Chem., 2007, 103(2), 461-466.
[http://dx.doi.org/10.1016/j.foodchem.2006.08.017]
[142]
Piercey, M.J.; Mazzanti, G.; Budge, S.M.; Delaquis, P.J.; Paulson, A.T.; Truelstrup Hansen, L. Antimicrobial activity of cyclodextrin entrapped allyl isothiocyanate in a model system and packaged fresh-cut onions. Food Microbiol., 2012, 30(1), 213-218.
[http://dx.doi.org/10.1016/j.fm.2011.10.015] [PMID: 22265303]
[143]
Wang, J.; Qiu, C.; Narsimhan, G.; Jin, Z. Preparation and characterization of ternary antimicrobial films of β-cyclodextrin/allyl isothiocyanate/polylactic acid for the enhancement of long-term controlled release. Materials (Basel), 2017, 10(10), E1210.
[http://dx.doi.org/10.3390/ma10101210] [PMID: 29053573]
[144]
Abarca, R.L.; Rodríguez, F.J.; Guarda, A.; Galotto, M.J.; Bruna, J.E. Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component. Food Chem., 2016, 196, 968-975.
[http://dx.doi.org/10.1016/j.foodchem.2015.10.023] [PMID: 26593579]
[145]
Ponce Cevallos, P.A.; Buera, M.P.; Elizalde, B.E. Encapsulation of cinnamon and thyme essential oils components (cinnamaldehyde and thymol) in β-cyclodextrin: Effect of interactions with water on complex stability. J. Food Eng., 2010, 99(1), 70-75.
[http://dx.doi.org/10.1016/j.jfoodeng.2010.01.039]
[146]
Tao, F.; Hill, L.E.; Peng, Y.; Gomes, C.L. Synthesis and characterization of β-cyclodextrin inclusion complexes of thymol and thyme oil for antimicrobial delivery applications. Lebensm. Wiss. Technol., 2014, 59(1), 247-255.
[http://dx.doi.org/10.1016/j.lwt.2014.05.037]
[147]
Celebioglu, A.; Yildiz, Z.I.; Uyar, T. Thymol/cyclodextrin inclusion complex nanofibrous webs: Enhanced water solubility, high thermal stability and antioxidant property of thymol. Food Res. Int., 2018, 106, 280-290.
[http://dx.doi.org/10.1016/j.foodres.2017.12.062] [PMID: 29579928]
[148]
LeBlanc, B.W. Boué, S.; De-Grandi Hoffman, G.; Deeby, T.; McCready, H.; Loeffelmann, K. β-cyclodextrins as carriers of monoterpenes into the hemolymph of the honey bee (Apis mellifera) for integrated pest management. J. Agric. Food Chem., 2008, 56(18), 8565-8573.
[http://dx.doi.org/10.1021/jf801607c] [PMID: 18710247]
[149]
Ayala-Zavala, J.F.; Soto-Valdez, H.; González-León, A.; Álvarez-Parrilla, E.; Martín-Belloso, O.; González-Aguilar, G.A. Microencapsulation of cinnamon leaf (Cinnamomum zeylanicum) and garlic (Allium sativum) oils in β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem., 2008, 60(3-4), 359-368.
[http://dx.doi.org/10.1007/s10847-007-9385-1]
[150]
Chongmelaxme, B.; Sruamsiri, R.; Dilokthornsakul, P.; Dhippayom, T.; Kongkaew, C.; Saokaew, S.; Chuthaputti, A.; Chaiyakunapruk, N. Clinical effects of Zingiber cassumunar (plai): A systematic review. Complement. Ther. Med., 2017, 35(September), 70-77.
[http://dx.doi.org/10.1016/j.ctim.2017.09.009] [PMID: 29154071]
[151]
Peng, X.; Tan, Z. Application of alpha-terpilenol-beta-cyclodextrin inclusion compound in preparing animal feed additive. C.N. Patent 105341359A, February 24, 2016.
[152]
Qiang, G.; Hu, X.; Ming, Li.; Li, R.; Wu, X.; Li, Z. The Citral HPBeta- CD.K. Slow release film agent used for preventing and controlling rice blast. C.N. Patent 106070209A, November 9, 2016.
[153]
Peng, Y.; Teng, L.; Yi, W.; Yang, Y.; Yin, H.; Zhou, H. Star anise oil-beta-cyclodextrin inclusion compound, and preparation method and pharmaceutical composition thereof. C.N. Patent 103690969A, April 2, 2014.
[154]
Xu, W. Sea-buckthorn oil and cyclodextrin clathrate. C.N. Patent 106421811A, February 22, 2017.
[155]
Sun, B.; Wang, C.; Jing, W.; Cao, Y. Garlic oil cyclodextrin or cyclodextrin derivate inclusion compound and preparation method. C.N. Patent 101485446A, July 22, 2009.
[156]
Xu, W. Peppermint essential oil and mixed cyclodextrin inclusion compound and preparation method thereof. C.N. Patent 103271991A, September 4, 2013.
[157]
Liu, Y.; Wang, X.; Zhang, Z. Ginger essential oil cyclodextrin inclusion compound and preparation method thereof. C.N. Patent 105169410A, December 23, 2015.
[158]
Xu, W. Mustard essential oil and mixed cyclodextrin inclusion compound and preparation method thereof. C.N. Patent 103284111A, September 11, 2013.
[159]
Xu, W. Preparation method of sea buckthorn oil and cyclodextrin inclusion compound. C.N. Patent 106038625A, October 26, 2016.
[160]
Xu, W. Angelica essential oil and mixed cyclodextrin clathrate and preparation method thereof. C.N. Patent 103272246A, September 4, 2013.
[161]
Xu, W. Fennel oil-mixed cyclodextrin clathrate compound and preparation method thereof. C.N. Patent 103271957A, September 4, 2013.
[162]
Hou, Y. Cyclodextrin inclusion compound containing angelica volatile oil. C.N. Patent 102078349A, June 1, 2011.
[163]
Xu, W. Fresh ginger essential oil and mixed cyclodextrin inclusion compound and preparation method thereof. C.N. Patent 103263651A, August 28, 2013.
[164]
Cui, D.; Li, J.; Meng, J.; Wang, L.; Wang, X.; Wang, X.; Yang, Z.; Zhang, J.; Zhang, K. Inclusion compound containing camphor oil and preparation method thereof. C.N. Patent 105194686A, December 30, 2015.
[165]
Chen, Z. Modified cyclodextrin and application thereof. C.N. Patent 108997513A, December 14, 2018.
[166]
Yang, W.; Yu, Z. Hydroxypropyl cbelta-cyclodextrin inclusion compound of Brucea fruit volatile oil, its preparation method and use. C.N. Patent 101306025A, November 19, 2008.
[167]
Chen, Y.; Jia, M.; Li, K.; Liu, H.; Xu, C.; Zhang, H. Preparation method of lavender oil hydroxypropyl-beta-cyclodextrin inclusion compound. C.N. Patent 107496938A, December 22, 2017.
[168]
Chen, C.; Hu, S.; Tang, J.; Wang, J. Preparation method of Zingiber corallinum hance essential oil/hydroxypropyl-beta-cyclodextrin clathrate and preparation method of Zingiber corallinum hance essential oil/hydroxypropyl-beta-cyclodextrin clathrate injection. C.N. Patent 102847102A, January 2, 2013.
[169]
Guo, T.; He, Z.; Song, H. Garlicin and garlic oil cyclodextrin derivatives inclusion compound and method for making same. C.N. Patent 1448129A, October 15, 2003.
[170]
Baochanh, C.; Chen, J.; Mao, C.; Cheng, N.; Lu, T. Hydroxypropyl- beta-cyclodextrin inclusion liposome of zedoary turmeric oil and preparation method thereof. C.N. Patent 101926962A, December 29, 2010.
[171]
Han, L.; Han, Y.; Li, W.; Shen, X.; Wang, X.; Xu, X.; Zhang, H.; Zhang, Y. Method for preparing lavender oil beta-cyclodextrin inclusion compound. C.N. Patent 107550980A, January 9, 2018.
[172]
Biao, L.; Li, M.; Li, Y.; Meng, Y.; Sun, X.; Wu, W.; Zhao, X.; Zu, Y. Production technology of preparing solid powdered peony seed oil by beta-cyclodextrin inclusion. C.N. Patent 105961647A, September 28, 2016.
[173]
Ai, L.; Dong, Y.; Zhang, N. Hydroypropyl-beta-cyclodextrin inclusion compound of Rhizoma zedoariae oil and preparation and preparing method. C.N. Patent 1195527C, June 6, 2005.
[174]
Chen, L.; Jiang, Z.; Li, R. Method for preparing Melissa officinalis L. essential oil and beta-cyclodextrin molecule microcapsule. C.N. Patent 103170286A, June 26, 2013.
[175]
Deng, J.; Du, Y.; Du, Z.; Hao, E.; Hou, X.; Qi, B.; Zhang, Z. Extraction process for volatile oil of cinnamon and beta-cyclodextrin inclusion process. C.N. Patent 109797045A, May 24, 2019.
[176]
Su, Y. Ginger essential oil hydroxypropyl-beta-cyclodextrin microcapsule and preparation method thereof. C.N. Patent 105251419A, January 20, 2016.
[177]
Liu, M.; Zhao, K. Rhizoma chuanxiong volatile oil and hydroxypropyl- beta-cyclodextrin inclusion compound and preparation method thereof. C.N. Patent 108042812A, May 18, 2018.
[178]
Kin, J.H.; Kim, H.I.; Kim, H.J.; Park, H.S.; Shin, K.J. Grape seed oil which improves oxidative stability and method thereof. K.R. Patent 100773050B1, November 2, 2007.
[179]
Zhou, J.; Min, H.; Zhou, R.; Huang, Y.; Cheng, Y. Method for preparing pogostemon cablin volatile oil beta-cyclodextrin clathrate compound by ultrasonic method. C.N. Patent 101822713A, September 8, 2010.
[180]
Liang, J.; Wang, D. Krill oil clathrate compound and preparation method and application thereof. C.N. Patent 105381471A, March 9, 2016.
[181]
Chen, F.; He, L.; Li, M.; Liu, J.; Liu, S.; Wu, J.; Zeng, P.; Zhang, J. Preparation process of Ganfule volatile oil included by cyclodextrin. C.N. Patent 102935206A, February 20, 2013.
[182]
Li, D.; Yang, W.; Tian, Y. Hydroxypropyl-beta-cyclodextrin inclusion compound of Ginseng essential oil, preparation method and application. C.N. Patent 101862362A, October 20, 2010.
[183]
Song, J.; Tang, Y. Preparation method of fresh ginger volatile oil beta-cyclodextrin microspheres. C.N. Patent 108295226A, July 20, 2018.
[184]
Yu, C.; Li, C.; Yan, H.; Gu, Z. Method for preparing clove oil microcapsules employing cyclodextrin mother solution. C.N. Patent 101648126A, February 17, 2010.
[185]
Yang, W.; Yu, Z. Hydroxypropyl/cbelta-cyclodextrin inclusion compound of Chinese angelica volatile oil, its preparation method and use. C.N. Patent 101306029A, November 19, 2008.
[186]
Bo, Z.; Chen, D.; Ying, L. Preparation method for evening primrose oil tablet. CN Patent 1078908A, 1993.
[187]
Liu, X. Method for preparing honeysuckle essential oil-betacyclodextrin inclusion compound. C.N. Patent 107802841A, March 3, 2018.
[188]
Wei, L.W. Oil seed Bruceae lyophilized powder for injection and its preparing method. C.N. Patent 100349582C, November 21, 2007.
[189]
Song, J.; Yan, P.; Zhang, H.; Zhang, Y.; Zheng, M. Preparation method of perilla volatile oil beta-cyclodextrin microspheres. C.N. Patent 108159115A, June 15, 2018.
[190]
Zhang, J. Method for preparing flos lonicerae essential oil-betacyclodextrin inclusion compounds. C.N. Patent 107828517A, March 23, 2018.
[191]
Li, W.; Shen, X.; Song, J.; Wang, X.; Zhang, H.; Zhang, Y. Preparation method of dried tangerine peel volatile oil beta-cyclodextrin microspheres. C.N. Patent 108295134A, July 20, 2017.
[192]
Saokham, P.; Muankaew, C.; Jansook, P.; Loftsson, T. Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules, 2018, 23(5), E1161.
[http://dx.doi.org/10.3390/molecules23051161] [PMID: 29751694]
[193]
Kfoury, M.; Landy, D.; Fourmentin, S. Characterization of cyclodextrin/volatile inclusion complexes: A review. Molecules, 2018, 23(5), 1-23.
[http://dx.doi.org/10.3390/molecules23051204] [PMID: 29772824]
[194]
Marques, H.M.C. A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragr J., 2019, 25(5), 313-326.
[http://dx.doi.org/10.1002/ffj.2019]
[195]
Sharma, N.; Baldi, A. Exploring versatile applications of cyclodextrins: An overview. Drug Deliv., 2016, 23(3), 739-757.
[http://dx.doi.org/10.3109/10717544.2014.938839] [PMID: 25051096]
[196]
Xiao, Z.; Zhang, Y.; Niu, Y.; Ke, Q.; Kou, X. Cyclodextrins as carriers for volatile aroma compounds: A review. Carbohydr. Polym., 2021, 269(100), 118292.
[http://dx.doi.org/10.1016/j.carbpol.2021.118292] [PMID: 34294318]
[197]
Loftsson, T.; Moya-Ortega, M.D.; Alvarez-Lorenzo, C.; Concheiro, A.; Alvarez-Lorenzo, C.; Concheiro, A. Pharmacokinetics of cyclodextrins and drugs after oral and parenteral administration of drug/cyclodextrin complexes. J. Pharm. Pharmacol., 2016, 68(5), 544-555.
[http://dx.doi.org/10.1111/jphp.12427] [PMID: 26059798]
[198]
Loftsson, T.; Brewster, M.E. Pharmaceutical applications of cyclodextrins: Effects on drug permeation through biological membranes. J. Pharm. Pharmacol., 2011, 63(9), 1119-1135.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01279.x]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy