Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Research Article

Improved Neural Differentiation of Human-induced Pluripotent Stem Cell [hiPSCs] on a Novel Polyurethane-based Scaffold Containing Iron Oxide Nanoparticles [Fe2O3 NPs]

Author(s): Monireh Sadat Hoseinian, Delaram Poormoghadam, Fatemeh Kheirollahzadeh, Arya Mojtahedi, Ali Salimi* and Raheleh Halabian*

Volume 18, Issue 7, 2023

Published on: 26 August, 2022

Page: [993 - 1000] Pages: 8

DOI: 10.2174/1574888X17666220630090418

Price: $65

conference banner
Abstract

Background: Repair of the nervous system in humans has always been complicated and faced difficulties. Cell transplantation approaches using biocompatible scaffolds might be an attractive therapeutic strategy for neuronal regeneration.

Objective: We designed a cell delivery platform based on polyurethane [PU] and modified it with iron oxide nanoparticles [Fe2O3 NPs] for neural induction of human-induced pluripotent stem cells [hiPSC]. Forskolin, IBMX, and different ratios of FBS were employed to induce neurogenesis of hiPSCs. Neural differentiations were assessed at the level of genes and proteins.

Methods: As was shown by MTT colorimetric assay, the proliferation and viability of SNL 76/7 on PU/ Fe2O3 were superior in comparison with pure PU and Fe2O3. hiPSCs cultured with PU/Fe2O3 exhibited an elevated expression of β3-tubulin, MAP2, NSE, OLIG2, as compared to controls. Furthermore, Acridine Orange staining assured the survival and viability of hiPSCs after 14 days of differentiation.

Results: All in all, our findings pointed out the biocompatibility and positive regulatory effect of PU/Fe2O3 on neural markers.

Conclusion: We believe this scaffold could be a potential candidate for future nerve differentiation applications.

Keywords: Neural differentiation, nanocomposite scaffold, human induced pluripotent stem cell, iron oxide nanoparticles, polyurethanes, Fe2O3.

Graphical Abstract

[1]
Khademhosseini A, Langer R. A decade of progress in tissue engineering. Nat Protoc 2016; 11(10): 1775-81.
[http://dx.doi.org/10.1038/nprot.2016.123] [PMID: 27583639]
[2]
Shrestha S, Shrestha BK, Lee J, et al. A conducting neural interface of polyurethane/silk-functionalized multiwall carbon nanotubes with enhanced mechanical strength for neuroregeneration. Mater Sci Eng C 2019; 102: 511-23.
[http://dx.doi.org/10.1016/j.msec.2019.04.053] [PMID: 31147022]
[3]
Singh A, Shiekh PA, Das M, Seppälä J, Kumar A. Aligned chitosan-gelatin cryogel-filled polyurethane nerve guidance channel for neural tissue engineering: Fabrication, characterization, and in vitro evaluation. Biomacromolecules 2019; 20(2): 662-73.
[http://dx.doi.org/10.1021/acs.biomac.8b01308] [PMID: 30354073]
[4]
Farokhi M, Mottaghitalab F, Saeb MR, et al. Conductive biomaterials as substrates for neural stem cells differentiation towards neuronal lineage cells. Macromol Biosci 2021; 21(1): e2000123.
[http://dx.doi.org/10.1002/mabi.202000123] [PMID: 33015992]
[5]
Norouz F, Halabian R, Salimi A, Ghollasi M. A new nanocomposite scaffold based on polyurethane and clay nanoplates for osteogenic differentiation of human mesenchymal stem cells in vitro. Mater Sci Eng C 2019; 103: 109857.
[http://dx.doi.org/10.1016/j.msec.2019.109857] [PMID: 31349533]
[6]
Guelcher SA. Biodegradable polyurethanes: Synthesis and applications in regenerative medicine. Tissue Eng Part B Rev 2008; 14(1): 3-17.
[http://dx.doi.org/10.1089/teb.2007.0133] [PMID: 18454631]
[7]
Saniei M, Baharvand H. Human embryonic stem cell science in muslim context:“Ethics of human dignity” and “ethics of healing”. Adv Med Ethics 2018; 4(1): 7-21.
[8]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76.
[9]
Huang C-Y, Liu C-L, Ting C-Y, et al. Human iPSC banking: Barriers and opportunities. J Biomed Sci 2019; 26(1): 87.
[http://dx.doi.org/10.1186/s12929-019-0578-x] [PMID: 31660969]
[10]
Nobile S, Nobile L. Nanotechnology for biomedical applications: Recent advances in neurosciences and bone tissue engineering. Polym Eng Sci 2017; 57(7): 644-50.
[http://dx.doi.org/10.1002/pen.24595]
[11]
Braddock M. Nanomedicines: Design, delivery and detection Royal society of chemistry. 2016.
[12]
Poormoghadam D, Almasi A, Ashrafizadeh M, Sarem Vishkaei A, Rezayat SM, Tavakol S. The particle size of drug nanocarriers dictates the fate of neurons; critical points in neurological therapeutics. Nanotechnology 2020; 31(33): 335101.
[http://dx.doi.org/10.1088/1361-6528/ab8d6b] [PMID: 32479427]
[13]
Eivazzadeh-Keihan R, Bahojb Noruzi E, Khanmohammadi Chenab K, et al. Metal-based nanoparticles for bone tissue engineering. J Tissue Eng Regen Med 2020; 14(12): 1687-714.
[http://dx.doi.org/10.1002/term.3131] [PMID: 32914573]
[14]
Ziv-Polat O, Skaat H, Shahar A, Margel S. Novel magnetic fibrin hydrogel scaffolds containing thrombin and growth factors conjugated iron oxide nanoparticles for tissue engineering. Int J Nanomedicine 2012; 7: 1259-74.
[http://dx.doi.org/10.2147/IJN.S26533] [PMID: 22419873]
[15]
Chung T-H, Hsu S-C, Wu S-H, et al. Dextran-coated iron oxide nanoparticle-improved therapeutic effects of human mesenchymal stem cells in a mouse model of Parkinson’s disease. Nanoscale 2018; 10(6): 2998-3007.
[http://dx.doi.org/10.1039/C7NR06976F] [PMID: 29372743]
[16]
Ngadiman NHA, Yusof NM, Idris A, Misran E, Kurniawan D. Development of highly porous biodegradable γ-Fe2O3/polyvinyl alcohol nanofiber mats using electrospinning process for biomedical application. Mater Sci Eng C 2017; 70(Pt 1): 520-34.
[http://dx.doi.org/10.1016/j.msec.2016.09.002] [PMID: 27770924]
[17]
Qiao R, Jia Q, Hüwel S, et al. Receptor-mediated delivery of magnetic nanoparticles across the blood-brain barrier. ACS Nano 2012; 6(4): 3304-10.
[http://dx.doi.org/10.1021/nn300240p] [PMID: 22443607]
[18]
Li Y, Zhu C, Kan J. Preparation and characteristics of γ-Fe2O3/Polyaniline-Curcumin composites. Metals (Basel) 2015; 5(4): 2401-12.
[http://dx.doi.org/10.3390/met5042401]
[19]
Kumar VB, Marcus M, Porat Z, et al. Ultrafine highly magnetic fluorescent γ-Fe2O3/NCD nanocomposites for neuronal manipulations. ACS Omega 2018; 3(2): 1897-903.
[http://dx.doi.org/10.1021/acsomega.7b01666] [PMID: 30023817]
[20]
Shahrousvand M, Hoseinian MS, Ghollasi M, Karbalaeimahdi A, Salimi A, Tabar FA. Flexible magnetic polyurethane/Fe2O3 nanoparticles as organic-inorganic nanocomposites for biomedical applications: Properties and cell behavior. Mater Sci Eng C 2017; 74: 556-67.
[http://dx.doi.org/10.1016/j.msec.2016.12.117] [PMID: 28254331]
[21]
Selzer M, Clarke S, Cohen L, Kwakkel G, Miller R. Textbook of neural repair and rehabilitation. Cambridge University Press 2014.
[22]
Zagho MM, Hussein EA, Elzatahry AA. Recent overviews in functional polymer composites for biomedical applications. Polymers (Basel) 2018; 10(7): 739.
[http://dx.doi.org/10.3390/polym10070739] [PMID: 30960664]
[23]
Poormoghadam D, Ghollasi M, Babavalian H, et al. Modification and characterization of an innovative polyvinyl alcohol-45S5 bioactive glass nanocomposite scaffold containing Donepezil hydrochloride for bone tissue engineering applications. Mater Lett 2021; 300: 130160.
[http://dx.doi.org/10.1016/j.matlet.2021.130160]
[24]
Shams M, Karimi M, Ghollasi M, Nezafati N, Salimi A. Electrospun poly-l-lactic acid nanofibers decorated with melt-derived S53P4 bioactive glass nanoparticles. Ceram Int 2018; 44(16): 20211-9.
[http://dx.doi.org/10.1016/j.ceramint.2018.08.005]
[25]
Enderami SE, Soleimani M, Mortazavi Y, Nadri S, Salimi A. Generation of insulin-producing cells from human adipose-derived mesenchymal stem cells on PVA scaffold by optimized differentiation protocol. J Cell Physiol 2018; 233(5): 4327-37.
[http://dx.doi.org/10.1002/jcp.26266] [PMID: 29150935]
[26]
Ghiasi M, Jadidi K, Hashemi M, Zare H, Salimi A, Aghamollaei H. Application of mesenchymal stem cells in corneal regeneration. Tissue Cell 2021; 73: 101600.
[http://dx.doi.org/10.1016/j.tice.2021.101600] [PMID: 34371292]
[27]
Kimura H, Ouchi T, Shibata S, et al. Stem cells purified from human induced pluripotent stem cell-derived neural crest-like cells promote peripheral nerve regeneration. Sci Rep 2018; 8(1): 10071.
[http://dx.doi.org/10.1038/s41598-018-27952-7] [PMID: 29968745]
[28]
KarbalaeiMahdi A, Shahrousvand M, Javadi HR, et al. Neural differentiation of human induced pluripotent stem cells on polycaprolactone/gelatin bi-electrospun nanofibers. Mater Sci Eng C 2017; 78: 1195-202.
[http://dx.doi.org/10.1016/j.msec.2017.04.083] [PMID: 28575957]
[29]
Khan FA, Almohazey D, Alomari M, Almofty SA. Impact of nanoparticles on neuron biology: Current research trends. Int J Nanomedicine 2018; 13: 2767-76.
[http://dx.doi.org/10.2147/IJN.S165675] [PMID: 29780247]
[30]
Marcus M, Karni M, Baranes K, et al. Iron oxide nanoparticles for neuronal cell applications: Uptake study and magnetic manipulations. J Nanobiotechnology 2016; 14(1): 37.
[http://dx.doi.org/10.1186/s12951-016-0190-0] [PMID: 27179923]
[31]
Pisanic TR II, Blackwell JD, Shubayev VI, Fiٌñones RR, Jin S. Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials 2007; 28(16): 2572-81.
[http://dx.doi.org/10.1016/j.biomaterials.2007.01.043] [PMID: 17320946]
[32]
Deng M, Huang Z, Zou Y, Yin G, Liu J, Gu J. Fabrication and neuron cytocompatibility of iron oxide nanoparticles coated with silk-fibroin peptides. Colloids Surf B Biointerfaces 2014; 116: 465-71.
[http://dx.doi.org/10.1016/j.colsurfb.2014.01.021] [PMID: 24552663]
[33]
Katebi S, Esmaeili A, Ghaedi K, Zarrabi A. Superparamagnetic iron oxide nanoparticles combined with NGF and quercetin promote neuronal branching morphogenesis of PC12 cells. Int J Nanomedicine 2019; 14: 2157-69.
[http://dx.doi.org/10.2147/IJN.S191878] [PMID: 30992663]
[34]
Kim JA, Lee N, Kim BH, et al. Enhancement of neurite outgrowth in PC12 cells by iron oxide nanoparticles. Biomaterials 2011; 32(11): 2871-7.
[http://dx.doi.org/10.1016/j.biomaterials.2011.01.019] [PMID: 21288566]
[35]
Salimi A, Nadri S, Ghollasi M, Khajeh K, Soleimani M. Comparison of different protocols for neural differentiation of human induced pluripotent stem cells. Mol Biol Rep 2014; 41(3): 1713-21.
[http://dx.doi.org/10.1007/s11033-014-3020-1] [PMID: 24469709]
[36]
Polak P, Shefi O. Nanometric agents in the service of neuroscience: Manipulation of neuronal growth and activity using nanoparticles. Nanomedicine 2015; 11(6): 1467-79.
[http://dx.doi.org/10.1016/j.nano.2015.03.005] [PMID: 25819887]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy