Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Development of a Novel Self-Dissolving Microneedle-Assisted Percutaneous Delivery System of Diacerein through Solid Dispersion Gel: Solubility Enhancement, Proof of Anti-inflammatory Activity and Safety

Author(s): Maryam Shabbir, Kashif Barkat*, Muhammad Umer Ashraf and Uzair Nagra

Volume 20, Issue 9, 2023

Published on: 27 August, 2022

Page: [1351 - 1367] Pages: 17

DOI: 10.2174/1567201819666220629123058

Price: $65

Abstract

Background: Diacerein, an osteoarthiritis drug, experiences slow topical permeation due to limited solubility. Additionally, it shows a laxative effect due to acid/base hydrolysis of the drug in the colon.

Objective: Diacerein solubility was improved to increase percutaneous drug delivery.

Methods: To improve saturation solubility of the drug, Diacerein was pre-treated with Polysorbate 80 aqueous solution (1% v/v) to obtain lyophilized powder after wet milling or formulated as solid dispersion using PEG 4000 by fusion method. The lyophilized Diacerein in hydroxypropyl methylcellulose (HPMC 8% w/w) and polyvinyl pyrrolidone (PVP 30% w/w) matrix, with PEG 400 as co-solvent, provided an optimized array. The solid dispersion was loaded in the CMC based gel for subsequent administration on dissolving microneedle-treated skin.

Results: The addition of PEG 400 increased Diacerein loading in microneedles to 390.35±4.28 μg per array. The lyophilized drug displayed amorphous characteristics in the dissolving microneedles as per XRD analysis. SEM photographs showed uniformity in the surface topology of microneedles. The needles showed rapid polymer dissolution within 5 minutes, whereas methylene-blue distribution confirmed the formation of microcavities in excised rat skin. The drug-loaded arrays showed better permeation (74.39%) and skin deposition (15.75%) after 24 hours, however, ⁓12% of Diacerein remained in the baseplate. This led to the tailoring of CMC-based gel (3% w/v) containing 0.4% solid dispersion of Diacerein. When compared to untreated skin, the gel improved permeation rate by 2.43 folds through aqueous microchannels generated by dissolving microneedle pre-treatment and allowed 98% drug permeation. The quasi-Fickian diffusion mechanism was found to drive ex vivo release kinetics, with a shorter lag time (0.88 h) and higher flux (26.65 μg/sq.cm.h). Microneedle-assisted Diacerein gel showed a positive anti-inflammatory effect in the paw edema model and reduced diarrheal episodes in comparison to the marketed oral formulation. The gel showed desired characteristics at 5°C±2°C when tested under accelerated stability conditions.

Conclusion: The present study reports for the first time the verification of efficacy and safety to advocate the suitability of Diacerein for percutaneous delivery through dissolving microneedle-treated skin.

Keywords: Diacerein, microneedle, permeation enhancement, solid dispersion, stabilizer, solubility.

Graphical Abstract

[1]
Lane, N.E.; Brandt, K.; Hawker, G.; Peeva, E.; Schreyer, E.; Tsuji, W.; Hochberg, M.C. OARSI-FDA initiative: Defining the disease state of osteoarthritis. Osteoarthritis Cartilage, 2011, 19(5), 478-482.
[http://dx.doi.org/10.1016/j.joca.2010.09.013] [PMID: 21396464]
[2]
Rintelen, B.; Neumann, K.; Leeb, B.F. A meta-analysis of controlled clinical studies with diacerein in the treatment of osteoarthritis. Arch. Intern. Med., 2006, 166(17), 1899-1906.
[http://dx.doi.org/10.1001/archinte.166.17.1899] [PMID: 17000948]
[3]
Dyer, E.; Heflin, M. Osteoarthritis: Its course in older patients and current treatment methods. Clin. Geriatr., 2005, 13(7), 18.
[4]
Hochberg, M.C.; Altman, R.D.; Brandt, K.D.; Clark, B.M.; Dieppe, P.A.; Griffin, M.R.; Moskowitz, R.W.; Schnitzer, T.J. Guidelines for the medical management of osteoarthritis. Part II. Osteoarthritis of the knee. Arthritis Rheum., 1995, 38(11), 1541-1546.
[http://dx.doi.org/10.1002/art.1780381104] [PMID: 7488273]
[5]
Permuy, M.; Guede, D.; López-Peña, M.; Muñoz, F.; Caeiro, J-R.; González-Cantalapiedra, A. Comparison of various SYSADOA for the osteoarthritis treatment: An experimental study in rabbits. BMC Musculoskelet. Disord., 2015, 16(1), 120.
[http://dx.doi.org/10.1186/s12891-015-0572-8] [PMID: 25986068]
[6]
Pavelka, K.; Bruyère, O.; Cooper, C.; Kanis, J.A.; Leeb, B.F.; Maheu, E.; Martel-Pelletier, J.; Monfort, J.; Pelletier, J.P.; Rizzoli, R.; Reginster, J.Y. Diacerein: Benefits, risks and place in the management of osteoarthritis. An opinion-based report from the ESCEO. Drugs Aging, 2016, 33(2), 75-85.
[http://dx.doi.org/10.1007/s40266-016-0347-4] [PMID: 26849131]
[7]
Zhang, W.; Nuki, G.; Moskowitz, R.W.; Abramson, S.; Altman, R.D.; Arden, N.K.; Bierma-Zeinstra, S.; Brandt, K.D.; Croft, P.; Doherty, M.; Dougados, M.; Hochberg, M.; Hunter, D.J.; Kwoh, K.; Lohmander, L.S.; Tugwell, P. OARSI recommendations for the management of hip and knee osteoarthritis: Part III: Changes in evidence following systematic cumulative update of research published through January 2009. Osteoarthritis Cartilage, 2010, 18(4), 476-499.
[http://dx.doi.org/10.1016/j.joca.2010.01.013] [PMID: 20170770]
[8]
Ng, K.W.; Lau, W.M. Skin deep: The basics of human skin structure and drug penetration. In: Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement; Dragicevic, N.; Maibach, H., Eds.; Springer: Berlin, Heidelberg, 2015; pp. 3-11.
[9]
Holmgaard, R.; Nielsen, J.B. Danish Environmental Protection Agency, Dermal absorption of pesticides: Evaluation of variability and prevention, 2009. Available from: https://www2.mst.dk/udgiv/publications/2009/978-87-7052-980-8/pdf/978-87-7052-981-5.pdf
[10]
Moghddam, S.R.M.; Ahad, A.; Aqil, M.; Imam, S.S.; Sultana, Y. Formulation and optimization of niosomes for topical diacerein delivery using 3-factor, 3-level Box-Behnken design for the management of psoriasis. Mater. Sci. Eng. C, 2016, 69, 789-797.
[http://dx.doi.org/10.1016/j.msec.2016.07.043] [PMID: 27612773]
[11]
Wally, V.; Hovnanian, A.; Ly, J.; Buckova, H.; Brunner, V.; Lettner, T. Diacerein orphan drug development for epidermolysis bullosa simplex: A phase 2/3 randomized, placebo-controlled, double-blind clinical trial. J. Am. Acad. Dermatol., 2018, 78(5), 892-901.
[12]
Ablinger, M.; Felder, T.K.; Wimmer, M.; Zauner, R.; Hofbauer, P.; Lettner, T.; Wolkersdorfer, M.; Lagler, F.B.; Diem, A.; Bauer, J.W.; Wally, V. Basal pharmacokinetic parameters of topically applied diacerein in pediatric patients with generalized severe epidermolysis bullosa simplex. Orphanet J. Rare Dis., 2018, 13(1), 193.
[http://dx.doi.org/10.1186/s13023-018-0940-1] [PMID: 30382914]
[13]
Aziz, D.E.; Abdelbary, A.A.; Elassasy, A.I. Fabrication of novel elastosomes for boosting the transdermal delivery of diacerein: Statistical optimization, ex vivo permeation, in vivo skin deposition and pharmacokinetic assessment compared to oral formulation. Drug Deliv., 2018, 25(1), 815-826.
[http://dx.doi.org/10.1080/10717544.2018.1451572] [PMID: 29557244]
[14]
Rehman, M.; Madni, A.; Ihsan, A.; Khan, W.S.; Khan, M.I.; Mahmood, M.A.; Ashfaq, M.; Bajwa, S.Z.; Shakir, I. Solid and liquid lipid-based binary solid lipid nanoparticles of diacerein: In vitro evaluation of sustained release, simultaneous loading of gold nanoparticles, and potential thermoresponsive behavior. Int. J. Nanomedicine, 2015, 10, 2805-2814.
[http://dx.doi.org/10.2147/IJN.S67147] [PMID: 25897224]
[15]
Pawbake, G.R.; Shirolkar, S.V. Formulation, development and evaluation of Nanostructured Lipid Carrier (NLC) based gel for topical delivery of diacerein. Syst. Rev. Pharm., 2020, 11(6), 794-802.
[16]
Fukushima, K.; Ise, A.; Morita, H.; Hasegawa, R.; Ito, Y.; Sugioka, N.; Takada, K. Two-layered dissolving microneedles for percutaneous delivery of peptide/protein drugs in rats. Pharm. Res., 2011, 28(1), 7-21.
[http://dx.doi.org/10.1007/s11095-010-0097-7] [PMID: 20300802]
[17]
Zhu, Z.; Luo, H.; Lu, W.; Luan, H.; Wu, Y.; Luo, J.; Wang, Y.; Pi, J.; Lim, C.Y.; Wang, H. Rapidly dissolvable microneedle patches for transdermal delivery of exenatide. Pharm. Res., 2014, 31(12), 3348-3360.
[http://dx.doi.org/10.1007/s11095-014-1424-1] [PMID: 24867426]
[18]
Alves, L.D.S.; de La Roca Soares, M.F.; de Albuquerque, C.T.; da Silva, E.R.; Vieira, A.C.; Fontes, D.A.; Figueirêdo, C.B.; Soares Sobrinho, J.L.; Rolim Neto, P.J. Solid dispersion of efavirenz in PVP K-30 by conventional solvent and kneading methods. Carbohydr. Polym., 2014, 104, 166-174.
[http://dx.doi.org/10.1016/j.carbpol.2014.01.027] [PMID: 24607174]
[19]
Lee, J.W.; Park, J-H.; Prausnitz, M.R. Dissolving microneedles for transdermal drug delivery. Biomaterials, 2008, 29(13), 2113-2124.
[http://dx.doi.org/10.1016/j.biomaterials.2007.12.048] [PMID: 18261792]
[20]
El-Say, K.M.; Abd-Allah, F.I.; Lila, A.E. Hassan, Ael-S.; Kassem, A.E.A. Diacerein niosomal gel for topical delivery: Development, in vitro and in vivo assessment. J. Liposome Res., 2016, 26(1), 57-68.
[http://dx.doi.org/10.3109/08982104.2015.1029495] [PMID: 25853339]
[21]
Jana, S.; Ali, S.A.; Nayak, A.K.; Sen, K.K.; Basu, S.K. Development of topical gel containing aceclofenac-crospovidone solid dispersion by “Quality by Design (QbD)” approach. Chem. Eng. Res. Des., 2014, 92(11), 2095-2105.
[http://dx.doi.org/10.1016/j.cherd.2014.01.025]
[22]
González-Vázquez, P.; Larrañeta, E.; McCrudden, M.T.C.; Jarrahian, C.; Rein-Weston, A.; Quintanar-Solares, M.; Zehrung, D.; McCarthy, H.; Courtenay, A.J.; Donnelly, R.F. Transdermal delivery of gentamicin using dissolving microneedle arrays for potential treatment of neonatal sepsis. J. Control. Release, 2017, 265, 30-40.
[http://dx.doi.org/10.1016/j.jconrel.2017.07.032] [PMID: 28754611]
[23]
Gao, Y.; Hou, M.; Yang, R.; Zhang, L.; Xu, Z.; Kang, Y.; Xue, P. Highly porous silk fibroin scaffold packed in PEGDA/sucrose microneedles for controllable transdermal drug delivery. Biomacromolecules, 2019, 20(3), 1334-1345.
[http://dx.doi.org/10.1021/acs.biomac.8b01715] [PMID: 30703318]
[24]
Ahmed, A.; Getti, G.; Boateng, J. Ciprofloxacin-loaded calcium alginate wafers prepared by freeze-drying technique for potential healing of chronic diabetic foot ulcers. Drug Deliv. Transl. Res., 2018, 8(6), 1751-1768.
[http://dx.doi.org/10.1007/s13346-017-0445-9] [PMID: 29134555]
[25]
Costa, P.; Sousa Lobo, J.M. Evaluation of mathematical models describing drug release from estradiol transdermal systems. Drug Dev. Ind. Pharm., 2003, 29(1), 89-97.
[http://dx.doi.org/10.1081/DDC-120016687] [PMID: 12602496]
[26]
USFDA. Guidance for Industry: Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers; Drug Administration, Center for Drug Evaluation and Research, 2005.
[27]
Amodwala, S.; Kumar, P.; Thakkar, H.P. Statistically optimized fast dissolving microneedle transdermal patch of meloxicam: A patient friendly approach to manage arthritis. Eur. J. Pharm. Sci., 2017, 104, 114-123.
[http://dx.doi.org/10.1016/j.ejps.2017.04.001] [PMID: 28385631]
[28]
Shamsuddin, M.F.; Fazil, M.; Ansari, S.H.; Ali, J. Development and evaluation of solid dispersion of spironolactone using fusion method. Int. J. Pharm. Investig., 2016, 6(1), 63-68.
[http://dx.doi.org/10.4103/2230-973X.176490] [PMID: 27014621]
[29]
El-Laithy, H.M.; Basalious, E.B.; El-Hoseiny, B.M.; Adel, M.M. Novel self-nanoemulsifying self-nanosuspension (SNESNS) for enhancing oral bioavailability of diacerein: Simultaneous portal blood absorption and lymphatic delivery. Int. J. Pharm., 2015, 490(1-2), 146-154.
[http://dx.doi.org/10.1016/j.ijpharm.2015.05.039] [PMID: 26002566]
[30]
Han, M.; Hyun, D-H.; Park, H-H.; Lee, S.S.; Kim, C-H.; Kim, C. A novel fabrication process for out-of-plane microneedle sheets of biocompatible polymer. J. Micromech. Microeng., 2007, 17(6), 1184.
[http://dx.doi.org/10.1088/0960-1317/17/6/012]
[31]
Zhuang, J.; Rao, F.; Wu, D.; Huang, Y.; Xu, H.; Gao, W.; Zhang, J.; Sun, J. Study on the fabrication and characterization of tip-loaded dissolving microneedles for transdermal drug delivery. Eur. J. Pharm. Biopharm., 2020, 157, 66-73.
[http://dx.doi.org/10.1016/j.ejpb.2020.10.002] [PMID: 33059004]
[32]
Lukić, M.; Pantelić, I.; Savić, S.D. Towards optimal pH of the skin and topical formulations: From the current state of the art to tailored products. Cosmetics, 2021, 8(3), 69.
[http://dx.doi.org/10.3390/cosmetics8030069]
[33]
Komorowska, P.; Różańska, S.; Różański, J. Effect of the degree of substitution on the rheology of sodium carboxymethylcellulose solutions in propylene glycol/water mixtures. Cellulose, 2017, 24(10), 4151-4162.
[http://dx.doi.org/10.1007/s10570-017-1444-1]
[34]
BeMiller, J.N. Carbohydrate Chemistry for Food Scientists; Elsevier: Amsterdam, Netherlands, 2018.
[35]
Benchabane, A.; Bekkour, K. Rheological properties of Carboxymethyl Cellulose (CMC) solutions. Colloid Polym. Sci., 2008, 286(10), 1173-1180.
[http://dx.doi.org/10.1007/s00396-008-1882-2]
[36]
Miller, J.M.; Beig, A.; Carr, R.A.; Webster, G.K.; Dahan, A. The solubility-permeability interplay when using cosolvents for solubilization: Revising the way we use solubility-enabling formulations. Mol. Pharm., 2012, 9(3), 581-590.
[http://dx.doi.org/10.1021/mp200460u] [PMID: 22280478]
[37]
Wu, L.; Shrestha, P.; Iapichino, M.; Cai, Y.; Kim, B.; Stoeber, B. Characterization method for calculating diffusion coefficient of drug from polylactic acid (PLA) microneedles into the skin. J. Drug Deliv. Sci. Technol., 2021, 61, 102192.
[http://dx.doi.org/10.1016/j.jddst.2020.102192]
[38]
Chu, L.Y.; Choi, S-O.; Prausnitz, M.R. Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: Bubble and pedestal microneedle designs. J. Pharm. Sci., 2010, 99(10), 4228-4238.
[http://dx.doi.org/10.1002/jps.22140] [PMID: 20737630]
[39]
Zaki, R.M.; Ali, A.A.; El Menshawi, S.F.; Bary, A.A. Effect of binary and ternary solid dispersions prepared by fusion method on the dissolution of poorly water soluble diacerein. Int. J. Drug Deliv., 2013, 5(1), 99.
[40]
Somashekarappa, H.; Prakash, Y.; Hemalatha, K.; Demappa, T.; Somashekar, R. Preparation and characterization of HPMC/PVP blend films plasticized with sorbitol. Int. J. Mater. Sci., 2013, 2013, 307514.
[41]
Alshehri, S.; Imam, S.S.; Altamimi, M.A.; Hussain, A.; Shakeel, F.; Elzayat, E.; Mohsin, K.; Ibrahim, M.; Alanazi, F. Enhanced dissolution of luteolin by solid dispersion prepared by different methods: Physicochemical characterization and antioxidant activity. ACS Omega, 2020, 5(12), 6461-6471.
[http://dx.doi.org/10.1021/acsomega.9b04075] [PMID: 32258881]
[42]
Pangarkar, P.; Wanare, R.; Tayde, A. Crystal modification of atovaquone in presence of polyethylene glycol (PEG) 4000. Int. J. Pharm. Sci. Res., 2013, 4(12), 4632.
[43]
García-Rodriguez, J.J.; de la Torre-Iglesias, P.M.; Vegas-Sánchez, M.C.; Torrado-Durán, S.; Bolás-Fernández, F.; Torrado-Santiago, S. Changed crystallinity of mebendazole solid dispersion: Improved anthelmintic activity. Int. J. Pharm., 2011, 403(1-2), 23-28.
[http://dx.doi.org/10.1016/j.ijpharm.2010.10.002] [PMID: 20934497]
[44]
Flynn, G.L. Cutaneous and transdermal delivery-processes and systems of delivery. In: Sepmann, J.; Rhodes, C. Modern Pharmaceutics; Banker, G.S., Ed.; CRC Press: Boca Raton, USA, 2002; pp. 314-385.
[45]
Milewski, M.; Stinchcomb, A.L. Vehicle composition influence on the microneedle-enhanced transdermal flux of naltrexone hydrochloride. Pharm. Res., 2011, 28(1), 124-134.
[http://dx.doi.org/10.1007/s11095-010-0191-x] [PMID: 20577787]
[46]
Gomaa, Y.A.; Garland, M.J.; McInnes, F.J.; Donnelly, R.F.; El-Khordagui, L.K.; Wilson, C.G. Flux of ionic dyes across microneedle-treated skin: Effect of molecular characteristics. Int. J. Pharm., 2012, 438(1-2), 140-149.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.026] [PMID: 22960319]
[47]
Vora, L.K.; Vavia, P.R.; Larrañeta, E.; Bell, S.E.J.; Donnelly, R.F. Novel nanosuspension-based dissolving microneedle arrays for transdermal delivery of a hydrophobic drug. J. Interdiscip. Nanomed., 2018, 3(2), 89-101.
[http://dx.doi.org/10.1002/jin2.41] [PMID: 30069310]
[48]
Nayak, A.; Das, D.B.; Vladisavljević, G.T. Microneedle-assisted permeation of lidocaine carboxymethylcellulose with gelatine co-polymer hydrogel. Pharm. Res., 2014, 31(5), 1170-1184.
[http://dx.doi.org/10.1007/s11095-013-1240-z] [PMID: 24203493]
[49]
Davies, L.B.; Gateley, C.; Holland, P.; Coulman, S.A.; Birchall, J.C. Accelerating topical anaesthesia using microneedles. Skin Pharmacol. Physiol., 2017, 30(6), 277-283.
[http://dx.doi.org/10.1159/000479530] [PMID: 28881348]
[50]
Nguyen, J.; Ita, K.B.; Morra, M.J.; Popova, I.E. The influence of solid microneedles on the transdermal delivery of selected antiepileptic drugs. Pharmaceutics, 2016, 8(4), 33.
[http://dx.doi.org/10.3390/pharmaceutics8040033] [PMID: 27854292]
[51]
Shabbir, M.; Ali, S.; Shahid, N.; Rehman, K.; Amin, U.; Raza, M. Formulation considerations and factors affecting transdermal drug delivery system-A review. Int. J. Pharm Int Life Sci., 2014, 2(9), 20-35.
[52]
Chen, C-K.; Lee, J-Y.; Lu, W-S.; Brown, C.O., III. Diacerein or rhein topical formulations and uses thereof. U.S. Patent 9744131B2, 2018 August 29;
[53]
Trotta, M.; Peira, E.; Debernardi, F.; Gallarate, M. Elastic liposomes for skin delivery of dipotassium glycyrrhizinate. Int. J. Pharm., 2002, 241(2), 319-327.
[http://dx.doi.org/10.1016/S0378-5173(02)00266-1] [PMID: 12100859]
[54]
Eltobshi, A.A.; Mohamed, E.A.; Abdelghani, G.M.; Nouh, A.T. Self-nanoemulsifying drug-delivery systems for potentiated anti-inflammatory activity of diacerein. Int. J. Nanomedicine, 2018, 13, 6585-6602.
[http://dx.doi.org/10.2147/IJN.S178819] [PMID: 30425476]
[55]
Javed, I.; Hussain, S.Z.; Shahzad, A.; Khan, J.M.; Ur-Rehman, H.; Rehman, M.; Usman, F.; Razi, M.T.; Shah, M.R.; Hussain, I. Lecithin-gold hybrid nanocarriers as efficient and pH selective vehicles for oral delivery of diacerein-in vitro and in vivo study. Colloids Surf. B Biointerfaces, 2016, 141, 1-9.
[http://dx.doi.org/10.1016/j.colsurfb.2016.01.022] [PMID: 26816348]
[56]
Moldovan, F.; Pelletier, J.P.; Jolicoeur, F-C.; Cloutier, J-M.; Martel-Pelletier, J. Diacerhein and rhein reduce the ICE-induced IL-1β and IL-18 activation in human osteoarthritic cartilage. Osteoarthritis Cartilage, 2000, 8(3), 186-196.
[http://dx.doi.org/10.1053/joca.1999.0289] [PMID: 10806046]
[57]
Martel-Pelletier, J.; Pelletier, J-P. Effects of diacerein at the molecular level in the osteoarthritis disease process. Ther. Adv. Musculoskelet. Dis., 2010, 2(2), 95-104.
[http://dx.doi.org/10.1177/1759720X09359104] [PMID: 22870441]
[58]
Allam, A.N.; Hamdallah, S.I.; Abdallah, O.Y. Chitosan-coated diacerein nanosuspensions as a platform for enhancing bioavailability and lowering side effects: Preparation, characterization, and ex vivo/in vivo evaluation. Int. J. Nanomedicine, 2017, 12, 4733-4745.
[http://dx.doi.org/10.2147/IJN.S139706] [PMID: 28740381]
[59]
Pelletier, J-P.; Martel-Pelletier, J. Diacerein-containing products: Same risk of diarrhoea? Aging Clin. Exp. Res., 2018, 30(4), 411-412.
[http://dx.doi.org/10.1007/s40520-018-0911-3] [PMID: 29468617]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy