Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Review Article

Progresses in Nano-Enabled Platforms for the Treatment of Vaginal Disorders

Author(s): Riya Patel, Bindu Kumari Yadav and Gayatri Patel*

Volume 17, Issue 3, 2023

Published on: 07 September, 2022

Page: [208 - 227] Pages: 20

DOI: 10.2174/1872210516666220628150447

Price: $65

conference banner
Abstract

Background: The most common vaginal disorders are within the uterus. According to the latest statistics, vaginal disorders occur in 50% to 60% of females. Although curative treatments rely on surgical therapy, still first-line treatment is a non invasive drug. Conventional therapies are available in the oral and parenteral route, leading to nonspecific targeting, which can cause dose-related side effects. Vaginal disorders are localized uterine disorders in which intrauterine delivery via the vaginal site is deemed the preferable route to mitigate clinical drug delivery limitations.

Objective: This study emphasizes the progress of site-specific and controlled delivery of therapeutics in the treatment of vaginal disorders and systemic adverse effects as well as the therapeutic efficacy.

Methods: Related research reports and patents associated with topics are collected, utilized, and summarized the key findings.

Results: The comprehensive literature study and patents like (US 9393216 B2), (JP6672370B2), and (WO2018041268A1) indicated that nanocarriers are effective above traditional treatments and have some significant efficacy with novelty.

Conclusion: Nowadays, site-specific and controlled delivery of therapeutics for the treatment of vaginal disorders is essential to prevent systemic adverse effects and therapeutic efficacy would be more effective. Nanocarriers have therefore been used to bypass the problems associated with traditional delivery systems for the vaginal disorder.

Keywords: Nanocarriers, vaginal disorders, targeted drug delivery, vaginal drug delivery, non invasive drug, therapeutic efficacy.

Graphical Abstract

[1]
Quandt A. Özdoǧan C. Feynman, biominerals and graphene - Basic aspects of nanoscience. Commun Nonlinear Sci Numer Simul 2010; 15(6): 1575-82.
[http://dx.doi.org/10.1016/j.cnsns.2009.06.009]
[2]
Dianzani C, Zara GP, Maina G, et al. Drug delivery nanoparticles in skin cancers. BioMed Res Int 2014; 2014: 895986.
[http://dx.doi.org/10.1155/2014/895986] [PMID: 25101298]
[3]
Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 2014; 66: 2-25.
[http://dx.doi.org/10.1016/j.addr.2013.11.009] [PMID: 24270007]
[4]
Singh P, Pandit S, Mokkapati VRSS, Garg A, Ravikumar V, Mijakovic I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci 2018; 19(7): E1979.
[http://dx.doi.org/10.3390/ijms19071979] [PMID: 29986450]
[5]
Simões MCF, Sousa JJS, Pais AACC. Skin cancer and new treatment perspectives: A review. Cancer Lett 2015; 357(1): 8-42.
[http://dx.doi.org/10.1016/j.canlet.2014.11.001] [PMID: 25444899]
[6]
Mimeault M, Batra SK. Potential applications of curcumin and its novel synthetic analogs and nanotechnology-based formulations in cancer prevention and therapy. Chin Med 2011; 6: 31.
[http://dx.doi.org/10.1186/1749-8546-6-31] [PMID: 21859497]
[7]
Mihai MM, Holban AM. Călugăreanu A, Orzan OA. Recent advances in diagnosis and therapy of skin cancers through nanotechnological approaches. In: Nanostructures for Cancer Therapy. 2017; pp. 285-305.
[http://dx.doi.org/10.1016/B978-0-323-46144-3.00011-8]
[8]
Nuzhatun Nisa TA. Therapeutic and diagnostic applications of nanotechnology in dermatology and cosmetics. J Nanomedine Biotherapeutic Discov 2015; 5
[http://dx.doi.org/10.4172/2155-983X.1000134]
[9]
Mota AH, Rijo P, Molpeceres J, Reis CP. Broad overview of engineering of functional nanosystems for skin delivery. Int J Pharm 2017; 532(2): 710-28.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.078] [PMID: 28764984]
[10]
Choi J, Wang NS. Nanoparticles in Biomedical Applications and Their Safety Concerns. In: Fazel-Rezai R, Ed. Biomedical Engineering - From Theory to Applications. London: IntechOpen 2011; p. 500.
[http://dx.doi.org/10.5772/18452]
[11]
Mckenna JH, Liebowitz DN, Maliszewski CR. Methods of using flt3-ligand in immunization protocols.US 2004/0022760 A1 2004.
[12]
Devices, systems, and methods for diagnosing and treating overactive bladder.JP6672370B2, 2013. Available from: https://patents.google.com/patent/JP6672370B2/en?q=nanofibers+and+vagina(Accessed October 27, 2020)
[13]
Patseer. Available from: https: //app1.patseer.com/Pdf?pnkc=WO2018041268A1&appNumber=W O2017CN101026&familyid=57710820 [computer software] (Accessed November 18, 2021)
[14]
Johnson KOH. Nanofiber scaffolds for biological structures.US10653635B2 2018.
[15]
Khomichev VV, Naumova NV, Smolina MP, Voitenko AV, Targonskaya OV, Targonsky SN. Encapsulated lyposomal antiviral agent based on human interferonalpha-2b for vaginal application.RU2552851C1 2014.
[16]
Tamarkin D, Besonov A, Eini M, Danziger J. Foam prepared from nanoemulsions and uses.US9539208B2 2010.
[17]
Thermosensitive in-situ gel preparation for vaginal administration.CN102525884A 2012.Google Patents Available from: https://patents.google.com/patent/CN102525884A/en (Accessed November 18, 2021).
[18]
Chlorquinaldol-promestriene vaginal emulsifiable micro-emulsion soft capsule and preparation method thereof.CN102038688B 2013.Google Patents Available from: https://patents.google.com/patent/CN102038688B/en (Accessed November 18, 2021).
[19]
Tinidazole/miconazole nitrate/neomycin self-microemulsion soft capsules for vagina and preparation method thereof., CN101703517B 2013.Google Patents Available from: https://patents.google.com/patent/CN101703517B/en (Accessed November 18, 2021).
[20]
Lee R, Shenoy D, Wright D. Nano-structured compositions and methods of making and using the same.US20070264349A1 2015.Available from: https://patents.google.com/patent/US20070264349A1/en (Accessed November 18, 2021).
[21]
Nano-silver chitosan gel foam preparation for treating vaginal bacterial inflammation, and preparation method thereof.CN102872159A 2013.Google Patents Available from: https://patents.google.com/patent/CN102872159A/en (Accessed November 18, 2021).
[22]
Bartolomeo JD. Composition and method for treatment of inflamation and infections of the genitalia, contraceptive and the prophylaxis of sexually transmitted diseases.US20120270936A1 2012.Available from: https://patents.google.com/patent/US20120270936A1/en (Accessed November 18, 2021).
[23]
Sokal DC, Joanis CL, Butterworth GAM, Reed JD, Johnson RA. Vaginal drug delivery system and method.US7824383B2i 2014.Available from: https://patents.google.com/patent/US7824383B2/en (Accessed November 18, 2021).
[24]
Singh KK, Tatke PA, Dhuru S. Neem oil contraceptive formulations.WO2006082596A2 2007.Available from: https://patents.google.com/patent/WO2006082596A2/en (Accessed November 18, 2021).
[25]
Behrends S, Siebert JD, Golombiewski M, Kramer AD, Müller GD. Antimicrobial preparation useful for treating e.g. wound, eczema and vaginal infections comprises octenidine dihydrochloride encapsulated in liposomes.DE102005045146A1 2007.Available from: https://patents.google.com/patent/DE102005045146A1/en (Accessed November 18, 2021).
[26]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[27]
Golombek SK, May JN, Theek B, et al. Tumor targeting via EPR: Strategies to enhance patient responses. Adv Drug Deliv Rev 2018; 130: 17-38.
[http://dx.doi.org/10.1016/j.addr.2018.07.007] [PMID: 30009886]
[28]
Sharma M, Sharma R, Jain DK. Nanotechnology based approaches for enhancing oral bioavailability of poorly water soluble antihypertensive drugs. Scientifica (Cairo) 2016; 2016: 8525679.
[http://dx.doi.org/10.1155/2016/8525679] [PMID: 27239378]
[29]
Shilpa C, Shrenik K, Ritesh M, Sachin J, Mukesh R. Nanosuspension-A novel approaches in drug delivery system. Int J Pharma Res Rev 2013; 2: 30-9.
[30]
Din FU, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 2017; 12: 7291-309.
[http://dx.doi.org/10.2147/IJN.S146315] [PMID: 29042776]
[31]
Wong HL, Wu XY, Bendayan R. Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev 2012; 64(7): 686-700.
[http://dx.doi.org/10.1016/j.addr.2011.10.007] [PMID: 22100125]
[32]
Dadwal A, Baldi A, Kumar Narang R. Nanoparticles as carriers for drug delivery in cancer. Artif Cells Nanomed Biotechnol 2018; 46(sup2):: 295-305.
[http://dx.doi.org/10.1080/21691401.2018.1457039]] [PMID: 30043651]
[33]
Jabr-Milane LS, van Vlerken LE, Yadav S, Amiji MM. Multi-functional nanocarriers to overcome tumor drug resistance. Cancer Treat Rev 2008; 34(7): 592-602.
[http://dx.doi.org/10.1016/j.ctrv.2008.04.003] [PMID: 18538481]
[34]
Gao Z, Zhang L, Sun Y. Nanotechnology applied to overcome tumor drug resistance. J Control Release 2012; 162(1): 45-55.
[http://dx.doi.org/10.1016/j.jconrel.2012.05.051] [PMID: 22698943]
[35]
Taniguchi N. On the basic concept of nano-technology. In Proceedings of the International Conference on Production Engineering, Tokyo, Part II, Japan Society of Precision Engineering 1974.
[36]
Bamrungsap S, Zhao Z, Chen T, et al. Nanotechnology in therapeutics: A focus on nanoparticles as a drug delivery system. Nanomedicine (Lond) 2012; 7(8): 1253-71.
[http://dx.doi.org/10.2217/nnm.12.87] [PMID: 22931450]
[37]
Grist A, Grist A. Anatomy/Physiology. In: Ovine Meat Inspection. New Orleans: VetBooks 2012; pp. 1-68.
[http://dx.doi.org/10.7313/UPO9781908062055.004]
[38]
Ellis H. Anatomy of the uterus. Anaesth Intensive Care Med 2011; 12: 99-101.
[http://dx.doi.org/10.1016/j.mpaic.2010.11.005]
[39]
Rendi MH, Muehlenbachs A, Garcia RL, Boyd KL. Female reproductive system. In: Piper MT, Suzanne MD, Eds. Comparative Anatomy and Histology. London: Academic Press 2012; pp. 253-84.
[http://dx.doi.org/10.1016/B978-0-12-381361-9.00017-2]
[40]
Kovachev SM. Cervical cancer and vaginal microbiota changes. Arch Microbiol 2020; 202(2): 323-7.
[http://dx.doi.org/10.1007/s00203-019-01747-4] [PMID: 31659380]
[41]
Reid BM, Permuth JB, Sellers TA. Epidemiology of ovarian cancer: A review. Cancer Biol Med 2017; 14(1): 9-32.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2016.0084] [PMID: 28443200]
[42]
Reid F, Bhatla N, Jones A. The world ovarian cancer coalition atlas global trends in incidence, mortality and survival Available from: Worldovariancancercoalitionorg https://worldovariancancercoalition.org/wp-content/uploads/2018/10/THE-WORLD-OVARIAN-CANCER-COALITION-ATLAS-2018.pdf (accessed 2023-02-10).
[43]
Oppermann S, Ylanko J, Shi Y, et al. High-content screening identifies kinase inhibitors that overcome venetoclax resistance in activated CLL cells. Blood 2016; 128(7): 934-47.
[http://dx.doi.org/10.1182/blood-2015-12-687814] [PMID: 27297795]
[44]
Sexually Transmitted Infections (STIs) J Midwifery Womens Health 2013; 58(5): 601-2.
[http://dx.doi.org/10.1111/jmwh.12094] [PMID: 24000978]
[45]
Breast cancer facts. J Okla State Med Assoc 2013; 106(10): 398.
[PMID: 24404675]
[46]
Cancer Facts & Figures 2020.; CA Cancer J Clin 2020: 1-76.
[47]
Kabashima K. Clinical and virological studies of oral mucosal lesions due to Herpes simplex virus infection. J Jap Oral Sci Soc 1984; 33: 177-91.
[http://dx.doi.org/10.11277/stomatology1952.33.177]
[48]
Arbyn M, Weiderpass E, Bruni L, et al. Estimates of incidence and mortality of cervical cancer in 2018: A worldwide analysis. Lancet Glob Health 2020; 8(2): e191-203.
[http://dx.doi.org/10.1016/S2214-109X(19)30482-6] [PMID: 31812369]
[49]
Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 2019; 144(8): 1941-53.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[50]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[51]
Kwon Y, Godwin AK. Regulation of HGF and c-MET interaction in normal ovary and ovarian cancer: Importance of targeting c-MET and HGF interaction. Reprod Sci 2017; 24(4): 494-501.
[http://dx.doi.org/10.1177/1933719116648212] [PMID: 27170665]
[52]
Fathalla MF. Incessant ovulation-A factor in ovarian neoplasia? Lancet 1971; 2(7716): 163.
[http://dx.doi.org/10.1016/S0140-6736(71)92335-X] [PMID: 4104488]
[53]
Abdul-Aziz M, Mahdy MAK, Abdul-Ghani R, et al. Bacterial vaginosis, vulvovaginal candidiasis and trichomonal vaginitis among reproductive-aged women seeking primary healthcare in Sana’a city, Yemen. BMC Infect Dis 2019; 19(1): 879.
[http://dx.doi.org/10.1186/s12879-019-4549-3] [PMID: 31640583]
[54]
Ranjit E, Raghubanshi BR, Maskey S, Parajuli P. Prevalence of bacterial vaginosis and its association with risk factors among nonpregnant women: A hospital based study. Int J Microbiol 2018; 2018: 8349601.
[http://dx.doi.org/10.1155/2018/8349601] [PMID: 29692813]
[55]
Paavonen J, Brunham RC. Bacterial vaginosis and desquamative inflammatory vaginitis. N Engl J Med 2018; 379(23): 2246-54.
[http://dx.doi.org/10.1056/NEJMra1808418] [PMID: 30575452]
[56]
Paladine HL, Desai UA. Vaginitis: Diagnosis and treatment. Am Fam Physician 2018; 97(5): 321-9.
[PMID: 29671516]
[57]
Silva JA, De Gregorio PR, Rivero G, Abraham GA, Nader-Macías MEF. Immobilization of vaginal Lactobacillus in polymeric nanofibers for its incorporation in vaginal probiotic products. Eur J Pharm Sci 2021; 156: 105563.
[http://dx.doi.org/10.1016/j.ejps.2020.105563] [PMID: 32976956]
[58]
Escobar-Chavez J, Diaz-Torres R, Rodriguez-Cruz IM. Nanocarriers for transdermal drug delivery. Res Reports Transdermal Drug Deliv 2012; 1: 3-17.
[http://dx.doi.org/10.2147/RRTD.S32621]
[59]
Neubert RHH. Potentials of new nanocarriers for dermal and transdermal drug delivery. Eur J Pharm Biopharm 2011; 77(1): 1-2.
[http://dx.doi.org/10.1016/j.ejpb.2010.11.003] [PMID: 21111043]
[60]
Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J Nanotechnol 2018; 9: 1050-74.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[61]
Nikalje AP. Nanotechnology and its applications in medicine. Med Chem 2015; 5: 81-9.
[http://dx.doi.org/10.4172/2161-0444.1000247]
[62]
Vanić Ž, Hurler J, Ferderber K, Golja Gašparović P, Škalko-Basnet N, Filipović-Grčić J. Novel vaginal drug delivery system: Deformable propylene glycol liposomes-in-hydrogel. J Liposome Res 2014; 24(1): 27-36.
[http://dx.doi.org/10.3109/08982104.2013.826242] [PMID: 23931627]
[63]
Pavelić Z, Škalko-Basnet N, Filipović-Grcić J, Martinac A, Jalšenjak I. Development and in vitro evaluation of a liposomal vaginal delivery system for acyclovir. J Control Release 2005; 106(1-2): 34-43.
[http://dx.doi.org/10.1016/j.jconrel.2005.03.032] [PMID: 15979189]
[64]
Al-Shati IR. Evaluation of mucoadhassive gel of liposomal tetracycline (MAG lipo T) of antibacterial vaginitis. Inter J Pharm Res 2020; 12: 970-9.
[http://dx.doi.org/10.31838/ijpr/2020.12.02.0148]
[65]
Caron M, Besson G, Etenna SLD, et al. Protective properties of non-nucleoside reverse transcriptase inhibitor (MC1220) incorporated into liposome against intravaginal challenge of Rhesus macaques with RT-SHIV. Virology 2010; 405(1): 225-33.
[http://dx.doi.org/10.1016/j.virol.2010.06.008] [PMID: 20591460]
[66]
Johal HS, Garg T, Rath G, Goyal AK. Advanced topical drug delivery system for the management of vaginal candidiasis. Drug Deliv 2016; 23(2): 550-63.
[http://dx.doi.org/10.3109/10717544.2014.928760] [PMID: 24959937]
[67]
Andersen T, Mishchenko E, Flaten GE, et al. Chitosan-based nanomedicine to fight genital candida infections: Chitosomes. Mar Drugs 2017; 15(3): E64.
[http://dx.doi.org/10.3390/md15030064] [PMID: 28273850]
[68]
Jøraholmen MW, Basnet P, Acharya G, Škalko-Basnet N. PEGylated liposomes for topical vaginal therapy improve delivery of interferon alpha. Eur J Pharm Biopharm 2017; 113: 132-9.
[http://dx.doi.org/10.1016/j.ejpb.2016.12.029] [PMID: 28087379]
[69]
Mignani S, El Kazzouli S, Bousmina M, Majoral JP. Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: A concise overview. Adv Drug Deliv Rev 2013; 65(10): 1316-30.
[http://dx.doi.org/10.1016/j.addr.2013.01.001] [PMID: 23415951]
[70]
Maciel D, Guerrero-Beltrán C, Ceña-Diez R, Tomás H, Muñoz-Fernández MÁ, Rodrigues J. New anionic poly(alkylideneamine) dendrimers as microbicide agents against HIV-1 infection. Nanoscale 2019; 11(19): 9679-90.
[http://dx.doi.org/10.1039/C9NR00303G] [PMID: 31066407]
[71]
García-Broncano P, Ceña-Diez R, de la Mata FJ, Gómez R, Resino S, Muñoz-Fernández MÁ. Efficacy of carbosilane dendrimers with an antiretroviral combination against HIV-1 in the presence of semen-derived enhancer of viral infection. Eur J Pharmacol 2017; 811: 155-63.
[http://dx.doi.org/10.1016/j.ejphar.2017.05.060] [PMID: 28577966]
[72]
Ganda IS, Zhong Q, Hali M, et al. Dendrimer-conjugated peptide vaccine enhances clearance of Chlamydia trachomatis genital infection. Int J Pharm 2017; 527(1-2): 79-91.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.045] [PMID: 28546072]
[73]
Mumper RJ, Bell MA, Worthen DR, et al. Formulating a sulfonated antiviral dendrimer in a vaginal microbicidal gel having dual mechanisms of action. Drug Dev Ind Pharm 2009; 35(5): 515-24.
[http://dx.doi.org/10.1080/03639040802488097] [PMID: 19040181]
[74]
Gong E, Matthews B, McCarthy T, et al. Evaluation of dendrimer SPL7013, a lead microbicide candidate against herpes simplex viruses. Antiviral Res 2005; 68(3): 139-46.
[http://dx.doi.org/10.1016/j.antiviral.2005.08.004] [PMID: 16219368]
[75]
Telwatte S, Moore K, Johnson A, et al. Virucidal activity of the dendrimer microbicide SPL7013 against HIV-1. Antiviral Res 2011; 90(3): 195-9.
[http://dx.doi.org/10.1016/j.antiviral.2011.03.186] [PMID: 21459115]
[76]
Ray SK, Bano N, Shukla T, Upmanyu N, Pandey SP, Parkhe G. Noisomes: As novel vesicular drug delivery system. J Drug Deliv Ther 2018; 8: 335-41.
[http://dx.doi.org/10.22270/jddt.v8i6.2029]
[77]
Ning M, Guo Y, Pan H, Chen X, Gu Z. Preparation, in vitro and in vivo evaluation of liposomal/niosomal gel delivery systems for clotrimazole. Drug Dev Ind Pharm 2005; 31(4-5): 375-83.
[http://dx.doi.org/10.1081/DDC-54315] [PMID: 16093203]
[78]
Malik T, Chauhan G, Rath G, Kesarkar RN, Chowdhary AS, Goyal AK. Efaverinz and nano-gold-loaded mannosylated niosomes: A host cell-targeted topical HIV-1 prophylaxis via thermogel system. Artif Cells Nanomed Biotechnol 2018; 46(sup1):: 79-90.
[http://dx.doi.org/10.1080/21691401.2017.1414054]] [PMID: 29231058]
[79]
Zidan AS, Habib MJ. Maximized mucoadhesion and skin permeation of anti-AIDS-loaded niosomal gels. J Pharm Sci 2014; 103(3): 952-64.
[http://dx.doi.org/10.1002/jps.23867] [PMID: 24464823]
[80]
Ning M, Guo Y, Pan H, Zong S, Gu Z. Preparation and characterization of EP-liposomes and Span 40-niosomes. Pharmazie 2006; 61(3): 208-12.
[PMID: 16599261]
[81]
Vitali D, Bagri P, Wessels JM, et al. Curcumin can decrease tissue inflammation and the severity of HSV-2 infection in the female reproductive mucosa. Int J Mol Sci 2020; 21(1): E337.
[http://dx.doi.org/10.3390/ijms21010337] [PMID: 31947962]
[82]
Zhang Y, Miyamoto Y, Ihara S, et al. Composite thermoresponsive hydrogel with auranofin-loaded nanoparticles for topical treatment of vaginal trichomonad infection. Adv Ther (Weinh) 2019; 2(12): 1900157.
[http://dx.doi.org/10.1002/adtp.201900157] [PMID: 32377561]
[83]
Büyükköroğlu G, Şenel B, Yenilmez E. Vaginal suppositories with siRNA and paclitaxel-incorporated solid lipid nanoparticles for cervical cancer: Preparation and in vitro evaluation. Methods Mol Biol 2019; 1974: 303-28.
[http://dx.doi.org/10.1007/978-1-4939-9220-1_22] [PMID: 31099012]
[84]
Traore YL, Fumakia M, Gu J, Ho EA. Dynamic mechanical behaviour of nanoparticle loaded biodegradable PVA films for vaginal drug delivery. J Biomater Appl 2018; 32(8): 1119-26.
[http://dx.doi.org/10.1177/0885328217739451] [PMID: 29105543]
[85]
Rossi S, Vigani B, Puccio A, Bonferoni MC, Sandri G, Ferrari F. Chitosan ascorbate nanoparticles for the vaginal delivery of antibiotic drugs in atrophic vaginitis. Mar Drugs 2017; 15(10): E319.
[http://dx.doi.org/10.3390/md15100319] [PMID: 29048359]
[86]
Marciello M, Rossi S, Caramella C, Remuñán-López C. Freeze-dried cylinders carrying chitosan nanoparticles for vaginal peptide delivery. Carbohydr Polym 2017; 170: 43-51.
[http://dx.doi.org/10.1016/j.carbpol.2017.04.051] [PMID: 28522002]
[87]
Tseng YY, Liu SJ. Nanofibers used for the delivery of analgesics. Nanomedicine (Lond) 2015; 10(11): 1785-800.
[http://dx.doi.org/10.2217/nnm.15.23] [PMID: 26080700]
[88]
Ghosh S, Jayaram P, Kabekkodu SP, Satyamoorthy K. Targeted drug delivery in cervical cancer: Current perspectives. Eur J Pharmacol 2022; 917: 174751.
[http://dx.doi.org/10.1016/j.ejphar.2022.174751] [PMID: 35021110]
[89]
Mahant S, Sharma AK, Gandhi H, Wadhwa R, Dua K, Kapoor DN. Emerging trends and potential prospects in vaginal drug delivery. Curr Drug Deliv 2022; 19.
[http://dx.doi.org/10.2174/1567201819666220413131243] [PMID: 35422213]
[90]
El-Hammadi MM, Arias JL. Nano-sized platforms for vaginal drug delivery. Curr Pharm Des 2015; 21(12): 1633-44.
[http://dx.doi.org/10.2174/1381612820666141029150427] [PMID: 25354177]
[91]
Biorender. Available from: https://biorender.com/ [compute software
[92]
Kalra J, Bally MB. Liposomes. In: Fundamentals of Pharmaceutical Nanoscience. New York, NY: Springer 2013; pp. 27-63.
[http://dx.doi.org/10.1007/978-1-4614-9164-4_3]
[93]
Anwekar H, Patel S, Singhai AK. Liposome-as drug carriers. Inter J Pharm Life Sci 2011; 2: 945-51.
[94]
Yadav D, Sandeep K, Pandey D, Dutta RK. Liposomes for drug delivery. J Biotechnol Biomater 2017; 07: 276.
[http://dx.doi.org/10.4172/2155-952X.1000276]
[95]
Thapa R, Gurung S, Parat MO, Parekh HS, Pandey P. Application of sol-gels for treatment of gynaecological conditions-physiological perspectives and emerging concepts in intravaginal drug delivery. Gels 2022; 8(2): 99.
[http://dx.doi.org/10.3390/gels8020099] [PMID: 35200479]
[96]
Zhang J, Froelich A, Michniak-Kohn B. Topical delivery of meloxicam using liposome and microemulsion formulation approaches. Pharmaceutics 2020; 12(3): E282.
[http://dx.doi.org/10.3390/pharmaceutics12030282] [PMID: 32245190]
[97]
(a) Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M. Ethosomes—novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release 2000; 65(3): 403-18.;
(b) Verma P, Pathak K. Therapeutic and cosmeceutical potential of ethosomes: An overview. J Adv Pharm Technol Res 2010; 1(3): 274-82.
[http://dx.doi.org/10.4103/0110-5558.72415] [PMID: 22247858]
[98]
Tiwari RK, Chauhan NS, Yogesh HS. Ethosomes: A potential carries for transdermal drug. Inter J Drug Develop Res 2010; 2: 448-52.
[99]
Mohapatra S, Ranjan S, Dasgupta N, Mishra R, Thomas S. Nanocarriers for Drug Delivery. Amsterdam: Elsevier 2019.
[http://dx.doi.org/10.1016/C2017-0-00199-4]
[100]
Ag Seleci D, Seleci M, Walter JG, Stahl F, Scheper T. Niosomes as nanoparticular drug carriers: Fundamentals and recent applications. J Nanomater 2016; 2016
[http://dx.doi.org/10.1155/2016/7372306]
[101]
Zhang Y, Chan HF, Leong KW. Advanced materials and processing for drug delivery: The past and the future. Adv Drug Deliv Rev 2013; 65(1): 104-20.
[http://dx.doi.org/10.1016/j.addr.2012.10.003] [PMID: 23088863]
[102]
Kazi KM, Mandal AS, Biswas N, et al. Niosome: A future of targeted drug delivery systems. J Adv Pharm Technol Res 2010; 1(4): 374-80.
[http://dx.doi.org/10.4103/0110-5558.76435] [PMID: 22247876]
[103]
Patel A, Dhande R, Thakkar H. Development of intravaginal rod insert bearing liposomal raloxifene hydrochloride and Leuprolide acetate as a potential carrier for uterine targeting. J Pharm Pharmacol 2021; 73(5): 653-63.
[http://dx.doi.org/10.1093/jpp/rgab003] [PMID: 33772288]
[104]
Jøraholmen MW, Bhargava A, Julin K, Johannessen M, Škalko-Basnet N. The antimicrobial properties of chitosan can be tailored by formulation. Mar Drugs 2020; 18(2): E96.
[http://dx.doi.org/10.3390/md18020096] [PMID: 32023890]
[105]
Faria MJ, Machado R, Ribeiro A, et al. Rational development of liposomal hydrogels: A strategy for topical vaginal antiretroviral drug delivery in the context of HIV prevention. Pharmaceutics 2019; 11(9): E485.
[http://dx.doi.org/10.3390/pharmaceutics11090485] [PMID: 31540519]
[106]
Jøraholmen MW, Basnet P, Tostrup MJ, Moueffaq S, Škalko-Basnet N. Localized therapy of vaginal infections and inflammation: Liposomes-in-hydrogel delivery system for polyphenols. Pharmaceutics 2019; 11(2): E53.
[http://dx.doi.org/10.3390/pharmaceutics11020053] [PMID: 30691199]
[107]
Giordani B, Basnet P, Mishchenko E, Luppi B, Škalko-Basnet N. Utilizing liposomal quercetin and gallic acid in localized treatment of vaginal Candida infections. Pharmaceutics 2019; 12(1): E9.
[http://dx.doi.org/10.3390/pharmaceutics12010009] [PMID: 31861805]
[108]
Tuğcu-Demiröz F. Vaginal delivery of benzydamine hydrochloride through liposomes dispersed in mucoadhesive gels. Chem Pharm Bull (Tokyo) 2017; 65(7): 660-7.
[http://dx.doi.org/10.1248/cpb.c17-00133] [PMID: 28442642]
[109]
Refai H, Hassan D, Abdelmonem R. Development and characterization of polymer-coated liposomes for vaginal delivery of sildenafil citrate. Drug Deliv 2017; 24(1): 278-88.
[http://dx.doi.org/10.1080/10717544.2016.1247925] [PMID: 28165805]
[110]
İzgü F, Bayram G, Tosun K, İzgü D. Stratum corneum lipid liposome-encapsulated panomycocin: preparation, characterization, and the determination of antimycotic efficacy against Candida spp. isolated from patients with vulvovaginitis in an in vitro human vaginal epithelium tissue model. Int J Nanomedicine 2017; 12: 5601-11.
[http://dx.doi.org/10.2147/IJN.S141949]] [PMID: 28831255]
[111]
Patel A, Tyagi A, Sharma RK, Thakkar H. A gamma scintigraphy study to investigate uterine targeting efficiency of raloxifene-loaded liposomes administered intravaginally in New Zealand white female rabbits. Drug Deliv 2016; 23(9): 3330-8.
[http://dx.doi.org/10.1080/10717544.2016.1177137] [PMID: 27072061]
[112]
Jøraholmen MW, Škalko-Basnet N, Acharya G, Basnet P. Resveratrol-loaded liposomes for topical treatment of the vaginal inflammation and infections. Eur J Pharm Sci 2015; 79: 112-21.
[http://dx.doi.org/10.1016/j.ejps.2015.09.007] [PMID: 26360840]
[113]
Lechanteur A, Furst T, Evrard B, Delvenne P, Hubert P, Piel G. Development of anti-E6 pegylated lipoplexes for mucosal application in the context of cervical preneoplastic lesions. Int J Pharm 2015; 483(1-2): 268-77.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.041] [PMID: 25701628]
[114]
Berginc K. Suljaković S, Škalko-Basnet N, Kristl A. Mucoadhesive liposomes as new formulation for vaginal delivery of curcumin. Eur J Pharm Biopharm 2014; 87(1): 40-6.
[http://dx.doi.org/10.1016/j.ejpb.2014.02.006] [PMID: 24534774]
[115]
Mbah C, Builders P, Nzekwe I, Kunle O, Adikwu M, Attama A. Formulation and in vitro evaluation of pH-responsive ethosomes for vaginal delivery of metronidazole. J Drug Deliv Sci Technol 2014; 24: 565-71.
[http://dx.doi.org/10.1016/S1773-2247(14)50120-7]
[116]
Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol 2009; 86(3): 215-23.
[http://dx.doi.org/10.1016/j.yexmp.2008.12.004] [PMID: 19186176]
[117]
Zielińska A, Carreiró F, Oliveira AM, et al. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules 2020; 25(16: E3731.)
[http://dx.doi.org/10.3390/molecules25163731]] [PMID: 32824172]
[118]
Bennet D, Kim S. Polymer Nanoparticles for Smart Drug Delivery. In: Application of Nanotechnology in Drug Delivery. London, UK: InTech 2014.
[http://dx.doi.org/10.5772/58422]
[119]
Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J 2018; 26(1): 64-70.
[http://dx.doi.org/10.1016/j.jsps.2017.10.012] [PMID: 29379334]
[120]
Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 2012; 64: 206-12.
[http://dx.doi.org/10.1016/j.addr.2012.09.033] [PMID: 15350294]
[121]
Ealias AM, Saravanakumar MP. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Series Mater Sci Eng 2017; 263: 032019.
[http://dx.doi.org/10.1088/1757-899X/263/3/032019]
[122]
Le-Vinh B, Steinbring C, Wibel R, Friedl JD, Bernkop-Schnürch A. Size shifting of solid lipid nanoparticle system triggered by alkaline phosphatase for site specific mucosal drug delivery. Eur J Pharm Biopharm 2021; 163: 109-19.
[http://dx.doi.org/10.1016/j.ejpb.2021.03.012] [PMID: 33775852]
[123]
Büyükköroğlu G, Şenel B, Başaran E, Yenilmez E, Yazan Y. Preparation and in vitro evaluation of vaginal formulations including siRNA and paclitaxel-loaded SLNs for cervical cancer. Eur J Pharm Biopharm 2016; 109: 174-83.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.017] [PMID: 27793757]
[124]
Alukda D, Sturgis T, Youan BC. Formulation of tenofovir-loaded functionalized solid lipid nanoparticles intended for HIV prevention. J Pharm Sci 2011; 100(8): 3345-56.
[http://dx.doi.org/10.1002/jps.22529] [PMID: 21437910]
[125]
Ariza-Sáenz M, Espina M, Calpena A, et al. Design, characterization, and biopharmaceutical behavior of nanoparticles loaded with an HIV-1 fusion inhibitor peptide. Mol Pharm 2018; 15(11): 5005-18.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00609] [PMID: 30226777]
[126]
Mohideen M, Quijano E, Song E, et al. Degradable bioadhesive nanoparticles for prolonged intravaginal delivery and retention of elvitegravir. Biomaterials 2017; 144: 144-54.
[http://dx.doi.org/10.1016/j.biomaterials.2017.08.029] [PMID: 28829952]
[127]
Ariza-Sáenz M, Espina M, Bolaños N, et al. Penetration of polymeric nanoparticles loaded with an HIV-1 inhibitor peptide derived from GB virus C in a vaginal mucosa model. Eur J Pharm Biopharm 2017; 120: 98-106.
[http://dx.doi.org/10.1016/j.ejpb.2017.08.008] [PMID: 28842284]
[128]
Ramyadevi D, Rajan KS, Vedhahari BN, Ruckmani K, Subramanian N. Heterogeneous polymer composite nanoparticles loaded in situ gel for controlled release intra-vaginal therapy of genital herpes. Colloids Surf B Biointerfaces 2016; 146: 260-70.
[http://dx.doi.org/10.1016/j.colsurfb.2016.06.022] [PMID: 27351137]
[129]
Pradines B, Bories C, Vauthier C, Ponchel G, Loiseau PM, Bouchemal K. Drug-free chitosan coated poly(isobutylcyanoac-rylate) nanoparticles are active against trichomonas vaginalis and non-toxic towards pig vaginal mucosa. Pharm Res 2015; 32(4): 1229-36.
[http://dx.doi.org/10.1007/s11095-014-1528-7] [PMID: 25319099]
[130]
das Neves J, Araújo F, Andrade F, et al. In vitro and ex vivo evaluation of polymeric nanoparticles for vaginal and rectal delivery of the anti-HIV drug dapivirine. Mol Pharm 2013; 10(7): 2793-807.
[http://dx.doi.org/10.1021/mp4002365] [PMID: 23738946]
[131]
Cu Y, Booth CJ, Saltzman WM. In vivo distribution of surface-modified PLGA nanoparticles following intravaginal delivery. J Control Release 2011; 156(2): 258-64.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.036] [PMID: 21763739]
[132]
Zhang T, Sturgis TF, Youan BBC. pH-responsive nanoparticles releasing tenofovir intended for the prevention of HIV transmission. Eur J Pharm Biopharm 2011; 79(3): 526-36.
[http://dx.doi.org/10.1016/j.ejpb.2011.06.007] [PMID: 21736940]
[133]
Yoo JW, Giri N, Lee CH. pH-sensitive Eudragit nanoparticles for mucosal drug delivery. Int J Pharm 2011; 403(1-2): 262-7.
[http://dx.doi.org/10.1016/j.ijpharm.2010.10.032] [PMID: 20971177]
[134]
Lucena PA, Nascimento TL, Gaeti MPN, et al. In vivo vaginal fungal load reduction after treatment with itraconazole-loaded polycaprolactone-nanoparticles. J Biomed Nanotechnol 2018; 14(7): 1347-58.
[http://dx.doi.org/10.1166/jbn.2018.2574] [PMID: 29944108]
[135]
Singh V, Bushettii SS, Appala Raju S, Ahmad R, Singh M, Bisht A. Microemulsions as promising delivery systems: A review. Indian J Pharm Educ Res 2011; 45: 392-401.
[http://dx.doi.org/10.5958/2231-5691.2019.00015.7]
[136]
Nafisi S, Maibach HI. Nanotechnology in cosmetics. In: Cosmetic Science and Technology: Theoretical Principles and Applications Elsevier Inc Amsteedam. 2017; pp. 337-61.
[http://dx.doi.org/10.1016/B978-0-12-802005-0.00022-7]
[137]
Pavoni L, Perinelli DR, Bonacucina G, Cespi M, Palmieri GF. An overview of micro-and nanoemulsions as vehicles for essential oils: Formulation, preparation and stability. Nanomaterials (Basel) 2020; 10(1): E135.
[http://dx.doi.org/10.3390/nano10010135] [PMID: 31940900]
[138]
(a) Nguyen TTL, Anton N, Vandamme TF. Oral pellets loaded with nanoemulsions. Nanostructures for Oral Medicine. Amsteedam: Elsevier Inc. 2017; pp. 203-30.
[http://dx.doi.org/10.1016/B978-0-323-47720-8.00009-2];
(b) Nakajima, Hideo O, Miyuki T, Emulsified composition, US patent 5,098,606, 1992.
[139]
Pappinen S, Urtti A. Microemulsions. In: Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Nanocarriers. Berlin: Springer 2016; pp. 253-62.
[http://dx.doi.org/10.1007/978-3-662-47862-2_16]
[140]
Bellocq AM, Biais J, Bothorel P, Clin B, Fourche G, Lalanne P. Microemulsions. Adv Colloid Interface Sci 1984; 20: 167-272.
[http://dx.doi.org/10.1016/0001-8686(84)80005-6]
[141]
Mirani A, Kundaikar H, Velhal S, et al. Tetrahydrocurcumin-loaded vaginal nanomicrobicide for prophylaxis of HIV/AIDS: in silico study, formulation development, and in vitro evaluation. Drug Deliv Transl Res 2019; 9(4): 828-47.
[http://dx.doi.org/10.1007/s13346-019-00633-2] [PMID: 30900133]
[142]
Wang J, Wang Y, Wang Z, et al. A thermosensitive gel based on w1/o/w2 multiple microemulsions for the vaginal delivery of small nucleic acid. Drug Deliv 2019; 26(1): 168-78.
[http://dx.doi.org/10.1080/10717544.2019.1568622] [PMID: 30822166]
[143]
Bachhav YG, Patravale VB. Microemulsion based vaginal gel of fluconazole: Formulation, in vitro and in vivo evaluation. Int J Pharm 2009; 365(1-2): 175-9.
[http://dx.doi.org/10.1016/j.ijpharm.2008.08.021] [PMID: 18790032]
[144]
Bachhav YG, Patravale VB. Microemulsion-based vaginal gel of clotrimazole: formulation, in vitro evaluation, and stability studies. AAPS PharmSciTech 2009; 10(2): 476-81.
[http://dx.doi.org/10.1208/s12249-009-9233-2] [PMID: 19381825]
[145]
Ahmed Barhoum MB. Handbook of Nanofibers. (1st ed.), 2019.
[http://dx.doi.org/10.1007/978-3-319-53655-2]
[146]
Stojanov S, Plavec TV, Kristl J. Zupančič Š, Berlec A. Engineering of vaginal lactobacilli to express fluorescent proteins enables the analysis of their mixture in nanofibers. Int J Mol Sci 2021; 22(24): 13631.
[http://dx.doi.org/10.3390/ijms222413631] [PMID: 34948426]
[147]
Wang C, Wang J, Zeng L, et al. Fabrication of electrospun polymer nanofibers with diverse morphologies. Molecules 2019; 24(5): E834.
[http://dx.doi.org/10.3390/molecules24050834] [PMID: 30813599]
[148]
Patel G, Yadav BKN. Recent patents on polymeric electrospun nanofibers and their applications in drug delivery. Recent Pat Nanotechnol 2018; 12(3): 174-9.
[http://dx.doi.org/10.2174/1872210512666181017122032] [PMID: 30332979]
[149]
Shahriar SMS, Mondal J, Hasan MN, Revuri V, Lee DY, Lee YK. Electrospinning nanofibers for therapeutics delivery. Nanomaterials (Basel) 2019; 9(4): E532.
[http://dx.doi.org/10.3390/nano9040532] [PMID: 30987129]
[150]
Thakkar S, Misra M. Electrospun polymeric nanofibers: New horizons in drug delivery. Eur J Pharm Sci 2017; 107: 148-67.
[http://dx.doi.org/10.1016/j.ejps.2017.07.001] [PMID: 28690099]
[151]
Mašek J, Mašková E, Lubasová D, Špánek R, Raška M, Turánek J. Nanofibers in Mucosal Drug and Vaccine Delivery. In: Nanomaterials - Toxicity, Human Health and Environment. London: InTech Open 2020.
[http://dx.doi.org/10.5772/intechopen.82279]
[152]
Williams GR, Raimi-Abraham BT, Luo CJ. Nanofibres in drug delivery. London: UCL Press 2018.
[http://dx.doi.org/10.2307/j.ctv550dd1]
[153]
Mehta PP, Pawar VS. Electrospun nanofiber scaffolds: Technology and applications.In: Applications of Nanocomposite Materials in Drug Delivery. Cambrige: Elsevier 2018; pp. 509-73.
[http://dx.doi.org/10.1016/B978-0-12-813741-3.00023-6]
[154]
Cornejo Bravo JM, Villarreal Gómez LJ, Serrano Medina A. Electrospinning for Drug Delivery Systems: Drug Incorporation Techniques. In: Electrospinning - Material, Techniques, and Biomedical Applications. London: InTech Open 2016; p. 14.
[http://dx.doi.org/10.5772/65939]
[155]
Liu G, Gu Z, Hong Y, Cheng L, Li C. Electrospun starch nanofibers: Recent advances, challenges, and strategies for potential pharmaceutical applications. J Control Release 2017; 252: 95-107.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.016] [PMID: 28284833]
[156]
Chou SF, Carson D, Woodrow KA. Current strategies for sustaining drug release from electrospun nanofibers. J Control Release 2015; 220(Pt B): 584-91.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.008]] [PMID: 26363300]
[157]
Torres-Martinez EJ, Cornejo Bravo JM, Serrano Medina A, Pérez González GL, Villarreal Gómez LJ. A summary of electrospun nanofibers as drug delivery system: Drugs loaded and biopolymers used as matrices. Curr Drug Deliv 2018; 15(10): 1360-74.
[http://dx.doi.org/10.2174/1567201815666180723114326] [PMID: 30033869]
[158]
Tuğcu-Demiröz F, Saar S, Tort S, Acartürk F. Electrospun metronidazole-loaded nanofibers for vaginal drug delivery. Drug Dev Ind Pharm 2020; 46(6): 1015-25.
[http://dx.doi.org/10.1080/03639045.2020.1767125] [PMID: 32393132]
[159]
Wang X, Wang L, Zong S, Qiu R, Liu S. Use of multifunctional composite nanofibers for photo thermal chemotherapy to treat cervical cancer in mice. Biomater Sci 2019; 7(9): 3846-54.
[http://dx.doi.org/10.1039/C9BM00756C] [PMID: 31290862]
[160]
Souza RO, Henrique de Lima T, Oréfice RL, et al. Amphotericin B-loaded poly(lactic-co-glycolic acid) nanofibers: An alternative therapy scheme for local treatment of vulvovaginal candidiasis. J Pharm Sci 2018; 107(10): 2674-85.
[http://dx.doi.org/10.1016/j.xphs.2018.06.017] [PMID: 29940181]
[161]
Brako F, Raimi-Abraham BT, Mahalingam S, Craig DQM, Edirisinghe M. The development of progesterone-loaded nanofibers using pressurized gyration: A novel approach to vaginal delivery for the prevention of pre-term birth. Int J Pharm 2018; 540(1-2): 31-9.
[http://dx.doi.org/10.1016/j.ijpharm.2018.01.043] [PMID: 29408268]
[162]
Brako F, Thorogate R, Mahalingam S, Raimi-Abraham B, Craig DQM, Edirisinghe M. Mucoadhesion of progesterone-loaded drug delivery nanofiber constructs. ACS Appl Mater Interfaces 2018; 10(16): 13381-9.
[http://dx.doi.org/10.1021/acsami.8b03329] [PMID: 29595052]
[163]
Vashaghian M, Ruiz-Zapata AM, Kerkhof MH, et al. Toward a new generation of pelvic floor implants with electrospun nanofibrous matrices: A feasibility study. Neurourol Urodyn 2017; 36(3): 565-73.
[http://dx.doi.org/10.1002/nau.22969] [PMID: 26840206]
[164]
Aggarwal U, Goyal AK, Rath G. Development and characterization of the cisplatin loaded nanofibers for the treatment of cervical cancer. Mater Sci Eng C 2017; 75: 125-32.
[http://dx.doi.org/10.1016/j.msec.2017.02.013] [PMID: 28415413]
[165]
Krogstad EA, Ramanathan R, Nhan C, et al. Nanoparticle-releasing nanofiber composites for enhanced in vivo vaginal retention. Biomaterials 2017; 144: 1-16.
[http://dx.doi.org/10.1016/j.biomaterials.2017.07.034] [PMID: 28802690]
[166]
Sharma R, Garg T, Goyal AK, Rath G. Development, optimization and evaluation of polymeric electrospun nanofiber: A tool for local delivery of fluconazole for management of vaginal candidiasis. Artif Cells Nanomed Biotechnol 2016; 44(2): 524-31.
[http://dx.doi.org/10.3109/21691401.2014.966194] [PMID: 25315503]
[167]
Agrahari V, Meng J, Ezoulin MJM, et al. Stimuli-sensitive thiolated hyaluronic acid based nanofibers: Synthesis, preclinical safety and in vitro anti-HIV activity. Nanomedicine (Lond) 2016; 11(22): 2935-58.
[http://dx.doi.org/10.2217/nnm-2016-0103] [PMID: 27785967]
[168]
Kaur R, Garg T, Goyal AK, Rath G. Development, optimization and evaluation of electrospun nanofibers: Tool for targeted vaginal delivery of antimicrobials against urinary tract infections. Curr Drug Deliv 2016; 13(5): 754-63.
[http://dx.doi.org/10.2174/1567201812666150212123348] [PMID: 25675338]
[169]
Ge L, Li Q, Jiang J, et al. Integration of nondegradable polystyrene and degradable gelatin in a core-sheath nanofibrous patch for pelvic reconstruction. Int J Nanomedicine 2015; 10: 3193-201.
[http://dx.doi.org/10.2147/IJN.S75802] [PMID: 25995629]
[170]
Zong S, Wang X, Yang Y, et al. The use of cisplatin-loaded mucoadhesive nanofibers for local chemotherapy of cervical cancers in mice. Eur J Pharm Biopharm 2015; 93: 127-35.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.029] [PMID: 25843238]
[171]
Ball C, Krogstad E, Chaowanachan T, Woodrow KA. Drug-eluting fibers for HIV-1 inhibition and contraception. PLoS One 2012; 7(11): e49792.
[http://dx.doi.org/10.1371/journal.pone.0049792] [PMID: 23209601]
[172]
Karoyo AH, Wilson LD. Physicochemical properties and the gelation process of supramolecular hydrogels: A review. Gels 2017; 3(1): 1.
[http://dx.doi.org/10.3390/gels3010001] [PMID: 30920498]
[173]
a) Dalwadi C, Patel G. Application of nanohydrogels in drug delivery systems: Recent patents review. Recent Pat Nanotechnol 2015; 9(1): 17-25.
[http://dx.doi.org/10.2174/1872210509666150101151521]] [PMID: 25553508];
b) Kabanov AV, Vinogradov SV. Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew Chem Int Edition 2009; 48(30): 5418-29.
[174]
Vashist A, Kaushik A, Ghosal A, Nikkhah-Moshaie R, Vashist A, Dev Jayant R. Journey of hydrogels to nanogels: A decade after. In: RSC Smart Materials. London The Royal Society of Chemistry 2018; pp. 1-8.
[http://dx.doi.org/10.1039/9781788010481-00001]
[175]
Bindu Sri M, Ashok V, Arkendu C, As A. Review on hydrogels as drug delivery in the pharmaceutical field. Inter J Pharm Chem Sci 2012; 1: 642-61.
[176]
Dos Santos AM, Carvalho SG, Araujo VHS, Carvalho GC, Gremião MPD, Chorilli M. Recent advances in hydrogels as strategy for drug delivery intended to vaginal infections. Int J Pharm 2020; 590: 119867.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119867] [PMID: 32919001]
[177]
Qian Q, Shi L, Gao X, et al. A Paclitaxel-based mucoadhesive nanogel with multivalent interactions for cervical cancer therapy. Small 2019; 15(47): e1903208.
[http://dx.doi.org/10.1002/smll.201903208] [PMID: 31617295]
[178]
Macchione MA, Guerrero-Beltrán C, Rosso AP, et al. Poly(N-vinylcaprolactam) nanogels with antiviral behavior against HIV-1 infection. Sci Rep 2019; 9(1): 5732.
[http://dx.doi.org/10.1038/s41598-019-42150-9] [PMID: 30952921]
[179]
Singh S, Verma D, Mirza MA, Das AK. Development and optimization of ketoconazole loaded nano-transfersomal gel for vaginal delivery using Box-Behnken design: In vitro, ex vivo characterization and antimicrobial evaluation. J Drug Deliv Sci Technol 2017; 39: 95-103.
[http://dx.doi.org/10.1016/j.jddst.2017.03.007]
[180]
Elnaggar YSR, Talaat SM, Bahey-El-Din M, Abdallah OY. Novel lecithin-integrated liquid crystalline nanogels for enhanced cutaneous targeting of terconazole: Development, in vitro and in vivo studies. Int J Nanomedicine 2016; 11: 5531-47.
[http://dx.doi.org/10.2147/IJN.S117817] [PMID: 27822033]
[181]
Chavda VP. Nanobased nano drug delivery. In: Shyam SM, Shivendu R, Nandita D, Raghvendra KM, Sabu T, Eds. Applications of Targeted Nano Drugs and Delivery Systems Elsevier: Amsteedam. 2019; pp. 69-92.
[http://dx.doi.org/10.1016/B978-0-12-814029-1.00004-1]
[182]
Abbasi E, Aval SF, Akbarzadeh A, et al. Dendrimers: Synthesis, applications, and properties. Nanoscale Res Lett 2014; 9(1): 247.
[http://dx.doi.org/10.1186/1556-276X-9-247] [PMID: 24994950]
[183]
Gong T, Patel SK, Parniak MA, Ballou B, Rohan LC. Nanocrystal formulation improves vaginal delivery of CSIC for HIV prevention. AAPS PharmSciTech 2019; 20(7): 286.
[http://dx.doi.org/10.1208/s12249-019-1503-z] [PMID: 31410664]
[184]
Ci LQ, Huang ZG, Lv FM, et al. Enhanced delivery of imatinib into vaginal mucosa via a new positively charged nanocrystal-loaded in situ hydrogel formulation for treatment of cervical cancer. Pharmaceutics 2019; 11(1): 15.
[http://dx.doi.org/10.3390/pharmaceutics11010015] [PMID: 30621141]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy