Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Biosynthesis and Detection of Domoic Acid from Diatom Pseudo-nitzschia: A Review

Author(s): Zhen-yuan Nie, Xiao-ping Long, Nour EI Houda Bouroubi, Hong-chang Liu*, Si-ting Cao, Yu-xin Chen, Xing-fu Zheng and Jin-lan Xia

Volume 24, Issue 5, 2023

Published on: 28 September, 2022

Page: [599 - 610] Pages: 12

DOI: 10.2174/1389201023666220624123116

Price: $65

Abstract

The domoic acid (DA) produced by certain species of the marine pennate diatom genus Pseudo-nitzschia is highly neurotoxic and can induce nerve excitability and neurotoxicity by binding with ionotropic glutamate receptors, causing amnesic shellfish poisoning in humans who consume seafood contaminated with DA. In recent years, poisoning of humans caused by DA has occurred around the world, which has attracted increasing attention, and studies on DA production by Pseudo-nitzschia have become the hotpot. This article reviews the progress in the biosynthesis of DA by the typical diatom Pseudo-nitzschia, in which the metabolic pathway of the biosynthesis of DA and its precursors, i.e., geranyl pyrophosphate and L-glutamate, and the various environmental factors affecting DA production including temperature, light intensity, nutrients, trace metals, and alien bacteria are discussed. The detection methods of DA (including bioassays, enzyme linked immunosorbent assays, high performance liquid chromatography, capillary electrophoresis and biosensors), as well as the morphology and toxigenicity of Pseudo-nitzschia are also presented.

Keywords: Pseudo-nitzschia, domoic acid, diatom, biosynthesis, metabolic pathway, detection

Next »
Graphical Abstract

[1]
Little, C.; Felzensztein, C.; Gimmon, E.; Munoz, P. The business management of the chilean salmon farming industry. Mar. Policy, 2015, 54, 108-117.
[http://dx.doi.org/10.1016/j.marpol.2014.12.020]
[2]
McCabe, R.M.; Hickey, B.M.; Kudela, R.M.; Lefebvre, K.A.; Adams, N.G.; Bill, B.D.; Gulland, F.M.; Thomson, R.E.; Cochlan, W.P.; Trainer, V.L. An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophys. Res. Lett., 2016, 43(19), 10366-10376.
[http://dx.doi.org/10.1002/2016GL070023] [PMID: 27917011]
[3]
McKibben, S.M.; Peterson, W.; Wood, A.M.; Trainer, V.L.; Hunter, M.; White, A.E. Climatic regulation of the neurotoxin domoic acid. Proc. Natl. Acad. Sci., USA, 2017, 114(2), 239-244.
[http://dx.doi.org/10.1073/pnas.1606798114] [PMID: 28069959]
[4]
Todd, E.C.D. Domoic acid and amnesic shellfish poisoning - A review. J. Food Prot., 1993, 56(1), 69-83.
[http://dx.doi.org/10.4315/0362-028X-56.1.69] [PMID: 31084045]
[5]
Scholin, C.A.; Gulland, F.; Doucette, G.J.; Benson, S.; Busman, M.; Chavez, F.P.; Cordaro, J.; DeLong, R.; De Vogelaere, A.; Harvey, J.; Haulena, M.; Lefebvre, K.; Lipscomb, T.; Loscutoff, S.; Lowenstine, L.J.; Marin, R., III; Miller, P.E.; McLellan, W.A.; Moeller, P.D.; Powell, C.L.; Rowles, T.; Silvagni, P.; Silver, M.; Spraker, T.; Trainer, V.; Van Dolah, F.M. Mortality of sea lions along the central California coast linked to a toxic diatom bloom. Nature, 2000, 403(6765), 80-84.
[http://dx.doi.org/10.1038/47481] [PMID: 10638756]
[6]
Gibble, C.; Duerr, R.; Bodenstein, B.; Lindquist, K.; Lindsey, J.; Beck, J.; Henkel, L.; Roletto, J.; Harvey, J.; Kudela, R. Investigation of a largescale common murre (uria aalge) mortality event in California, USA, in 2015. J. Wildl. Dis., 2018, 54(3), 569-574.
[http://dx.doi.org/10.7589/2017-07-179] [PMID: 29547358]
[7]
D’Agostino, V.C.; Degrati, M.; Sastre, V.; Santinelli, N.; Krock, B.; Krohn, T.; Dans, S.L.; Hoffmeyer, M.S. Domoic acid in a marine pelagic food web: Exposure of southern right whales Eubalaena australis to domoic acid on the Península Valdés calving ground, Argentina. Harmful Algae, 2017, 68, 248-257.
[http://dx.doi.org/10.1016/j.hal.2017.09.001] [PMID: 28962985]
[8]
Sitprija, V.; Sitprija, S. Marine toxins and nephrotoxicity: Mechanism of injury. Toxicon, 2019, 161, 44-49.
[http://dx.doi.org/10.1016/j.toxicon.2019.02.012] [PMID: 30826470]
[9]
Lefebvre, K.A.; Robertson, A. Domoic acid and human exposure risks: A review. Toxicon, 2010, 56(2), 218-230.
[http://dx.doi.org/10.1016/j.toxicon.2009.05.034] [PMID: 19505488]
[10]
Hoedemaker, J.R.; Peake, B.M.; Kerr, D.S. Reduction in functional potency of the neurotoxin domoic acid in the presence of cadmium and zinc ions. Environ. Toxicol. Pharmacol., 2005, 20(1), 175-181.
[http://dx.doi.org/10.1016/j.etap.2004.12.061] [PMID: 21783586]
[11]
Saeed, A.F.; Awan, S.A.; Ling, S.; Wang, R.; Wang, S. Domoic acid: Attributes, exposure risks, innovative detection techniques and therapeutics. Algal Res., 2017, 24, 97-110.
[http://dx.doi.org/10.1016/j.algal.2017.02.007]
[12]
Fonseca Costa, L.D.; De Souza, M.S.; Werlang, C.C.; Saint Pastous Madureira, L.A.; Weigert, S.C.; Coletto, J.L.; Peres de Pinho, M.; Yunes, J.S. Domoic acid in the tropical South Atlantic Ocean-An environment case study. Toxicon, 2019, 167, 101-105.
[http://dx.doi.org/10.1016/j.toxicon.2019.05.009] [PMID: 31125620]
[13]
Likumahua, S.; de Boer, M.K.; Krock, B.; Nieuwenhuizen, T.; Tatipatta, W.M.; Hehakaya, S.; Imu, L.; Abdul, M.S.; Moniharapon, E.; Buma, A.G.J. First record of the dynamics of domoic acid producing Pseudo-nitzschia spp. in Indonesian waters as a function of environmental variability. Harmful Algae, 2019, 90, 101708.
[http://dx.doi.org/10.1016/j.hal.2019.101708] [PMID: 31806164]
[14]
Lefebvre, K.A.; Hendrix, A.; Halaska, B.; Duignan, P.; Shum, S.; Isoherranen, N.; Marcinek, D.J.; Gulland, F.M.D. Domoic acid in California sea lion fetal fluids indicates continuous exposure to a neuroteratogen poses risks to mammals. Harmful Algae, 2018, 79, 53-57.
[http://dx.doi.org/10.1016/j.hal.2018.06.003] [PMID: 30420016]
[15]
Lelong, A.; Hegaret, H.; Soudant, P.; Bates, S.S. Pseudo-nitzschia (Bacillariophyceae) species, domoic acid and amnesic shellfish poisoning: Revisiting previous paradigms. Phycologia, 2012, 51(2), 168-216.
[http://dx.doi.org/10.2216/11-37.1]
[16]
Bates, S.S.; Hubbard, K.A.; Lundholm, N.; Montresor, M.; Leaw, C.P. Pseudo-nitzschia, Nitzschia, and domoic acid: New research since 2011. Harmful Algae, 2018, 79, 3-43.
[http://dx.doi.org/10.1016/j.hal.2018.06.001] [PMID: 30420013]
[17]
Hasle, G.R. Nomenclatural notes on marine planktonic diatoms. The family Bacillariaceae. Nova Hedwigia, 1993, 106, 315-321.
[18]
Chen, J.F.; Huang, W.J.; Xu, N.; Xie, L.C.; Qi, Y.Z. Domoic-acid-producing diatom genus Pseudo-nitzschia peragallo: A review. Mark. Sci., 2003, 27, 13-17.
[19]
Gai, F.F.; Hedemand, C.K.; Louw, D.C.; Grobler, K.; Krock, B.; Moestrup, Ø.; Lundholm, N. Morphological, molecular and toxigenic characteristics of Namibian Pseudo-nitzschia species-including Pseudo-nitzschia bucculenta sp. nov. Harmful Algae, 2018, 76, 80-95.
[http://dx.doi.org/10.1016/j.hal.2018.05.003] [PMID: 29887207]
[20]
Li, Y.; Huang, C.X.; Xu, G.S.; Lundholm, N.; Teng, S.T.; Wu, H.; Tan, Z. Pseudo-nitzschia simulans sp. nov. (Bacillariophyceae), the first domoic acid producer from Chinese waters. Harmful Algae, 2017, 67, 119-130.
[http://dx.doi.org/10.1016/j.hal.2017.06.008] [PMID: 28755714]
[21]
Ayache, N.; Hervé, F.; Lundholm, N.; Amzil, Z.; Caruana, A.M.N. Acclimation of the marine diatom Pseudo-nitzschia australis to different salinity conditions: Effects on growth, photosynthetic activity, and domoic acid content(1). J. Phycol., 2020, 56(1), 97-109.
[http://dx.doi.org/10.1111/jpy.12929] [PMID: 31591715]
[22]
Quijano-Scheggia, S.I.; Olivos-Ortiz, A.; Garcia-Mendoza, E.; Sánchez-Bravo, Y.; Sosa-Avalos, R.; Salas Marias, N.; Lim, H.C. Phylogenetic relationships of Pseudo-nitzschia subpacifica (Bacillariophyceae) from the Mexican Pacific, and its production of domoic acid in culture. PLoS One, 2020, 15(4), e0231902.
[http://dx.doi.org/10.1371/journal.pone.0231902] [PMID: 32330168]
[23]
Besiktepe, S.; Ryabushko, L.; Ediger, D.; Yimaz, D.; Zenginer, A.; Ryabushko, V.; Lee, R. Domoic acid production by Pseudo-nitzschia calliantha Lundholm, Moestrup et Hasle (Bacillariophyta) isolated from the Black Sea. Harmful Algae, 2008, 7(4), 438-442.
[http://dx.doi.org/10.1016/j.hal.2007.09.004]
[24]
Trainer, V.L.; Wells, M.L.; Cochlan, W.P.; Trick, C.G.; Bill, B.D.; Baugh, K.A.; Beall, B.F.; Herndon, J.; Lundholmf, N. An ecological study of a massive bloom of toxigenic Pseudo-nitzschia cuspidata off the Washington State coast. Limnol. Oceanogr., 2009, 54(5), 1461-1474.
[http://dx.doi.org/10.4319/lo.2009.54.5.1461]
[25]
Fernandes, L.F.; Hubbard, K.A.; Richlen, M.L.; Smith, J.; Bates, S.S.; Ehrman, J.; Léger, C.; Mafra, L.L., Jr; Kulis, D.; Quilliam, M.; Libera, K.; McCauley, L.; Anderson, D.M. Diversity and toxicity of the diatom Pseudo-nitzschia Peragallo in the Gulf of Maine, Northwestern Atlantic Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr., 2014, 103, 139-162.
[http://dx.doi.org/10.1016/j.dsr2.2013.06.022] [PMID: 25143669]
[26]
Zabaglo, K.; Chrapusta, E.; Bober, B.; Kaminski, A.; Adamski, M.; Bialczyk, J. Environmental roles and biological activity of domoic acid: A review. Algal Res., 2016, 13, 94-101.
[http://dx.doi.org/10.1016/j.algal.2015.11.020]
[27]
Teng, S.T.; Lim, P.T.; Lim, H.C.; Rivera-Vilarelle, M.; Quijano-Scheggia, S.; Takata, Y.; Quilliam, M.A.; Wolf, M.; Bates, S.S.; Leaw, C.P. A non-toxigenic but morphologically and phylogenetically distinct new species of Pseudo-nitzschia, P. sabit sp. nov. (Bacillariophyceae). J. Phycol., 2015, 51(4), 706-725.
[http://dx.doi.org/10.1111/jpy.12313] [PMID: 26986792]
[28]
Teng, S.T.; Tan, S.N.; Lim, H.C.; Dao, V.H.; Bates, S.S.; Leaw, C.P. High diversity of Pseudo-nitzschia along the northern coast of Sarawak (Malaysian Borneo), with descriptions of P. bipertita sp. nov. and P. limii sp. nov. (Bacillariophyceae). J. Phycol., 2016, 52(6), 973-989.
[http://dx.doi.org/10.1111/jpy.12448] [PMID: 27403749]
[29]
Alvarez, G.; Uribe, E.; Quijano-Scheggia, S.; Lopez-Rivera, A.; Marino, C.; Blanco, J. Domoic acid production by Pseudo-nitzschia australis and Pseudo-nitzschia calliantha isolated from North Chile. Harmful Algae, 2009, 8(6), 938-945.
[http://dx.doi.org/10.1016/j.hal.2009.05.005]
[30]
Kudela, R.M.; Hayashi, K.; Caceres, C.G. Is San Francisco Bay resistant to Pseudo-nitzschia and domoic acid? Harmful Algae, 2020, 92101617.
[http://dx.doi.org/10.1016/j.hal.2019.05.010] [PMID: 32113607]
[31]
Sahraoui, I.; Bates, S.S.; Bouchouicha, D.; Mabrouk, H.H.; Hlaili, A.S. Toxicity of Pseudo-nitzschia populations from Bizerte Lagoon, Tunisia, southwest Mediterranean, and first report of domoic acid production by P. brasiliana. Diatom Res., 2011, 26(3), 293-303.
[http://dx.doi.org/10.1080/0269249X.2011.597990]
[32]
Dao, V.H.; Lim, P.T.; Ky, P.X.; Takata, Y.; Kodama, M. Diatom Pseudo-nitzschia cf. caciantha (Bacillariophyceae), the most likely source of domoic acid contamination in the thorny oyster Spondylus versicolor Schreibers 1793 in Nha Phu Bay, Khanh Hoa Province, Vietnam. Asian Fish. Sci., 2014, 27, 16-29.
[33]
Sahraoui, I.; Hlaili, A.S.; Mabrouk, H.H.; Leger, C.; Bates, S.S. Blooms of the diatom genus Pseudo-nitzschia H. peragallo in Bizerte Lagoon (Tunisia, SW Mediterranean). Diatom Res., 2009, 24(1), 175-190.
[http://dx.doi.org/10.1080/0269249X.2009.9705789]
[34]
Lundholm, N.; Bates, S.S.; Baugh, K.A.; Bill, B.D.; Connell, L.B.; Léger, C.; Trainer, V.L. Cryptic and pseudo-cryptic diversity in diatomsuwith descriptions of pseudo-nitzschia hasleana sp nov and P. fryxelliana sp nov. J. Phycol., 2012, 48(2), 436-454.
[http://dx.doi.org/10.1111/j.1529-8817.2012.01132.x] [PMID: 27009733]
[35]
Auro, M.E.; Cochlan, W.P. Nitrogen utilization and toxin production by two diatoms of the Pseudo-nitzschia pseudodelicatissima complex: P. cuspidata and P. fryxelliana. J. Phycol., 2013, 49(1), 156-169.
[http://dx.doi.org/10.1111/jpy.12033] [PMID: 27008397]
[36]
Tatters, A.O.; Fu, F.X.; Hutchins, D.A. High CO2 and silicate limitation synergistically increase the toxicity of Pseudo-nitzschia fraudulenta. PLoS One, 2012, 7(2), e32116.
[http://dx.doi.org/10.1371/journal.pone.0032116] [PMID: 22363805]
[37]
Sison-Mangus, M.P.; Jiang, S.; Tran, K.N.; Kudela, R.M. Host-specific adaptation governs the interaction of the marine diatom, Pseudo-nitzschia and their microbiota. ISME J., 2014, 8(1), 63-76.
[http://dx.doi.org/10.1038/ismej.2013.138] [PMID: 23985747]
[38]
Ha Viet, D.; Vy Bao, P.; Teng, S.T.; Uchida, H.; Leaw, C.P.; Lim, P.T. Pseudo-nitzschia fukuyoi (Bacillariophyceae), a domoic acid-producing species from Nha Phu Bay, Khanh Hoa Province, Vietnam. Fish. Sci., 2015, 81(3), 533-539.
[http://dx.doi.org/10.1007/s12562-015-0864-9]
[39]
Moschandreou, K.K.; Baxevanis, A.D.; Katikou, P.; Papaefthimiou, D.; Nikolaidis, G.; Abatzopoulos, T.J. Inter-and intra-specific diversity of Pseudo-nitzschia (Bacillariophyceae) in the northeastern Mediterranean. Eur. J. Phycol., 2012, 47(3), 321-339.
[http://dx.doi.org/10.1080/09670262.2012.713998]
[40]
Cerino, F.; Orsini, L.; Sarno, D.; Dell’Aversano, C.; Tartaglione, L.; Zingone, A. The alternation of different morphotypes in the seasonal cycle of the toxic diatom Pseudo-nitzschia galaxiae. Harmful Algae, 2005, 4(1), 33-48.
[http://dx.doi.org/10.1016/j.hal.2003.10.005]
[41]
Fuentes, M.S.; Wikfors, G.H. Control of domoic acid toxin expression in Pseudo-nitzschia multiseries by copper and silica: Relevance to mussel aquaculture in New England (USA). Mar. Environ. Res., 2013, 83, 23-28.
[http://dx.doi.org/10.1016/j.marenvres.2012.10.005] [PMID: 23218554]
[42]
Teng, S.T.; Lim, H.C.; Lim, P.T.; Viet Ha, D.; Bates, S.S.; Leaw, C.P. Pseudo-nitzschia kodamae sp nov (Bacillariophyceae), a toxigenic species from the Strait of Malacca, Malaysia. Harmful Algae, 2014, 34, 17-28.
[http://dx.doi.org/10.1016/j.hal.2014.02.005]
[43]
Huang, C.X.; Dong, H.C.; Lundholm, N.; Teng, S.T.; Zheng, G.C.; Tan, Z.J.; Lim, P.T.; Li, Y. Species composition and toxicity of the genus Pseudo-nitzschia in Taiwan Strait, including P. Chiniana sp. nov. and P. qiana sp. nov. Harmful Algae, 2019, 84, 195-209.
[http://dx.doi.org/10.1016/j.hal.2019.04.003] [PMID: 31128805]
[44]
Lewis, N.I.; Bates, S.S.; Mclachlan, J.L.; Smith, J.C. Temperature effects on growth, domoic acid production, and morphology of the diatom Nitzschia pungens f. multiseries. Toxic Phytoplankton Blloms in the Sea, Smayda TJ, Shimizu; Elsevier Science Pbulishers, B.V., Ed.; Amsterdam, 1993, pp. 601-606.
[45]
Lewis, N.I.; Bates, S.S.; Quilliam, M.A. Production of domoic acid from large-scale cultures of Pseudo-nitzschia multiseries: A feasibility study. Harmful Algae, 2018, 79, 58-63.
[http://dx.doi.org/10.1016/j.hal.2018.06.004] [PMID: 30420017]
[46]
Amato, A.; Lüdeking, A.; Kooistra, W.H.C.F. Intracellular domoic acid production in Pseudo-nitzschia multistriata isolated from the Gulf of Naples (Tyrrhenian Sea, Italy). Toxicon, 2010, 55(1), 157-161.
[http://dx.doi.org/10.1016/j.toxicon.2009.07.005] [PMID: 19615395]
[47]
Ajani, P.; Murray, S.; Hallegraeff, G.; Lundholm, N.; Gillings, M.; Brett, S.; Armand, L. The diatom genus Pseudo-nitzschia (Bacillariophyceae) in New South Wales, Australia: Morphotaxonomy, molecular phylogeny, toxicity, and distribution. J. Phycol., 2013, 49(4), 765-785.
[http://dx.doi.org/10.1111/jpy.12087] [PMID: 27007209]
[48]
Lundholm, N.; Krock, B.; John, U.; Skov, J.; Cheng, J.; Pančić, M.; Wohlrab, S.; Rigby, K.; Nielsen, T.G.; Selander, E.; Harðardóttir, S. Induction of domoic acid production in diatoms-Types of grazers and diatoms are important. Harmful Algae, 2018, 79, 64-73.
[http://dx.doi.org/10.1016/j.hal.2018.06.005] [PMID: 30420018]
[49]
Harðardóttir, S.; Pančić, M.; Tammilehto, A.; Krock, B.; Møller, E.F.; Nielsen, T.G.; Lundholm, N. Dangerous relations in the arctic marine food web: interactions between toxin producing Pseudonitzschia diatoms and Calanus Copepodites. Mar. Drugs, 2015, 13(6), 3809-3835.
[http://dx.doi.org/10.3390/md13063809] [PMID: 26087022]
[50]
Caruana, A.M.N.; Ayache, N.; Raimbault, V.; Retho, M.; Herve, F.; Bilien, G.; Amzil, Z.; Chomérat, N. Direct evidence for toxin production by Pseudo-nitzschia plurisecta (Bacillariophyceae) and extension of its distribution area. Eur. J. Phycol., 2019, 54(4), 585-594.
[http://dx.doi.org/10.1080/09670262.2019.1620342]
[51]
Moschandreou, K.K.; Papaefthimiou, D.; Katikou, P.; Kalopesa, E.; Panou, A.; Nikolaidis, G. Morphology, phylogeny and toxin analysis of Pseudo-nitzschia pseudodelicatissima (Bacillariophyceae) isolated from the Thermaikos Gulf, Greece. Phycologia, 2010, 49(3), 260-273.
[http://dx.doi.org/10.2216/PH09-42.1]
[52]
Pednekar, S.M.; Bates, S.S.; Kerkar, V.; Matondkar, S.G.P. Environmental factors affecting the distribution of Pseudo-nitzschia in two monsoonal estuaries of western India and effects of salinity on growth and domoic acid production by P. pungens. Estuaries Coasts, 2018, 41(5), 1448-1462.
[http://dx.doi.org/10.1007/s12237-018-0366-y]
[53]
Fehling, J.; Davidson, K.; Bolch, C.J.; Bates, S.S. Growth and domoic acid production by Pseudo-nitzschia seriata (Bacillariophyceae) under phosphate and silicate limitation. J. Phycol., 2004, 40(4), 674-683.
[http://dx.doi.org/10.1111/j.1529-8817.2004.03213.x]
[54]
Tammilehto, A.; Nielsen, T.G.; Krock, B.; Møller, E.F.; Lundholm, N. Induction of domoic acid production in the toxic diatom Pseudo-nitzschia seriata by calanoid copepods. Aquat. Toxicol., 2015, 159, 52-61.
[http://dx.doi.org/10.1016/j.aquatox.2014.11.026] [PMID: 25521565]
[55]
Wang, S.F.; Yang, A.A.; Liu, H.X.; Li, X.L.; Li, W.S.; Wang, S.M. Advances in the influencing factors and detection methods of Domoic acid produced from Pseudo-nitzschia diatom. Chin. Fish. Qual. Stand, 2019, 9, 34-44.
[56]
Lundholm, N.; Hansen, P.J.; Kotaki, Y. Effect of pH on growth and domoic acid production by potentially toxic diatoms of the genera Pseudo-nitzschia and Nitzschia. Mar. Ecol. Prog. Ser., 2004, 273, 1-15.
[http://dx.doi.org/10.3354/meps273001]
[57]
Zhu, Z.; Qu, P.; Fu, F.; Tennenbaum, N.; Tatters, A.O.; Hutchins, D.A. Understanding the blob bloom: Warming increases toxicity and abundance of the harmful bloom diatom Pseudo-nitzschia in California coastal waters. Harmful Algae, 2017, 67, 36-43.
[http://dx.doi.org/10.1016/j.hal.2017.06.004] [PMID: 28755719]
[58]
Godinho, L.; Silva, A.; Castelo Branco, M.A.; Marques, A.; Costa, P.R. Evaluation of intracellular and extracellular domoic acid content in Pseudo-nitzschia multiseries cell cultures under different light regimes. Toxicon, 2018, 155, 27-31.
[http://dx.doi.org/10.1016/j.toxicon.2018.10.003] [PMID: 30312694]
[59]
Terseleer, N.; Gypens, N.; Lancelot, C. Factors controlling the production of domoic acid by Pseudo-nitzschia (Bacillariophyceae): A model study. Harmful Algae, 2013, 24, 45-53.
[http://dx.doi.org/10.1016/j.hal.2013.01.004]
[60]
Thorel, M.; Fauchot, J.; Morelle, J.; Raimbault, V.; Le Roy, B.; Miossec, C.; Kientz-Bouchart, V.; Claquin, P. Interactive effects of irradiance and temperature on growth and domoic acid production of the toxic diatom Pseudo-nitzschia australis (Bacillariophyceae). Harmful Algae, 2014, 39, 232-241.
[http://dx.doi.org/10.1016/j.hal.2014.07.010]
[61]
Martin-Jézéquel, V.; Calu, G.; Candela, L.; Amzil, Z.; Jauffrais, T.; Séchet, V.; Weigel, P. Effects of organic and inorganic nitrogen on the growth and production of domoic acid by Pseudo-nitzschia multiseries and P. australis (Bacillariophyceae) in culture. Mar. Drugs, 2015, 13(12), 7067-7086.
[http://dx.doi.org/10.3390/md13127055] [PMID: 26703627]
[62]
Radan, R.L.; Cochlan, W.P. Differential toxin response of Pseudo-nitzschia multiseries as a function of nitrogen speciation in batch and continuous cultures, and during a natural assemblage experiment. Harmful Algae, 2018, 73, 12-29.
[http://dx.doi.org/10.1016/j.hal.2018.01.002] [PMID: 29602500]
[63]
Howard, M.D.A.; Cochlan, W.P.; Ladizinsky, N.; Kudela, R.M. Nitrogenous preference of toxigenic Pseudo-nitzschia australis (Bacillariophyceae) from field and laboratory experiments. Harmful Algae, 2007, 6(2), 206-217.
[http://dx.doi.org/10.1016/j.hal.2006.06.003]
[64]
Hagstrom, J.A.; Graneli, E.; Moreira, M.O.P.; Odebrecht, C. Domoic acid production and elemental composition of two Pseudo-nitzschia multiseries strains, from the NW and SW Atlantic Ocean, growing in phosphorus- or nitrogen-limited chemostat cultures. J. Plankton Res., 2011, 33(2), 297-308.
[http://dx.doi.org/10.1093/plankt/fbq102]
[65]
Sun, J.; Hutchins, D.A.; Feng, Y.; Seubert, E.L.; Caron, D.A.; Fu, F.X. Effects of changing pCO2 and phosphate availability on domoic acid production and physiology of the marine harmful bloom diatom Pseudo-nitzschia multiseries. Limnol. Oceanogr., 2011, 56(3), 829-840.
[http://dx.doi.org/10.4319/lo.2011.56.3.0829]
[66]
Lema, K.A.; Latimier, M.; Nézan, É.; Fauchot, J.; Le Gac, M. Inter and intra-specific growth and domoic acid production in relation to nutrient ratios and concentrations in Pseudo-nitzschia: Phosphate an important factor. Harmful Algae, 2017, 64, 11-19.
[http://dx.doi.org/10.1016/j.hal.2017.03.001] [PMID: 28427568]
[67]
Brunson, J.K.; McKinnie, S.M.K.; Chekan, J.R.; McCrow, J.P.; Miles, Z.D.; Bertrand, E.M.; Bielinski, V.A.; Luhavaya, H.; Oborník, M.; Smith, G.J.; Hutchins, D.A.; Allen, A.E.; Moore, B.S. Biosynthesis of the neurotoxin domoic acid in a bloom-forming diatom. Science, 2018, 361(6409), 1356-1358.
[http://dx.doi.org/10.1126/science.aau0382] [PMID: 30262498]
[68]
Davidson, K.; Fehling, J. Modelling the influence of silicon and phosphorus limitation on the growth and toxicity of Pseudo-nitzschia seriata. Afr. J. Mar. Sci., 2006, 28(2), 357-360.
[http://dx.doi.org/10.2989/18142320609504177]
[69]
Sarthou, G.; Timmermans, K.R.; Blain, S.; Treguer, P. Growth physiology and fate of diatoms in the ocean: A review. J. Sea Res., 2005, 53(1-2), 25-42.
[http://dx.doi.org/10.1016/j.seares.2004.01.007]
[70]
Sobrinho, B.F.; de Camargo, L.M.; Sandrini-Neto, L.; Kleemann, C.R. Growth, toxin production and allelopathic effects of Pseudo-nitzschia multiseries under iron-enriched conditions. Marine Drug, 2017, 15(10)
[71]
Lelong, A.; Jolley, D.F.; Soudant, P.; Hégaret, H. Impact of copper exposure on Pseudo-nitzschia spp. physiology and domoic acid production. Aquat. Toxicol., 2012, 118-119, 37-47.
[http://dx.doi.org/10.1016/j.aquatox.2012.03.010] [PMID: 22516673]
[72]
Lelong, A.; Bucciarelli, E.; Hegaret, H.; Soudant, P. Iron and copper limitations differently affect growth rates and photosynthetic and physiological parameters of the marine diatom Pseudo-nitzschia delicatissima. Limnol. Oceanogr., 2013, 58(2), 613-623.
[http://dx.doi.org/10.4319/lo.2013.58.2.0613]
[73]
Maldonado, M.T.; Hughes, M.P.; Rue, E.L.; Wells, M.L. The effect of Fe and Cu on growth and domoic acid production by Pseudo-nitzschia multiseries and Pseudo-nitzschia australis. Limnol. Oceanogr., 2002, 47(2), 515-526.
[http://dx.doi.org/10.4319/lo.2002.47.2.0515]
[74]
Wells, M.L.; Trick, C.G.; Cochlan, W.P.; Hughes, M.P.; Trainer, V.L. Domoic acid: The synergy of iron, copper, and the toxicity of diatoms. Limnol. Oceanogr., 2005, 50(6), 1908-1917.
[http://dx.doi.org/10.4319/lo.2005.50.6.1908]
[75]
Sison-Mangus, M.P.; Jiang, S.; Kudela, R.M.; Mehic, S. Phytoplankton-associated bacterial community composition and succession during toxic diatom bloom and non-bloom events. Front. Microbiol., 2016, 7, 1433.
[http://dx.doi.org/10.3389/fmicb.2016.01433] [PMID: 27672385]
[76]
Lelong, A.; Hégaret, H.; Soudant, P. Link between domoic acid production and cell physiology after exchange of bacterial communities between toxic Pseudo-nitzschia multiseries and non-toxic Pseudo-nitzschia delicatissima. Mar. Drugs, 2014, 12(6), 3587-3607.
[http://dx.doi.org/10.3390/md12063587] [PMID: 24921979]
[77]
Guannel, M.L.; Horner-Devine, M.C.; Rocap, G. Bacterial community composition differs with species and toxigenicity of the diatom Pseudo-nitzschia. Aquat. Microb. Ecol., 2011, 64(2), 117-133.
[http://dx.doi.org/10.3354/ame01513]
[78]
Ramsey, U.P.; Douglas, D.J.; Walter, J.A.; Wright, J.L. Biosynthesis of domoic acid by the diatom Pseudo-nitzschia multiseries. Nat. Toxins, 1998, 6(3-4), 137-146.
[http://dx.doi.org/10.1002/(SICI)1522-7189(199805/08)6:3/4<137::AID-NT28>3.0.CO;2-L] [PMID: 10223629]
[79]
Pan, Y.; Bates, S.S.; Cembella, A.D. Environmental stress and domoic acid production by Pseudo-nitzschia: A physiological perspective. Nat. Toxins, 1998, 6(3-4), 127-135.
[http://dx.doi.org/10.1002/(SICI)1522-7189(199805/08)6:3/4<127::AID-NT9>3.0.CO;2-2] [PMID: 10223628]
[80]
Lohr, M.; Schwender, J.; Polle, J.E.W. Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae. Plant Sci., 2012, 185-186, 9-22.
[http://dx.doi.org/10.1016/j.plantsci.2011.07.018] [PMID: 22325862]
[81]
Di Dato, V.; Musacchia, F.; Petrosino, G.; Patil, S.; Montresor, M.; Sanges, R.; Ferrante, M.I. Transcriptome sequencing of three Pseudo-nitzschia species reveals comparable gene sets and the presence of nitric oxide synthase genes in diatoms. Sci. Rep., 2015, 5(1), 12329.
[http://dx.doi.org/10.1038/srep12329] [PMID: 26189990]
[82]
Harðardóttir, S.; Wohlrab, S.; Hjort, D.M.; Krock, B.; Nielsen, T.G.; John, U.; Lundholm, N. Transcriptomic responses to grazing reveal the metabolic pathway leading to the biosynthesis of domoic acid and highlight different defense strategies in diatoms. BMC Mol. Biol., 2019, 20(1), 7.
[http://dx.doi.org/10.1186/s12867-019-0124-0] [PMID: 30808304]
[83]
Banerjee, A.; Sharkey, T.D. Methylerythritol 4-phosphate (MEP) pathway metabolic regulation. Nat. Prod. Rep., 2014, 31(8), 1043-1055.
[http://dx.doi.org/10.1039/C3NP70124G] [PMID: 24921065]
[84]
Boissonneault, K.R.; Henningsen, B.M.; Bates, S.S.; Robertson, D.L.; Milton, S.; Pelletier, J.; Hogan, D.A.; Housman, D.E. Gene expression studies for the analysis of domoic acid production in the marine diatom Pseudo-nitzschia multiseries. BMC Mol. Biol., 2013, 14(1), 25.
[http://dx.doi.org/10.1186/1471-2199-14-25] [PMID: 24180290]
[85]
Savage, T.J.; Smith, G.J.; Clark, A.T.; Saucedo, P.N. Condensation of the isoprenoid and amino precursors in the biosynthesis of domoic acid. Toxicon, 2012, 59(1), 25-33.
[http://dx.doi.org/10.1016/j.toxicon.2011.10.010] [PMID: 22041653]
[86]
Maeno, Y.; Kotaki, Y.; Terada, R.; Cho, Y.; Konoki, K.; Yotsu-Yamashita, M. Six domoic acid related compounds from the red alga, Chondria armata, and domoic acid biosynthesis by the diatom, Pseudo-nitzschia multiseries. Sci. Rep., 2018, 8(1), 356.
[http://dx.doi.org/10.1038/s41598-017-18651-w] [PMID: 29321590]
[87]
Hausinger, R.P. Fe(II)/α-Ketoglutarate-dependent hydroxylases and related enzymes. Crit. Rev. Biochem. Mol. Biol., 2004, 39(1), 21-68.
[http://dx.doi.org/10.1080/10409230490440541] [PMID: 15121720]
[88]
Strieker, M.; Nolan, E.M.; Walsh, C.T.; Marahiel, M.A. Stereospecific synthesis of threo- and erythro-β-hydroxyglutamic acid during kutzneride biosynthesis. J. Am. Chem. Soc., 2009, 131(37), 13523-13530.
[http://dx.doi.org/10.1021/ja9054417] [PMID: 19722489]
[89]
McCulloch, A.W.; Boyd, R.K.; de Freitas, A.S.; Foxall, R.A.; Jamieson, W.D.; Laycock, M.V.; Quilliam, M.A.; Wright, J.L.; Boyko, V.J.; McLaren, J.W. Zinc from oyster tissue as causative factor in mouse deaths in official bioassay for paralytic shellfish poison. J. Assoc. Off. Anal. Chem., 1989, 72(2), 384-386.
[http://dx.doi.org/10.1093/jaoac/72.2.384] [PMID: 2708291]
[90]
Turrell, E.A.; Lacaze, J.P.; Stobo, L. Determination of Paralytic Shellfish Poisoning (PSP) toxins in UK shellfish. Harmful Algae, 2007, 6(3), 438-448.
[http://dx.doi.org/10.1016/j.hal.2006.12.002]
[91]
Garthwaite, I.; Ross, K.M.; Miles, C.O.; Briggs, L.R.; Towers, N.R.; Borrell, T.; Busby, P. Integrated enzyme-linked immunosorbent assay screening system for amnesic, neurotoxic, diarrhetic, and paralytic shellfish poisoning toxins found in New Zealand. J. AOAC Int., 2001, 84(5), 1643-1648.
[http://dx.doi.org/10.1093/jaoac/84.5.1643] [PMID: 11601487]
[92]
Leão, J.M.; Gago, A.; Rodríguez-Vázquez, J.A.; Aguete, E.C.; Omil, M.M.; Comesaña, M. Solid-phase extraction and high-performance liquid chromatography procedures for the analysis of paralytic shellfish toxins. J. Chromatogr. A, 1998, 798(1-2), 131-136.
[http://dx.doi.org/10.1016/S0021-9673(97)01211-9] [PMID: 9580181]
[93]
Garet, E.; González-Fernández, A.; Lago, J.; Vieites, J.M.; Cabado, A.G. Comparative evaluation of enzyme-linked immunoassay and reference methods for the detection of shellfish hydrophilic toxins in several presentations of seafood. J. Agric. Food Chem., 2010, 58(3), 1410-1415.
[http://dx.doi.org/10.1021/jf904448z] [PMID: 20088511]
[94]
Li, D.Z.; Zhu, W.J.; Song, W.B.; Lin, B.C. [Capillary electrophoretic analysis of amnesic shellfish toxin-domoic acid]. Se Pu, 2002, 20(2), 125-128.
[http://dx.doi.org/10.3724/SP.J.1123.2017.10002] [PMID: 12541967]
[95]
Doucette, T.A.; Tasker, R.A. Domoic acid: Detection methods, pharmacology, and toxicology. Seafood and Freshwater Toxins: Pharmacology, Physiology, and Detection, 2nd ed; Botana, L.M., Ed.; Food Science and Technology: New York, US, 2008, pp. 397-429.
[96]
Leonardo, S.; Toldrà, A.; Campàs, M. Trends and prospects on electrochemical biosensors for the detection of marine toxins. Compr. Anal. Chem., 2017, 78, 303-341.
[http://dx.doi.org/10.1016/bs.coac.2017.06.007]
[97]
He, Y.; Fekete, A.; Chen, G.; Harir, M.; Zhang, L.; Tong, P.; Schmitt-Kopplin, P. Analytical approaches for an important shellfish poisoning agent: Domoic acid. J. Agric. Food Chem., 2010, 58(22), 11525-11533.
[http://dx.doi.org/10.1021/jf1031789] [PMID: 20964434]
[98]
Liu, R.; Xu, D.; Dong, Y.; Liang, Y. A indirect competitive ELISA to detect domoic acid in seawater and shellfish. Wei Sheng Yen Chiu, 2009, 38(5), 622-624.
[PMID: 19877530]
[99]
Kania, M.; Kreuzer, M.; Moore, E.; Pravda, M.; Hock, B.; Guillbault, G. Development of polyclonal antibodies against domoic acid for their use in electrochemical biosensors. Anal. Lett., 2003, 36(9), 1851-1863.
[http://dx.doi.org/10.1081/AL-120023618]
[100]
Tsao, Z.J.; Liao, Y.C.; Liu, B.H.; Su, C.C.; Yu, F.Y. Development of a monoclonal antibody against domoic acid and its application in enzyme-linked immunosorbent assay and colloidal gold immunostrip. J. Agric. Food Chem., 2007, 55(13), 4921-4927.
[http://dx.doi.org/10.1021/jf0708140] [PMID: 17542614]
[101]
Wang, Q.; Cheng, J.P.; Gao, L.L.; Dong, Y.; Xi, L. Development of direct competitive enzyme-linked immunosorbent assay for the determination of domoic acid. Huan Jing Ke Xue, 2012, 33(2), 647-651.
[PMID: 22509610]
[102]
Liu, S.J.; Zhao, X.X.; Cheng, J.P.; Wang, Q.; Wang, W.H. Establishment of indirect ELISA to detect domoic acid. Acta Sci. Circum, 2014, 34, 404-408.
[103]
Zervou, S.K.; Christophoridis, C.; Kaloudis, T.; Triantis, T.M.; Hiskia, A. New SPE-LC-MS/MS method for simultaneous determination of multi-class cyanobacterial and algal toxins. J. Hazard. Mater., 2017, 323(Pt A), 56-66.
[http://dx.doi.org/10.1016/j.jhazmat.2016.07.020] [PMID: 27453259]
[104]
Svačinová, J.; Novák, O.; Plačková, L.; Lenobel, R.; Holík, J.; Strnad, M.; Doležal, K. A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Methods, 2012, 8(1), 17.
[http://dx.doi.org/10.1186/1746-4811-8-17] [PMID: 22594941]
[105]
Beach, D.G.; Walsh, C.M.; Cantrell, P.; Rourke, W.; O’Brien, S.; Reeves, K.; McCarron, P. Laser ablation electrospray ionization high-resolution mass spectrometry for regulatory screening of domoic acid in shellfish. Rapid Commun. Mass Spectrom., 2016, 30(22), 2379-2387.
[http://dx.doi.org/10.1002/rcm.7725] [PMID: 27534707]
[106]
Zhang, Y.; Chen, D.; Hong, Z. A rapid LC-HRMS method for the determination of domoic acid in urine using a self-assembly pipette tip solid-phase extraction. Toxins (Basel), 2015, 8(1), 10.
[http://dx.doi.org/10.3390/toxins8010010] [PMID: 26729165]
[107]
Gago-Martinez, A.; Leao, J.M.; Pineiro, N.; Carballal, E.; Vaquero, E.; Nogueiras, M. An application of capillary electrophoresis for the analysis of algal toxins from the aquatic environment. Int. J. Environ. Anal. Chem., 2003, 83(6), 443-456.
[http://dx.doi.org/10.1080/00306731031000111706] [PMID: 12735472]
[108]
Wu, Y.; Ho, A.Y.T.; Qian, P.Y.; Leung, K.S.Y.; Cai, Z.; Lin, J.M. Determination of paralytic shellfish toxins in dinoflagellate Alexandrium tamarense by using isotachophoresis/capillary electrophoresis. J. Sep. Sci., 2006, 29(3), 399-404.
[http://dx.doi.org/10.1002/jssc.200500386] [PMID: 16544882]
[109]
Kvasnicka, F.; Sevcík, R.; Voldrich, M. Determination of domoic acid by on-line coupled capillary isotachophoresis with capillary zone electrophoresis. J. Chromatogr. A, 2006, 1113(1-2), 255-258.
[http://dx.doi.org/10.1016/j.chroma.2006.02.072] [PMID: 16530205]
[110]
Ye, W.; Liu, T.; Zhang, W.; Zhu, M.; Liu, Z.; Kong, Y.; Liu, S. Marine toxins detection by biosensors based on aptamers. Toxins, 2019, 12(1), 1.
[http://dx.doi.org/10.3390/toxins12010001] [PMID: 31861315]
[111]
Colas, F.; Crassous, M.P.; Laurent, S.; Litaker, R.W.; Rinnert, E.; Le Gall, E.; Lunven, M.; Delauney, L.; Compère, C. A surface plasmon resonance system for the underwater detection of domoic acid. Limnol. Oceanogr. Methods, 2016, 14(7), 456-465.
[http://dx.doi.org/10.1002/lom3.10104]
[112]
Marques, I.; da Costa, J.P.; Justino, C.; Santos, P.; Duarte, K.; Freitas, A. Carbon nanotube field effect transistor biosensor for the detection of toxins in seawater. Int. J. Environ. Anal. Chem., 2018, 97(7), 597-605.
[http://dx.doi.org/10.1080/03067319.2017.1334056]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy