Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

BDNF and its Role in the Alcohol Abuse Initiated During Early Adolescence: Evidence from Preclinical and Clinical Studies

Author(s): Debora Cutuli* and Piquero Sampedro-Piquero*

Volume 20, Issue 11, 2022

Published on: 03 September, 2022

Page: [2202 - 2220] Pages: 19

DOI: 10.2174/1570159X20666220624111855

Price: $65

conference banner
Abstract

Brain-derived neurotrophic factor (BDNF) is a crucial brain signaling protein that is integral to many signaling pathways. This neurotrophin has shown to be highly involved in brain plastic processes such as neurogenesis, synaptic plasticity, axonal growth, and neurotransmission, among others. In the first part of this review, we revise the role of BDNF in different neuroplastic processes within the central nervous system. On the other hand, its deficiency in key neural circuits is associated with the development of psychiatric disorders, including alcohol abuse disorder. Many people begin to drink alcohol during adolescence, and it seems that changes in BDNF are evident after the adolescent regularly consumes alcohol. Therefore, the second part of this manuscript addresses the involvement of BDNF during adolescent brain maturation and how this process can be negatively affected by alcohol abuse. Finally, we propose different BNDF enhancers, both behavioral and pharmacological, which should be considered in the treatment of problematic alcohol consumption initiated during the adolescence.

Keywords: Addiction, adolescence, BDNF, cognition, ethanol, neuroplasticity.

Graphical Abstract

[1]
Wang, R.; Holsinger, R.M.D. Exercise-induced brain-derived neurotrophic factor expression: Therapeutic implications for Alzheimer’s dementia. Ageing Res. Rev., 2018, 48, 109-121.
[http://dx.doi.org/10.1016/j.arr.2018.10.002] [PMID: 30326283]
[2]
Levi-Montalcini, R.; Hamburger, V. Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous sys-tem of the chick embryo. J. Exp. Zool., 1951, 116(2), 321-361.
[http://dx.doi.org/10.1002/jez.1401160206] [PMID: 14824426]
[3]
Barde, Y.A.; Edgar, D.; Thoenen, H. Purification of a new neurotrophic factor from mammalian brain. EMBO J., 1982, 1(5), 549-553.
[http://dx.doi.org/10.1002/j.1460-2075.1982.tb01207.x] [PMID: 7188352]
[4]
Maisonpierre, P.C.; Belluscio, L.; Squinto, S.; Ip, N.Y.; Furth, M.E.; Lindsay, R.M.; Yancopoulos, G.D. Neurotrophin-3: A neurotrophic factor related to NGF and BDNF. Science, 1990, 247(4949 Pt 1), 1446-1451.
[http://dx.doi.org/10.1126/science.2321006] [PMID: 2321006]
[5]
Ip, N.Y.; Ibáñez, C.F.; Nye, S.H.; McClain, J.; Jones, P.F.; Gies, D.R.; Belluscio, L.; Le Beau, M.M.; Espinosa, R., III; Squinto, S.P.; Persson, H.; Yancopoulos, G.D. Mammalian neurotrophin-4: Structure, chromosomal localization, tissue distribution, and receptor speci-ficity. Proc. Natl. Acad. Sci. USA, 1992, 89(7), 3060-3064.
[http://dx.doi.org/10.1073/pnas.89.7.3060] [PMID: 1313578]
[6]
Palasz, E.; Wysocka, A.; Gasiorowska, A.; Chalimoniuk, M.; Niewiadomski, W.; Niewiadomska, G. BDNF as a promising therapeutic agent in Parkinson’s disease. Int. J. Mol. Sci., 2020, 21(3), 1170.
[http://dx.doi.org/10.3390/ijms21031170] [PMID: 32050617]
[7]
Miranda, M.; Morici, J.F.; Zanoni, M.B.; Bekinschtein, P. Brain-Derived Neurotrophic Factor: A key molecule for memory in the healthy and the pathological brain. Front. Cell. Neurosci., 2019, 13, 363.
[http://dx.doi.org/10.3389/fncel.2019.00363] [PMID: 31440144]
[8]
Ozçelik, T.; Rosenthal, A.; Francke, U. Chromosomal mapping of brain-derived neurotrophic factor and neurotrophin-3 genes in man and mouse. Genomics, 1991, 10(3), 569-575.
[http://dx.doi.org/10.1016/0888-7543(91)90437-J] [PMID: 1889807]
[9]
Cattaneo, A.; Cattane, N.; Begni, V.; Pariante, C.M.; Riva, M.A. The human BDNF gene: Peripheral gene expression and protein levels as biomarkers for psychiatric disorders. Transl. Psychiatry, 2016, 6(11), e958.
[http://dx.doi.org/10.1038/tp.2016.214] [PMID: 27874848]
[10]
Binder, D.K.; Scharfman, H.E. Brain-derived neurotrophic factor. Growth Factors, 2004, 22(3), 123-131.
[http://dx.doi.org/10.1080/08977190410001723308] [PMID: 15518235]
[11]
Egan, M.F.; Kojima, M.; Callicott, J.H.; Goldberg, T.E.; Kolachana, B.S.; Bertolino, A.; Zaitsev, E.; Gold, B.; Goldman, D.; Dean, M.; Lu, B.; Weinberger, D.R. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippo-campal function. Cell, 2003, 112(2), 257-269.
[http://dx.doi.org/10.1016/S0092-8674(03)00035-7] [PMID: 12553913]
[12]
Harrisberger, F.; Spalek, K.; Smieskova, R.; Schmidt, A.; Coynel, D.; Milnik, A.; Fastenrath, M.; Freytag, V.; Gschwind, L.; Walter, A.; Vogel, T.; Bendfeldt, K.; de Quervain, D.J.; Papassotiropoulos, A.; Borgwardt, S. The association of the BDNF Val66Met polymorphism and the hippocampal volumes in healthy humans: A joint meta-analysis of published and new data. Neurosci. Biobehav. Rev., 2014, 42, 267-278.
[http://dx.doi.org/10.1016/j.neubiorev.2014.03.011] [PMID: 24674929]
[13]
Sasi, M.; Vignoli, B.; Canossa, M.; Blum, R. Neurobiology of local and intercellular BDNF signaling. Pflugers Arch., 2017, 469(5-6), 593-610.
[http://dx.doi.org/10.1007/s00424-017-1964-4] [PMID: 28280960]
[14]
Tsai, S.J. Critical issues in BDNF Val66Met genetic studies of neuropsychiatric disorders. Front. Mol. Neurosci., 2018, 11, 156.
[http://dx.doi.org/10.3389/fnmol.2018.00156] [PMID: 29867348]
[15]
Chao, M.V.; Bothwell, M. Neurotrophins: To cleave or not to cleave. Neuron, 2002, 33(1), 9-12.
[http://dx.doi.org/10.1016/S0896-6273(01)00573-6] [PMID: 11779474]
[16]
Lessmann, V.; Gottmann, K.; Malcangio, M. Neurotrophin secretion: Current facts and future prospects. Prog. Neurobiol., 2003, 69(5), 341-374.
[http://dx.doi.org/10.1016/S0301-0082(03)00019-4] [PMID: 12787574]
[17]
Lee, F.S.; Kim, A.H.; Khursigara, G.; Chao, M.V. The uniqueness of being a neurotrophin receptor. Curr. Opin. Neurobiol., 2001, 11(3), 281-286.
[http://dx.doi.org/10.1016/S0959-4388(00)00209-9] [PMID: 11399425]
[18]
Lu, B.; Nagappan, G.; Lu, Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb. Exp. Pharmacol., 2014, 220, 223-250.
[http://dx.doi.org/10.1007/978-3-642-45106-5_9] [PMID: 24668475]
[19]
Ibáñez, C.F. Jekyll-Hyde neurotrophins: The story of proNGF. Trends Neurosci., 2002, 25(6), 284-286.
[http://dx.doi.org/10.1016/S0166-2236(02)02169-0] [PMID: 12086739]
[20]
Patapoutian, A.; Reichardt, L.F. Trk receptors: Mediators of neurotrophin action. Curr. Opin. Neurobiol., 2001, 11(3), 272-280.
[http://dx.doi.org/10.1016/S0959-4388(00)00208-7] [PMID: 11399424]
[21]
Barbacid, M. The Trk family of neurotrophin receptors. J. Neurobiol., 1994, 25(11), 1386-1403.
[http://dx.doi.org/10.1002/neu.480251107] [PMID: 7852993]
[22]
Chao, M.V. Neurotrophins and their receptors: A convergence point for many signalling pathways. Nat. Rev. Neurosci., 2003, 4(4), 299-309.
[http://dx.doi.org/10.1038/nrn1078] [PMID: 12671646]
[23]
Dechant, G.; Barde, Y.A. The neurotrophin receptor p75(NTR): Novel functions and implications for diseases of the nervous system. Nat. Neurosci., 2002, 5(11), 1131-1136.
[http://dx.doi.org/10.1038/nn1102-1131] [PMID: 12404007]
[24]
Meeker, R.B.; Williams, K.S. The p75 neurotrophin receptor: At the crossroad of neural repair and death. Neural Regen. Res., 2015, 10(5), 721-725.
[http://dx.doi.org/10.4103/1673-5374.156967] [PMID: 26109945]
[25]
Conner, J.M.; Lauterborn, J.C.; Yan, Q.; Gall, C.M.; Varon, S. Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: Evidence for anterograde axonal transport. J. Neurosci., 1997, 17(7), 2295-2313.
[http://dx.doi.org/10.1523/JNEUROSCI.17-07-02295.1997] [PMID: 9065491]
[26]
Huang, E.J.; Reichardt, L.F. Neurotrophins: Roles in neuronal development and function. Annu. Rev. Neurosci., 2001, 24, 677-736.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.677] [PMID: 11520916]
[27]
Barker, P.A. Whither proBDNF? Nat. Neurosci., 2009, 12(2), 105-106.
[http://dx.doi.org/10.1038/nn0209-105] [PMID: 19172162]
[28]
Kowiański, P.; Lietzau, G.; Czuba, E.; Waśkow, M.; Steliga, A.; Moryś J. BDNF: A key factor with multipotent impact on brain signaling and synaptic plasticity. Cell. Mol. Neurobiol., 2018, 38(3), 579-593.
[http://dx.doi.org/10.1007/s10571-017-0510-4] [PMID: 28623429]
[29]
Pang, P.T.; Teng, H.K.; Zaitsev, E.; Woo, N.T.; Sakata, K.; Zhen, S.; Teng, K.K.; Yung, W.H.; Hempstead, B.L.; Lu, B. Cleavage of proB-DNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science, 2004, 306(5695), 487-491.
[http://dx.doi.org/10.1126/science.1100135] [PMID: 15486301]
[30]
Woo, N.H.; Teng, H.K.; Siao, C.J.; Chiaruttini, C.; Pang, P.T.; Milner, T.A.; Hempstead, B.L.; Lu, B. Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat. Neurosci., 2005, 8(8), 1069-1077.
[http://dx.doi.org/10.1038/nn1510] [PMID: 16025106]
[31]
Friedman, W.J. Proneurotrophins, seizures, and neuronal apoptosis. Neuroscientist, 2010, 16(3), 244-252.
[http://dx.doi.org/10.1177/1073858409349903] [PMID: 20360602]
[32]
Kojima, M.; Matsui, K.; Mizui, T. BDNF pro-peptide: Physiological mechanisms and implications for depression. Cell Tissue Res., 2019, 377(1), 73-79.
[http://dx.doi.org/10.1007/s00441-019-03034-6] [PMID: 31076872]
[33]
Volosin, M.; Song, W.; Almeida, R.D.; Kaplan, D.R.; Hempstead, B.L.; Friedman, W.J. Interaction of survival and death signaling in basal forebrain neurons: Roles of neurotrophins and proneurotrophins. J. Neurosci., 2006, 26(29), 7756-7766.
[http://dx.doi.org/10.1523/JNEUROSCI.1560-06.2006] [PMID: 16855103]
[34]
Zagrebelsky, M.; Korte, M. Form follows function: BDNF and its involvement in sculpting the function and structure of synapses. Neuropharmacology, 2014, 76(Pt C), 628-638.
[http://dx.doi.org/10.1016/j.neuropharm.2013.05.029] [PMID: 23752094]
[35]
Leal, G.; Comprido, D.; Duarte, C.B. BDNF-induced local protein synthesis and synaptic plasticity. Neuropharmacology, 2014, 76(Pt C), 639-656.
[http://dx.doi.org/10.1016/j.neuropharm.2013.04.005] [PMID: 23602987]
[36]
Yang, J.; Harte-Hargrove, L.C.; Siao, C.J.; Marinic, T.; Clarke, R.; Ma, Q.; Jing, D.; Lafrancois, J.J.; Bath, K.G.; Mark, W.; Ballon, D.; Lee, F.S.; Scharfman, H.E.; Hempstead, B.L. proBDNF negatively regulates neuronal remodeling, synaptic transmission, and synaptic plasticity in hippocampus. Cell Rep., 2014, 7(3), 796-806.
[http://dx.doi.org/10.1016/j.celrep.2014.03.040] [PMID: 24746813]
[37]
Bathina, S.; Das, U.N. Brain-derived neurotrophic factor and its clinical implications. Arch. Med. Sci., 2015, 11(6), 1164-1178.
[http://dx.doi.org/10.5114/aoms.2015.56342] [PMID: 26788077]
[38]
von Bohlen Und Halbach, O.; von Bohlen Und Halbach, V. BDNF effects on dendritic spine morphology and hippocampal function. Cell Tissue Res., 2018, 373(3), 729-741.
[http://dx.doi.org/10.1007/s00441-017-2782-x] [PMID: 29450725]
[39]
Bonni, A.; Brunet, A.; West, A.E.; Datta, S.R.; Takasu, M.A.; Greenberg, M.E. Cell survival promoted by the Ras-MAPK signaling path-way by transcription-dependent and -independent mechanisms. Science, 1999, 286(5443), 1358-1362.
[http://dx.doi.org/10.1126/science.286.5443.1358] [PMID: 10558990]
[40]
Numakawa, T.; Odaka, H.; Adachi, N. Actions of brain-derived neurotrophin factor in the neurogenesis and neuronal function, and its involvement in the pathophysiology of brain diseases. Int. J. Mol. Sci., 2018, 19(11), 3650.
[http://dx.doi.org/10.3390/ijms19113650] [PMID: 30463271]
[41]
Altar, C.A.; Cai, N.; Bliven, T.; Juhasz, M.; Conner, J.M.; Acheson, A.L.; Lindsay, R.M.; Wiegand, S.J. Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature, 1997, 389(6653), 856-860.
[http://dx.doi.org/10.1038/39885] [PMID: 9349818]
[42]
Griesbeck, O.; Canossa, M.; Campana, G.; Gärtner, A.; Hoener, M.C.; Nawa, H.; Kolbeck, R.; Thoenen, H. Are there differences between the secretion characteristics of NGF and BDNF? Implications for the modulatory role of neurotrophins in activity-dependent neuronal plasticity. Microsc. Res. Tech., 1999, 45(4-5), 262-275.
[http://dx.doi.org/10.1002/(SICI)1097-0029(19990515/01)45:4/5<262:AID-JEMT10>3.0.CO;2-K] [PMID: 10383119]
[43]
Mowla, S.J.; Pareek, S.; Farhadi, H.F.; Petrecca, K.; Fawcett, J.P.; Seidah, N.G.; Morris, S.J.; Sossin, W.S.; Murphy, R.A. Differential sort-ing of nerve growth factor and brain-derived neurotrophic factor in hippocampal neurons. J. Neurosci., 1999, 19(6), 2069-2080.
[http://dx.doi.org/10.1523/JNEUROSCI.19-06-02069.1999] [PMID: 10066260]
[44]
Adachi, N.; Numakawa, T.; Richards, M.; Nakajima, S.; Kunugi, H. New insight in expression, transport, and secretion of brain-derived neurotrophic factor: Implications in brain-related diseases. World J. Biol. Chem., 2014, 5(4), 409-428.
[http://dx.doi.org/10.4331/wjbc.v5.i4.409] [PMID: 25426265]
[45]
Castrén, E.; Zafra, F.; Thoenen, H.; Lindholm, D. Light regulates expression of brain-derived neurotrophic factor mRNA in rat visual cortex. Proc. Natl. Acad. Sci. USA, 1992, 89(20), 9444-9448.
[http://dx.doi.org/10.1073/pnas.89.20.9444] [PMID: 1409655]
[46]
Rocamora, N.; Welker, E.; Pascual, M.; Soriano, E. Upregulation of BDNF mRNA expression in the barrel cortex of adult mice after sen-sory stimulation. J. Neurosci., 1996, 16(14), 4411-4419.
[http://dx.doi.org/10.1523/JNEUROSCI.16-14-04411.1996] [PMID: 8699252]
[47]
Neeper, S.A.; Gómez-Pinilla, F.; Choi, J.; Cotman, C. Exercise and brain neurotrophins. Nature, 1995, 373(6510), 109.
[http://dx.doi.org/10.1038/373109a0] [PMID: 7816089]
[48]
Bramham, C.R.; Southard, T.; Sarvey, J.M.; Herkenham, M.; Brady, L.S. Unilateral LTP triggers bilateral increases in hippocampal neuro-trophin and trk receptor mRNA expression in behaving rats: Evidence for interhemispheric communication. J. Comp. Neurol., 1996, 368(3), 371-382.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19960506)368:3<371::AID-CNE4>3.0.CO;2-2] [PMID: 8725345]
[49]
Gärtner, A.; Staiger, V. Neurotrophin secretion from hippocampal neurons evoked by long-term-potentiation-inducing electrical stimula-tion patterns. Proc. Natl. Acad. Sci. USA, 2002, 99(9), 6386-6391.
[http://dx.doi.org/10.1073/pnas.092129699] [PMID: 11983920]
[50]
Lubin, F.D.; Roth, T.L.; Sweatt, J.D. Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J. Neurosci., 2008, 28(42), 10576-10586.
[http://dx.doi.org/10.1523/JNEUROSCI.1786-08.2008] [PMID: 18923034]
[51]
Leal, G.; Bramham, C.R.; Duarte, C.B. BDNF and hippocampal synaptic plasticity. Vitam. Horm., 2017, 104, 153-195.
[http://dx.doi.org/10.1016/bs.vh.2016.10.004] [PMID: 28215294]
[52]
De Assis, G.G.; Gasanov, E.V.; de Sousa, M.B.C.; Kozacz, A.; Murawska-Cialowicz, E. Brain derived neutrophic factor, a link of aerobic metabolism to neuroplasticity. J. Physiol. Pharmacol., 2018, 69(3), 351-358.
[PMID: 30342429]
[53]
Woo, N.H.; Lu, B. Regulation of cortical interneurons by neurotrophins: From development to cognitive disorders. Neuroscientist, 2006, 12(1), 43-56.
[http://dx.doi.org/10.1177/1073858405284360] [PMID: 16394192]
[54]
Rauti, R.; Cellot, G.; D’Andrea, P.; Colliva, A.; Scaini, D.; Tongiorgi, E.; Ballerini, L. BDNF impact on synaptic dynamics: Extra or intra-cellular long-term release differently regulates cultured hippocampal synapses. Mol. Brain, 2020, 13(1), 43.
[http://dx.doi.org/10.1186/s13041-020-00582-9] [PMID: 32183860]
[55]
Barreda Tomás, F.J.; Turko, P.; Heilmann, H.; Trimbuch, T.; Yanagawa, Y.; Vida, I.; Münster-Wandowski, A. BDNF expression in cortical GABAergic interneurons. Int. J. Mol. Sci., 2020, 21(5), 1567.
[http://dx.doi.org/10.3390/ijms21051567] [PMID: 32106593]
[56]
Waterhouse, E.G.; Xu, B. New insights into the role of brain-derived neurotrophic factor in synaptic plasticity. Mol. Cell. Neurosci., 2009, 42(2), 81-89.
[http://dx.doi.org/10.1016/j.mcn.2009.06.009] [PMID: 19577647]
[57]
Cerpa, W.; Ramos-Fernández, E.; Inestrosa, N.C. Modulation of the NMDA receptor through secreted soluble factors. Mol. Neurobiol., 2016, 53(1), 299-309.
[http://dx.doi.org/10.1007/s12035-014-9009-x] [PMID: 25429903]
[58]
Horch, H.W.; Katz, L.C. BDNF release from single cells elicits local dendritic growth in nearby neurons. Nat. Neurosci., 2002, 5(11), 1177-1184.
[http://dx.doi.org/10.1038/nn927] [PMID: 12368805]
[59]
Deinhardt, K.; Chao, M.V. Shaping neurons: Long and short range effects of mature and proBDNF signalling upon neuronal structure. Neuropharmacology, 2014, 76(Pt C), 603-609.
[http://dx.doi.org/10.1016/j.neuropharm.2013.04.054]
[60]
Panja, D.; Bramham, C.R. BDNF mechanisms in late LTP formation: A synthesis and breakdown. Neuropharmacology, 2014, 76(Pt C), 664-676.
[http://dx.doi.org/10.1016/j.neuropharm.2013.06.024] [PMID: 23831365]
[61]
Berninger, B.; Marty, S.; Zafra, F.; da Penha, B.M.; Thoenen, H.; Lindholm, D. GABAergic stimulation switches from enhancing to re-pressing BDNF expression in rat hippocampal neurons during maturation in vitro. Development, 1995, 121(8), 2327-2335.
[http://dx.doi.org/10.1242/dev.121.8.2327] [PMID: 7671799]
[62]
Marty, S.; Berninger, B.; Carroll, P.; Thoenen, H. GABAergic stimulation regulates the phenotype of hippocampal interneurons through the regulation of brain-derived neurotrophic factor. Neuron, 1996, 16(3), 565-570.
[http://dx.doi.org/10.1016/S0896-6273(00)80075-6] [PMID: 8785053]
[63]
Yamada, M.K.; Nakanishi, K.; Ohba, S.; Nakamura, T.; Ikegaya, Y.; Nishiyama, N.; Matsuki, N. Brain-derived neurotrophic factor pro-motes the maturation of GABAergic mechanisms in cultured hippocampal neurons. J. Neurosci., 2002, 22(17), 7580-7585.
[http://dx.doi.org/10.1523/JNEUROSCI.22-17-07580.2002] [PMID: 12196581]
[64]
Rutherford, L.C.; DeWan, A.; Lauer, H.M.; Turrigiano, G.G. Brain-derived neurotrophic factor mediates the activity-dependent regulation of inhibition in neocortical cultures. J. Neurosci., 1997, 17(12), 4527-4535.
[http://dx.doi.org/10.1523/JNEUROSCI.17-12-04527.1997] [PMID: 9169513]
[65]
Tanaka, T.; Saito, H.; Matsuki, N. Inhibition of GABAA synaptic responses by brain-derived neurotrophic factor (BDNF) in rat hippo-campus. J. Neurosci., 1997, 17(9), 2959-2966.
[http://dx.doi.org/10.1523/JNEUROSCI.17-09-02959.1997] [PMID: 9096132]
[66]
Wardle, R.A.; Poo, M.M. Brain-derived neurotrophic factor modulation of GABAergic synapses by postsynaptic regulation of chloride transport. J. Neurosci., 2003, 23(25), 8722-8732.
[http://dx.doi.org/10.1523/JNEUROSCI.23-25-08722.2003] [PMID: 14507972]
[67]
Jovanovic, J.N.; Thomas, P.; Kittler, J.T.; Smart, T.G.; Moss, S.J. Brain-derived neurotrophic factor modulates fast synaptic inhibition by regulating GABA(A) receptor phosphorylation, activity, and cell-surface stability. J. Neurosci., 2004, 24(2), 522-530.
[http://dx.doi.org/10.1523/JNEUROSCI.3606-03.2004] [PMID: 14724252]
[68]
Shinoda, Y.; Ahmed, S.; Ramachandran, B.; Bharat, V.; Brockelt, D.; Altas, B.; Dean, C. BDNF enhances spontaneous and activity-dependent neurotransmitter release at excitatory terminals but not at inhibitory terminals in hippocampal neurons. Front. Synaptic Neurosci., 2014, 6, 27.
[http://dx.doi.org/10.3389/fnsyn.2014.00027] [PMID: 25426063]
[69]
Nabavi, S.; Fox, R.; Proulx, C.D.; Lin, J.Y.; Tsien, R.Y.; Malinow, R. Engineering a memory with LTD and LTP. Nature, 2014, 511(7509), 348-352.
[http://dx.doi.org/10.1038/nature13294] [PMID: 24896183]
[70]
Baltaci, S.B.; Mogulkoc, R.; Baltaci, A.K. Molecular mechanisms of early and late LTP. Neurochem. Res., 2019, 44(2), 281-296.
[http://dx.doi.org/10.1007/s11064-018-2695-4] [PMID: 30523578]
[71]
Hirano, T. Long-term depression and other synaptic plasticity in the cerebellum. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2013, 89(5), 183-195.
[http://dx.doi.org/10.2183/pjab.89.183] [PMID: 23666089]
[72]
Gonzalez, J.; Morales, I.S.; Villarreal, D.M.; Derrick, B.E. Low-frequency stimulation induces long-term depression and slow onset long-term potentiation at perforant path-dentate gyrus synapses in vivo. J. Neurophysiol., 2014, 111(6), 1259-1273.
[http://dx.doi.org/10.1152/jn.00941.2012] [PMID: 24335215]
[73]
Bliss, T.V.; Cooke, S.F. Long-term potentiation and long-term depression: A clinical perspective. Clinics (São Paulo), 2011, 66(Suppl. 1), 3-17.
[http://dx.doi.org/10.1590/S1807-59322011001300002] [PMID: 21779718]
[74]
Lessmann, V.; Brigadski, T. Mechanisms, locations, and kinetics of synaptic BDNF secretion: An update. Neurosci. Res., 2009, 65(1), 11-22.
[http://dx.doi.org/10.1016/j.neures.2009.06.004] [PMID: 19523993]
[75]
Matsuda, N.; Lu, H.; Fukata, Y.; Noritake, J.; Gao, H.; Mukherjee, S.; Nemoto, T.; Fukata, M.; Poo, M.M. Differential activity-dependent secretion of brain-derived neurotrophic factor from axon and dendrite. J. Neurosci., 2009, 29(45), 14185-14198.
[http://dx.doi.org/10.1523/JNEUROSCI.1863-09.2009] [PMID: 19906967]
[76]
Jakawich, S.K.; Nasser, H.B.; Strong, M.J.; McCartney, A.J.; Perez, A.S.; Rakesh, N.; Carruthers, C.J.; Sutton, M.A. Local presynaptic activity gates homeostatic changes in presynaptic function driven by dendritic BDNF synthesis. Neuron, 2010, 68(6), 1143-1158.
[http://dx.doi.org/10.1016/j.neuron.2010.11.034] [PMID: 21172615]
[77]
Dieni, S.; Matsumoto, T.; Dekkers, M.; Rauskolb, S.; Ionescu, M.S.; Deogracias, R.; Gundelfinger, E.D.; Kojima, M.; Nestel, S.; Frotscher, M.; Barde, Y.A. BDNF and its pro-peptide are stored in presynaptic dense core vesicles in brain neurons. J. Cell Biol., 2012, 196(6), 775-788.
[http://dx.doi.org/10.1083/jcb.201201038] [PMID: 22412021]
[78]
Bambah-Mukku, D.; Travaglia, A.; Chen, D.Y.; Pollonini, G.; Alberini, C.M. A positive autoregulatory BDNF feedback loop via C/EBPβ mediates hippocampal memory consolidation. J. Neurosci., 2014, 34(37), 12547-12559.
[http://dx.doi.org/10.1523/JNEUROSCI.0324-14.2014] [PMID: 25209292]
[79]
Panja, D.; Kenney, J.W.; D’Andrea, L.; Zalfa, F.; Vedeler, A.; Wibrand, K.; Fukunaga, R.; Bagni, C.; Proud, C.G.; Bramham, C.R. Two-stage translational control of dentate gyrus LTP consolidation is mediated by sustained BDNF-TrkB signaling to MNK. Cell Rep., 2014, 9(4), 1430-1445.
[http://dx.doi.org/10.1016/j.celrep.2014.10.016] [PMID: 25453757]
[80]
Figurov, A.; Pozzo-Miller, L.D.; Olafsson, P.; Wang, T.; Lu, B. Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature, 1996, 381(6584), 706-709.
[http://dx.doi.org/10.1038/381706a0] [PMID: 8649517]
[81]
Minichiello, L.; Korte, M.; Wolfer, D.; Kühn, R.; Unsicker, K.; Cestari, V.; Rossi-Arnaud, C.; Lipp, H.P.; Bonhoeffer, T.; Klein, R. Essen-tial role for TrkB receptors in hippocampus-mediated learning. Neuron, 1999, 24(2), 401-414.
[http://dx.doi.org/10.1016/S0896-6273(00)80853-3] [PMID: 10571233]
[82]
Minichiello, L.; Calella, A.M.; Medina, D.L.; Bonhoeffer, T.; Klein, R.; Korte, M. Mechanism of TrkB-mediated hippocampal long-term potentiation. Neuron, 2002, 36(1), 121-137.
[http://dx.doi.org/10.1016/S0896-6273(02)00942-X] [PMID: 12367511]
[83]
Caldeira, M.V.; Melo, C.V.; Pereira, D.B.; Carvalho, R.F.; Carvalho, A.L.; Duarte, C.B. BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons. Mol. Cell. Neurosci., 2007, 35(2), 208-219.
[http://dx.doi.org/10.1016/j.mcn.2007.02.019] [PMID: 17428676]
[84]
Korte, M.; Carroll, P.; Wolf, E.; Brem, G.; Thoenen, H.; Bonhoeffer, T. Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc. Natl. Acad. Sci. USA, 1995, 92(19), 8856-8860.
[http://dx.doi.org/10.1073/pnas.92.19.8856] [PMID: 7568031]
[85]
Korte, M.; Griesbeck, O.; Gravel, C.; Carroll, P.; Staiger, V.; Thoenen, H.; Bonhoeffer, T. Virus-mediated gene transfer into hippocampal CA1 region restores long-term potentiation in brain-derived neurotrophic factor mutant mice. Proc. Natl. Acad. Sci. USA, 1996, 93(22), 12547-12552.
[http://dx.doi.org/10.1073/pnas.93.22.12547] [PMID: 8901619]
[86]
Patterson, S.L.; Abel, T.; Deuel, T.A.; Martin, K.C.; Rose, J.C.; Kandel, E.R. Recombinant BDNF rescues deficits in basal synaptic trans-mission and hippocampal LTP in BDNF knockout mice. Neuron, 1996, 16(6), 1137-1145.
[http://dx.doi.org/10.1016/S0896-6273(00)80140-3] [PMID: 8663990]
[87]
Pozzo-Miller, L.D.; Gottschalk, W.; Zhang, L.; McDermott, K.; Du, J.; Gopalakrishnan, R.; Oho, C.; Sheng, Z.H.; Lu, B. Impairments in high-frequency transmission, synaptic vesicle docking, and synaptic protein distribution in the hippocampus of BDNF knockout mice. J. Neurosci., 1999, 19(12), 4972-4983.
[http://dx.doi.org/10.1523/JNEUROSCI.19-12-04972.1999] [PMID: 10366630]
[88]
Heldt, S.A.; Stanek, L.; Chhatwal, J.P.; Ressler, K.J. Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories. Mol. Psychiatry, 2007, 12(7), 656-670.
[http://dx.doi.org/10.1038/sj.mp.4001957] [PMID: 17264839]
[89]
Rex, C.S.; Lauterborn, J.C.; Lin, C.Y.; Kramár, E.A.; Rogers, G.A.; Gall, C.M.; Lynch, G. Restoration of long-term potentiation in middle-aged hippocampus after induction of brain-derived neurotrophic factor. J. Neurophysiol., 2006, 96(2), 677-685.
[http://dx.doi.org/10.1152/jn.00336.2006] [PMID: 16707719]
[90]
Bramham, C.R.; Messaoudi, E. BDNF function in adult synaptic plasticity: The synaptic consolidation hypothesis. Prog. Neurobiol., 2005, 76(2), 99-125.
[http://dx.doi.org/10.1016/j.pneurobio.2005.06.003] [PMID: 16099088]
[91]
Pang, P.T.; Nagappan, G.; Guo, W.; Lu, B. Extracellular and intracellular cleavages of proBDNF required at two distinct stages of late-phase LTP. NPJ Sci. Learn., 2016, 1, 16003.
[http://dx.doi.org/10.1038/npjscilearn.2016.3] [PMID: 30792890]
[92]
Alonso, M.; Medina, J.H.; Pozzo-Miller, L. ERK1/2 activation is necessary for BDNF to increase dendritic spine density in hippocampal CA1 pyramidal neurons. Learn. Mem., 2004, 11(2), 172-178.
[http://dx.doi.org/10.1101/lm.67804] [PMID: 15054132]
[93]
Tang, S.J.; Reis, G.; Kang, H.; Gingras, A.C.; Sonenberg, N.; Schuman, E.M. A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc. Natl. Acad. Sci. USA, 2002, 99(1), 467-472.
[http://dx.doi.org/10.1073/pnas.012605299] [PMID: 11756682]
[94]
Yoshii, A.; Constantine-Paton, M. BDNF induces transport of PSD-95 to dendrites through PI3K-AKT signaling after NMDA receptor activation. Nat. Neurosci., 2007, 10(6), 702-711.
[http://dx.doi.org/10.1038/nn1903] [PMID: 17515902]
[95]
Deinhardt, K.; Kim, T.; Spellman, D.S.; Mains, R.E.; Eipper, B.A.; Neubert, T.A.; Chao, M.V.; Hempstead, B.L. Neuronal growth cone retraction relies on proneurotrophin receptor signaling through Rac. Sci. Signal., 2011, 4(202), ra82.
[http://dx.doi.org/10.1126/scisignal.2002060] [PMID: 22155786]
[96]
Gage, F.H. Mammalian neural stem cells. Science, 2000, 287(5457), 1433-1438.
[http://dx.doi.org/10.1126/science.287.5457.1433] [PMID: 10688783]
[97]
Zhao, C.; Deng, W.; Gage, F.H. Mechanisms and functional implications of adult neurogenesis. Cell, 2008, 132(4), 645-660.
[http://dx.doi.org/10.1016/j.cell.2008.01.033] [PMID: 18295581]
[98]
Colangelo, A.M.; Cirillo, G.; Alberghina, L.; Papa, M.; Westerhoff, H.V. Neural plasticity and adult neurogenesis: The deep biology per-spective. Neural Regen. Res., 2019, 14(2), 201-205.
[http://dx.doi.org/10.4103/1673-5374.244775] [PMID: 30530998]
[99]
Taupin, P.; Gage, F.H. Adult neurogenesis and neural stem cells of the central nervous system in mammals. J. Neurosci. Res., 2002, 69(6), 745-749.
[http://dx.doi.org/10.1002/jnr.10378] [PMID: 12205667]
[100]
Ming, G.L.; Song, H. Adult neurogenesis in the mammalian brain: Significant answers and significant questions. Neuron, 2011, 70(4), 687-702.
[http://dx.doi.org/10.1016/j.neuron.2011.05.001] [PMID: 21609825]
[101]
Kuhn, H.G.; Dickinson-Anson, H.; Gage, F.H. Neurogenesis in the dentate gyrus of the adult rat: Age-related decrease of neuronal pro-genitor proliferation. J. Neurosci., 1996, 16(6), 2027-2033.
[http://dx.doi.org/10.1523/JNEUROSCI.16-06-02027.1996] [PMID: 8604047]
[102]
Kempermann, G.; Kuhn, H.G.; Gage, F.H. More hippocampal neurons in adult mice living in an enriched environment. Nature, 1997, 386(6624), 493-495.
[http://dx.doi.org/10.1038/386493a0] [PMID: 9087407]
[103]
Eriksson, P.S.; Perfilieva, E.; Björk-Eriksson, T.; Alborn, A.M.; Nordborg, C.; Peterson, D.A.; Gage, F.H. Neurogenesis in the adult hu-man hippocampus. Nat. Med., 1998, 4(11), 1313-1317.
[http://dx.doi.org/10.1038/3305] [PMID: 9809557]
[104]
Kornack, D.R.; Rakic, P. Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc. Natl. Acad. Sci. USA, 1999, 96(10), 5768-5773.
[http://dx.doi.org/10.1073/pnas.96.10.5768] [PMID: 10318959]
[105]
Kornack, D.R.; Rakic, P. The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proc. Natl. Acad. Sci. USA, 2001, 98(8), 4752-4757.
[http://dx.doi.org/10.1073/pnas.081074998] [PMID: 11296302]
[106]
Höglinger, G.U.; Rizk, P.; Muriel, M.P.; Duyckaerts, C.; Oertel, W.H.; Caille, I.; Hirsch, E.C. Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat. Neurosci., 2004, 7(7), 726-735.
[http://dx.doi.org/10.1038/nn1265] [PMID: 15195095]
[107]
Pereira, A.C.; Huddleston, D.E.; Brickman, A.M.; Sosunov, A.A.; Hen, R.; McKhann, G.M.; Sloan, R.; Gage, F.H.; Brown, T.R.; Small, S.A. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc. Natl. Acad. Sci. USA, 2007, 104(13), 5638-5643.
[http://dx.doi.org/10.1073/pnas.0611721104] [PMID: 17374720]
[108]
Knoth, R.; Singec, I.; Ditter, M.; Pantazis, G.; Capetian, P.; Meyer, R.P.; Horvat, V.; Volk, B.; Kempermann, G. Murine features of neuro-genesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS One, 2010, 5(1), e8809.
[http://dx.doi.org/10.1371/journal.pone.0008809] [PMID: 20126454]
[109]
Ihunwo, A.O.; Tembo, L.H.; Dzamalala, C. The dynamics of adult neurogenesis in human hippocampus. Neural Regen. Res., 2016, 11(12), 1869-1883.
[http://dx.doi.org/10.4103/1673-5374.195278] [PMID: 28197172]
[110]
Boldrini, M.; Fulmore, C.A.; Tartt, A.N.; Simeon, L.R.; Pavlova, I.; Poposka, V.; Rosoklija, G.B.; Stankov, A.; Arango, V.; Dwork, A.J.; Hen, R.; Mann, J.J. Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell, 2018, 22(4), 589-599.e5.
[http://dx.doi.org/10.1016/j.stem.2018.03.015] [PMID: 29625071]
[111]
Drapeau, E.; Mayo, W.; Aurousseau, C.; Le Moal, M.; Piazza, P.V.; Abrous, D.N. Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis. Proc. Natl. Acad. Sci. USA, 2003, 100(24), 14385-14390.
[http://dx.doi.org/10.1073/pnas.2334169100] [PMID: 14614143]
[112]
Cutuli, D.; De Bartolo, P.; Caporali, P.; Laricchiuta, D.; Foti, F.; Ronci, M.; Rossi, C.; Neri, C.; Spalletta, G.; Caltagirone, C.; Farioli-Vecchioli, S.; Petrosini, L. n-3 polyunsaturated fatty acids supplementation enhances hippocampal functionality in aged mice. Front. Aging Neurosci., 2014, 6, 220.
[http://dx.doi.org/10.3389/fnagi.2014.00220] [PMID: 25202271]
[113]
Faure, A.; Verret, L.; Bozon, B.; El Tannir El Tayara, N.; Ly, M.; Kober, F.; Dhenain, M.; Rampon, C.; Delatour, B. Impaired neurogene-sis, neuronal loss, and brain functional deficits in the APPxPS1-Ki mouse model of Alzheimer’s disease. Neurobiol. Aging, 2011, 32(3), 407-418.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.03.009] [PMID: 19398247]
[114]
Wirths, O. Altered neurogenesis in mouse models of Alzheimer disease. Neurogenesis (Austin), 2017, 4(1), e1327002.
[http://dx.doi.org/10.1080/23262133.2017.1327002] [PMID: 29564360]
[115]
Zhao, M.; Momma, S.; Delfani, K.; Carlen, M.; Cassidy, R.M.; Johansson, C.B.; Brismar, H.; Shupliakov, O.; Frisen, J.; Janson, A.M. Evidence for neurogenesis in the adult mammalian substantia nigra. Proc. Natl. Acad. Sci. USA, 2003, 100(13), 7925-7930.
[http://dx.doi.org/10.1073/pnas.1131955100] [PMID: 12792021]
[116]
Yoshimi, K.; Ren, Y.R.; Seki, T.; Yamada, M.; Ooizumi, H.; Onodera, M.; Saito, Y.; Murayama, S.; Okano, H.; Mizuno, Y.; Mochizuki, H. Possibility for neurogenesis in substantia nigra of parkinsonian brain. Ann. Neurol., 2005, 58(1), 31-40.
[http://dx.doi.org/10.1002/ana.20506] [PMID: 15912513]
[117]
Shan, X.; Chi, L.; Bishop, M.; Luo, C.; Lien, L.; Zhang, Z.; Liu, R. Enhanced de novo neurogenesis and dopaminergic neurogenesis in the substantia nigra of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyri-] dine-induced Parkinson’s disease-like mice. Stem Cells, 2006, 24(5), 1280-1287.
[http://dx.doi.org/10.1634/stemcells.2005-0487] [PMID: 16424396]
[118]
Dokter, M. von Bohlen und Halbach, O. Neurogenesis within the adult hippocampus under physiological conditions and in depression. Neural Regen. Res., 2012, 7(7), 552-559.
[PMID: 25745444]
[119]
Mahar, I.; Bambico, F.R.; Mechawar, N.; Nobrega, J.N. Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci. Biobehav. Rev., 2014, 38, 173-192.
[http://dx.doi.org/10.1016/j.neubiorev.2013.11.009] [PMID: 24300695]
[120]
Kempermann, G.; Kronenberg, G. Depressed new neurons-adult hippocampal neurogenesis and a cellular plasticity hypothesis of major depression. Biol. Psychiatry, 2003, 54(5), 499-503.
[http://dx.doi.org/10.1016/S0006-3223(03)00319-6] [PMID: 12946878]
[121]
Dranovsky, A.; Hen, R. Hippocampal neurogenesis: Regulation by stress and antidepressants. Biol. Psychiatry, 2006, 59(12), 1136-1143.
[http://dx.doi.org/10.1016/j.biopsych.2006.03.082] [PMID: 16797263]
[122]
von Bohlen und Halbach. O. Involvement of BDNF in age-dependent alterations in the hippocampus. Front. Aging Neurosci., 2010, 2, 36.
[http://dx.doi.org/10.3389/fnagi.2010.00036] [PMID: 20941325]
[123]
Lazic, S.E. Modeling hippocampal neurogenesis across the lifespan in seven species. Neurobiol. Aging, 2012, 33(8), 1664-1671.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.03.008] [PMID: 21621300]
[124]
Baptista, P.; Andrade, J.P. Adult Hippocampal neurogenesis: Regulation and possible functional and clinical correlates. Front. Neuroanat., 2018, 12, 44.
[http://dx.doi.org/10.3389/fnana.2018.00044] [PMID: 29922131]
[125]
Babcock, K.R.; Page, J.S.; Fallon, J.R.; Webb, A.E. Adult hippocampal neurogenesis in aging and Alzheimer’s disease. Stem Cell Reports, 2021, 16(4), 681-693.
[http://dx.doi.org/10.1016/j.stemcr.2021.01.019] [PMID: 33636114]
[126]
Jin, K.; Peel, A.L.; Mao, X.O.; Xie, L.; Cottrell, B.A.; Henshall, D.C.; Greenberg, D.A. Increased hippocampal neurogenesis in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2004, 101(1), 343-347.
[http://dx.doi.org/10.1073/pnas.2634794100] [PMID: 14660786]
[127]
Ziabreva, I.; Perry, E.; Perry, R.; Minger, S.L.; Ekonomou, A.; Przyborski, S.; Ballard, C. Altered neurogenesis in Alzheimer’s disease. J. Psychosom. Res., 2006, 61(3), 311-316.
[http://dx.doi.org/10.1016/j.jpsychores.2006.07.017] [PMID: 16938507]
[128]
Perry, E.K.; Johnson, M.; Ekonomou, A.; Perry, R.H.; Ballard, C.; Attems, J. Neurogenic abnormalities in Alzheimer’s disease differ be-tween stages of neurogenesis and are partly related to cholinergic pathology. Neurobiol. Dis., 2012, 47(2), 155-162.
[http://dx.doi.org/10.1016/j.nbd.2012.03.033] [PMID: 22504537]
[129]
Maruszak, A.; Pilarski, A.; Murphy, T.; Branch, N.; Thuret, S. Hippocampal neurogenesis in Alzheimer’s disease: Is there a role for die-tary modulation? J. Alzheimers Dis., 2014, 38(1), 11-38.
[http://dx.doi.org/10.3233/JAD-131004] [PMID: 23948932]
[130]
Moreno-Jiménez, E.P.; Flor-García, M.; Terreros-Roncal, J.; Rábano, A.; Cafini, F.; Pallas-Bazarra, N.; Ávila, J.; Llorens-Martín, M. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat. Med., 2019, 25(4), 554-560.
[http://dx.doi.org/10.1038/s41591-019-0375-9] [PMID: 30911133]
[131]
Tobin, M.K.; Musaraca, K.; Disouky, A.; Shetti, A.; Bheri, A.; Honer, W.G.; Kim, N.; Dawe, R.J.; Bennett, D.A.; Arfanakis, K.; Lazarov, O. Human hippocampal neurogenesis persists in aged adults and Alzheimer’s disease patients. Cell Stem Cell, 2019, 24(6), 974-982.e3.
[http://dx.doi.org/10.1016/j.stem.2019.05.003] [PMID: 31130513]
[132]
Shetty, A.K.; Turner, D.A. Hippocampal interneurons expressing glutamic acid decarboxylase and calcium-binding proteins decrease with aging in Fischer 344 rats. J. Comp. Neurol., 1998, 394(2), 252-269.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19980504)394:2<252:AID-CNE9>3.0.CO;2-1] [PMID: 9552130]
[133]
Katoh-Semba, R.; Asano, T.; Ueda, H.; Morishita, R.; Takeuchi, I.K.; Inaguma, Y.; Kato, K. Riluzole enhances expression of brain-derived neurotrophic factor with consequent proliferation of granule precursor cells in the rat hippocampus. FASEB J., 2002, 16(10), 1328-1330.
[http://dx.doi.org/10.1096/fj.02-0143fje] [PMID: 12154010]
[134]
Shetty, A.K.; Rao, M.S.; Hattiangady, B.; Zaman, V.; Shetty, G.A. Hippocampal neurotrophin levels after injury: Relationship to the age of the hippocampus at the time of injury. J. Neurosci. Res., 2004, 78(4), 520-532.
[http://dx.doi.org/10.1002/jnr.20302] [PMID: 15468179]
[135]
Scharfman, H.; Goodman, J.; Macleod, A.; Phani, S.; Antonelli, C.; Croll, S. Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp. Neurol., 2005, 192(2), 348-356.
[http://dx.doi.org/10.1016/j.expneurol.2004.11.016] [PMID: 15755552]
[136]
Lee, S.H.; Kim, Y.J.; Lee, K.M.; Ryu, S.; Yoon, B.W. Ischemic preconditioning enhances neurogenesis in the subventricular zone. Neuroscience, 2007, 146(3), 1020-1031.
[http://dx.doi.org/10.1016/j.neuroscience.2007.02.058] [PMID: 17434685]
[137]
Li, T.; Jiang, L.; Zhang, X.; Chen, H. In vitro effects of brain-derived neurotrophic factor on neural progenitor/stem cells from rat hippo-campus. Neuroreport, 2009, 20(3), 295-300.
[http://dx.doi.org/10.1097/WNR.0b013e32832000c8] [PMID: 19188859]
[138]
Schmidt, H.D.; Duman, R.S. Peripheral BDNF produces antidepressant-like effects in cellular and behavioral models. Neuropsychopharmacology, 2010, 35(12), 2378-2391.
[http://dx.doi.org/10.1038/npp.2010.114] [PMID: 20686454]
[139]
Zigova, T.; Pencea, V.; Wiegand, S.J.; Luskin, M.B. Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Mol. Cell. Neurosci., 1998, 11(4), 234-245.
[http://dx.doi.org/10.1006/mcne.1998.0684] [PMID: 9675054]
[140]
Pencea, V.; Bingaman, K.D.; Wiegand, S.J.; Luskin, M.B. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J. Neurosci., 2001, 21(17), 6706-6717.
[http://dx.doi.org/10.1523/JNEUROSCI.21-17-06706.2001] [PMID: 11517260]
[141]
Wei, Z.; Liao, J.; Qi, F.; Meng, Z.; Pan, S. Evidence for the contribution of BDNF-TrkB signal strength in neurogenesis: An organotypic study. Neurosci. Lett., 2015, 606, 48-52.
[http://dx.doi.org/10.1016/j.neulet.2015.08.032] [PMID: 26306653]
[142]
Bergami, M.; Rimondini, R.; Santi, S.; Blum, R.; Götz, M.; Canossa, M. Deletion of TrkB in adult progenitors alters newborn neuron inte-gration into hippocampal circuits and increases anxiety-like behavior. Proc. Natl. Acad. Sci. USA, 2008, 105(40), 15570-15575.
[http://dx.doi.org/10.1073/pnas.0803702105] [PMID: 18832146]
[143]
Teng, H.K.; Teng, K.K.; Lee, R.; Wright, S.; Tevar, S.; Almeida, R.D.; Kermani, P.; Torkin, R.; Chen, Z.Y.; Lee, F.S.; Kraemer, R.T.; Nykjaer, A.; Hempstead, B.L. ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J. Neurosci., 2005, 25(22), 5455-5463.
[http://dx.doi.org/10.1523/JNEUROSCI.5123-04.2005] [PMID: 15930396]
[144]
Kronenberg, G.; Kirste, I.; Inta, D.; Chourbaji, S.; Heuser, I.; Endres, M.; Gass, P. Reduced hippocampal neurogenesis in the GR(+/-) ge-netic mouse model of depression. Eur. Arch. Psychiatry Clin. Neurosci., 2009, 259(8), 499-504.
[http://dx.doi.org/10.1007/s00406-009-0036-y] [PMID: 19644729]
[145]
Scalzo, P.; Kümmer, A.; Bretas, T.L.; Cardoso, F.; Teixeira, A.L. Serum levels of brain-derived neurotrophic factor correlate with motor impairment in Parkinson’s disease. J. Neurol., 2010, 257(4), 540-545.
[http://dx.doi.org/10.1007/s00415-009-5357-2] [PMID: 19847468]
[146]
Lim, J.; Bang, Y.; Choi, H.J. Abnormal hippocampal neurogenesis in Parkinson’s disease: Relevance to a new therapeutic target for de-pression with Parkinson’s disease. Arch. Pharm. Res., 2018, 41(10), 943-954.
[http://dx.doi.org/10.1007/s12272-018-1063-x] [PMID: 30136247]
[147]
Micheli, L.; Ceccarelli, M.; D’Andrea, G.; Tirone, F. Depression and adult neurogenesis: Positive effects of the antidepressant fluoxetine and of physical exercise. Brain Res. Bull., 2018, 143, 181-193.
[http://dx.doi.org/10.1016/j.brainresbull.2018.09.002] [PMID: 30236533]
[148]
Castrén, E.; Rantamäki, T. Neurotrophins in depression and antidepressant effects. Novartis Found. Symp., 2008, 289, 43-52.
[http://dx.doi.org/10.1002/9780470751251.ch4]
[149]
Scharfman, H.E.; Maclusky, N.J. Similarities between actions of estrogen and BDNF in the hippocampus: Coincidence or clue? Trends Neurosci., 2005, 28(2), 79-85.
[http://dx.doi.org/10.1016/j.tins.2004.12.005] [PMID: 15667930]
[150]
Silhol, M.; Bonnichon, V.; Rage, F.; Tapia-Arancibia, L. Age-related changes in brain-derived neurotrophic factor and tyrosine kinase receptor isoforms in the hippocampus and hypothalamus in male rats. Neuroscience, 2005, 132(3), 613-624.
[http://dx.doi.org/10.1016/j.neuroscience.2005.01.008] [PMID: 15837123]
[151]
Erickson, K.I.; Prakash, R.S.; Voss, M.W.; Chaddock, L.; Heo, S.; McLaren, M.; Pence, B.D.; Martin, S.A.; Vieira, V.J.; Woods, J.A.; McAuley, E.; Kramer, A.F. Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume. J. Neurosci., 2010, 30(15), 5368-5375.
[http://dx.doi.org/10.1523/JNEUROSCI.6251-09.2010] [PMID: 20392958]
[152]
Apple, D.M.; Solano-Fonseca, R.; Kokovay, E. Neurogenesis in the aging brain. Biochem. Pharmacol., 2017, 141, 77-85.
[http://dx.doi.org/10.1016/j.bcp.2017.06.116] [PMID: 28625813]
[153]
Bekinschtein, P.; Oomen, C.A.; Saksida, L.M.; Bussey, T.J. Effects of environmental enrichment and voluntary exercise on neurogenesis, learning and memory, and pattern separation: BDNF as a critical variable? Semin. Cell Dev. Biol., 2011, 22(5), 536-542.
[http://dx.doi.org/10.1016/j.semcdb.2011.07.002] [PMID: 21767656]
[154]
Ding, Q.; Vaynman, S.; Akhavan, M.; Ying, Z.; Gomez-Pinilla, F. Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience, 2006, 140(3), 823-833.
[http://dx.doi.org/10.1016/j.neuroscience.2006.02.084] [PMID: 16650607]
[155]
Sølvsten, C.A.E.; de Paoli, F.; Christensen, J.H.; Nielsen, A.L. Voluntary physical exercise induces expression and epigenetic remodeling of VegfA in the rat hippocampus. Mol. Neurobiol., 2018, 55(1), 567-582.
[http://dx.doi.org/10.1007/s12035-016-0344-y] [PMID: 27975171]
[156]
Zhang, X.Q.; Mu, J.W.; Wang, H.B.; Jolkkonen, J.; Liu, T.T.; Xiao, T.; Zhao, M.; Zhang, C.D.; Zhao, C.S. Increased protein expression levels of pCREB, BDNF and SDF-1/CXCR4 in the hippocampus may be associated with enhanced neurogenesis induced by environmental enrichment. Mol. Med. Rep., 2016, 14(3), 2231-2237.
[http://dx.doi.org/10.3892/mmr.2016.5470] [PMID: 27432087]
[157]
Choi, S.H.; Bylykbashi, E.; Chatila, Z.K.; Lee, S.W.; Pulli, B.; Clemenson, G.D.; Kim, E.; Rompala, A.; Oram, M.K.; Asselin, C.; Aronson, J.; Zhang, C.; Miller, S.J.; Lesinski, A.; Chen, J.W.; Kim, D.Y.; van Praag, H.; Spiegelman, B.M.; Gage, F.H.; Tanzi, R.E. Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model. Science, 2018, 361(6406), eaan8821.
[http://dx.doi.org/10.1126/science.aan8821] [PMID: 30190379]
[158]
Autry, A.E.; Monteggia, L.M. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol. Rev., 2012, 64(2), 238-258.
[http://dx.doi.org/10.1124/pr.111.005108] [PMID: 22407616]
[159]
Bekinschtein, P.; Cammarota, M.; Medina, J.H. BDNF and memory processing. Neuropharmacology, 2014, 76(Pt C), 677-683.
[http://dx.doi.org/10.1016/j.neuropharm.2013.04.024] [PMID: 23688925]
[160]
Radiske, A.; Rossato, J.I.; Gonzalez, M.C.; Köhler, C.A.; Bevilaqua, L.R.; Cammarota, M. BDNF controls object recognition memory reconsolidation. Neurobiol. Learn Mem, 2017, 142(Pt A), 79-84.
[http://dx.doi.org/10.1016/j.nlm.2017.02.018]
[161]
Zaletel, I. Filipović D.; Puškaš, N. Hippocampal BDNF in physiological conditions and social isolation. Rev. Neurosci., 2017, 28(6), 675-692.
[http://dx.doi.org/10.1515/revneuro-2016-0072] [PMID: 28593903]
[162]
Logrip, M.L.; Janak, P.H.; Ron, D. Escalating ethanol intake is associated with altered corticostriatal BDNF expression. J. Neurochem., 2009, 109(5), 1459-1468.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06073.x] [PMID: 19453942]
[163]
Nees, F.; Witt, S.H.; Dinu-Biringer, R.; Lourdusamy, A.; Tzschoppe, J.; Vollstädt-Klein, S.; Millenet, S.; Bach, C.; Poustka, L.; Banaschew-ski, T.; Barker, G.J.; Bokde, A.L.; Bromberg, U.; Büchel, C.; Conrod, P.J.; Frank, J.; Frouin, V.; Gallinat, J.; Garavan, H.; Gowland, P.; Heinz, A.; Ittermann, B.; Mann, K.; Martinot, J.L.; Paus, T.; Pausova, Z.; Robbins, T.W.; Smolka, M.N.; Rietschel, M.; Schumann, G.; Flor, H. BDNF Val66Met and reward-related brain function in adolescents: role for early alcohol consumption. Alcohol, 2015, 49(2), 103-110.
[http://dx.doi.org/10.1016/j.alcohol.2014.12.004] [PMID: 25650137]
[164]
Caffino, L.; Giannotti, G.; Messa, G.; Mottarlini, F.; Fumagalli, F. Repeated cocaine exposure dysregulates BDNF expression and signaling in the mesocorticolimbic pathway of the adolescent rat. World J. Biol. Psychiatry, 2019, 20(7), 531-544.
[http://dx.doi.org/10.1080/15622975.2018.1433328] [PMID: 29380665]
[165]
Sher, L. The role of brain-derived neurotrophic factor in the pathophysiology of adolescent suicidal behavior. Int. J. Adolesc. Med. Health, 2011, 23(3), 181-185.
[http://dx.doi.org/10.1515/ijamh.2011.041] [PMID: 22191181]
[166]
Bilgiç, A. Çelikkol Sadıç, Ç.; Kılınç, İ.; Akça, Ö.F. Exploring the association between depression, suicidality and serum neurotrophin levels in adolescents. Int. J. Psychiatry Clin. Pract., 2020, 24(2), 143-150.
[http://dx.doi.org/10.1080/13651501.2020.1723643] [PMID: 32027188]
[167]
Zhao, M.; Wang, W.; Jiang, Z.; Zhu, Z.; Liu, D.; Pan, F. Long-term effect of post-traumatic stress in adolescence on dendrite development and H3K9me2/BDNF expression in male rat hippocampus and prefrontal cortex. Front. Cell Dev. Biol., 2020, 8, 682.
[168]
Lhullier, A.C.; Moreira, F.P.; da Silva, R.A.; Marques, M.B.; Bittencourt, G.; Pinheiro, R.T.; Souza, L.D.; Portela, L.V.; Lara, D.R.; Jansen, K.; Wiener, C.D.; Oses, J.P. Increased serum neurotrophin levels related to alcohol use disorder in a young population sample. Alcohol. Clin. Exp. Res., 2015, 39(1), 30-33.
[http://dx.doi.org/10.1111/acer.12592] [PMID: 25623403]
[169]
Pianca, T.G.; Rosa, R.L.; Ceresér, K.M.M.; de Aguiar, B.W.; de Abrahão, R.C.; Lazzari, P.M.; Kapczinski, F.; Pechansky, F.; Rohde, L.A.; Szobot, C.M. Differences in biomarkers of crack-cocaine adolescent users before/after abstinence. Drug Alcohol Depend., 2017, 177(177), 207-213.
[http://dx.doi.org/10.1016/j.drugalcdep.2017.03.043] [PMID: 28618284]
[170]
Dahl, R.E. Adolescent brain development: A period of vulnerabilities and opportunities. Keynote address. Ann. N. Y. Acad. Sci., 2004, 1021, 1-22.
[http://dx.doi.org/10.1196/annals.1308.001] [PMID: 15251869]
[171]
Cohen-Cory, S.; Kidane, A.H.; Shirkey, N.J.; Marshak, S. Brain-derived neurotrophic factor and the development of structural neuronal connectivity. Dev. Neurobiol., 2010, 70(5), 271-288.
[http://dx.doi.org/10.1002/dneu.20774] [PMID: 20186709]
[172]
Gan, W.B.; Kwon, E.; Feng, G.; Sanes, J.R.; Lichtman, J.W. Synaptic dynamism measured over minutes to months: Age-dependent decline in an autonomic ganglion. Nat. Neurosci., 2003, 6(9), 956-960.
[http://dx.doi.org/10.1038/nn1115] [PMID: 12925856]
[173]
Zuo, Y.; Lin, A.; Chang, P.; Gan, W.B. Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron, 2005, 46(2), 181-189.
[http://dx.doi.org/10.1016/j.neuron.2005.04.001] [PMID: 15848798]
[174]
He, J.; Crews, F.T. Neurogenesis decreases during brain maturation from adolescence to adulthood. Pharmacol. Biochem. Behav., 2007, 86(2), 327-333.
[http://dx.doi.org/10.1016/j.pbb.2006.11.003] [PMID: 17169417]
[175]
Hanover, J.L.; Huang, Z.J.; Tonegawa, S.; Stryker, M.P. Brain-derived neurotrophic factor overexpression induces precocious critical period in mouse visual cortex. J. Neurosci., 1999, 19(22), RC40.
[http://dx.doi.org/10.1523/JNEUROSCI.19-22-j0003.1999] [PMID: 10559430]
[176]
Huang, Z.J.; Kirkwood, A.; Pizzorusso, T.; Porciatti, V.; Morales, B.; Bear, M.F.; Maffei, L.; Tonegawa, S. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell, 1999, 98(6), 739-755.
[http://dx.doi.org/10.1016/S0092-8674(00)81509-3] [PMID: 10499792]
[177]
Caballero, A.; Tseng, K.Y. GABAergic function as a limiting factor for prefrontal maturation during adolescence. Trends Neurosci., 2016, 39(7), 441-448.
[http://dx.doi.org/10.1016/j.tins.2016.04.010] [PMID: 27233681]
[178]
Spear, L.P. Adolescents and alcohol: Acute sensitivities, enhanced intake, and later consequences. Neurotoxicol. Teratol., 2014, 41, 51-59.
[http://dx.doi.org/10.1016/j.ntt.2013.11.006] [PMID: 24291291]
[179]
Ferrett, H.L.; Carey, P.D.; Thomas, K.G.; Tapert, S.F.; Fein, G. Neuropsychological performance of South African treatment-naïve adoles-cents with alcohol dependence. Drug Alcohol Depend., 2010, 110(1-2), 8-14.
[http://dx.doi.org/10.1016/j.drugalcdep.2010.01.019] [PMID: 20227839]
[180]
Johnson, P.B.; Malow-Iroff, M.S. Adolescents and risk: Making sense of adolescent psychology; Praeger Publishers/Greenwood Publishing Group, 2008.
[181]
Spear, L.P. Effects of adolescent alcohol consumption on the brain and behaviour. Nat. Rev. Neurosci., 2018, 19(4), 197-214.
[http://dx.doi.org/10.1038/nrn.2018.10] [PMID: 29467469]
[182]
Spear, L.P. The adolescent brain and the college drinker: Biological basis of propensity to use and misuse alcohol. J. Stud. Alcohol Suppl., 2002, 14(14), 71-81.
[http://dx.doi.org/10.15288/jsas.2002.s14.71] [PMID: 12022731]
[183]
Tapert, S.F.; Pulido, C.; Paulus, M.P.; Schuckit, M.A.; Burke, C. Level of response to alcohol and brain response during visual working memory. J. Stud. Alcohol, 2004, 65(6), 692-700.
[http://dx.doi.org/10.15288/jsa.2004.65.692] [PMID: 15700505]
[184]
Miguez, M.J.; Bueno, D.; Espinoza, L.; Chan, W.; Perez, C. Among adolescents, BDNF and pro-BDNF lasting changes with alcohol use are stage specific. Neural Plast., 2020, 2020, 3937627.
[http://dx.doi.org/10.1155/2020/3937627] [PMID: 32399021]
[185]
Guillin, O.; Diaz, J.; Carroll, P.; Griffon, N.; Schwartz, J.C.; Sokoloff, P. BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Nature, 2001, 411(6833), 86-89.
[http://dx.doi.org/10.1038/35075076] [PMID: 11333982]
[186]
Pandey, S.C.; Roy, A.; Zhang, H.; Xu, T. Partial deletion of the cAMP response element-binding protein gene promotes alcohol-drinking behaviors. J. Neurosci., 2004, 24(21), 5022-5030.
[http://dx.doi.org/10.1523/JNEUROSCI.5557-03.2004] [PMID: 15163695]
[187]
Nedic, G.; Perkovic, M.N.; Sviglin, K.N.; Muck-Seler, D.; Borovecki, F.; Pivac, N. Brain-derived neurotrophic factor Val66Met polymor-phism and alcohol-related phenotypes. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 40, 193-198.
[http://dx.doi.org/10.1016/j.pnpbp.2012.09.005] [PMID: 23023098]
[188]
Wojnar, M.; Brower, K.J.; Strobbe, S.; Ilgen, M.; Matsumoto, H.; Nowosad, I.; Sliwerska, E.; Burmeister, M. Association between Val66Met brain-derived neurotrophic factor (BDNF) gene polymorphism and post-treatment relapse in alcohol dependence. Alcohol. Clin. Exp. Res., 2009, 33(4), 693-702.
[http://dx.doi.org/10.1111/j.1530-0277.2008.00886.x] [PMID: 19170664]
[189]
Colzato, L.S.; Van der Does, A.J.; Kouwenhoven, C.; Elzinga, B.M.; Hommel, B. BDNF Val66Met polymorphism is associated with higher anticipatory cortisol stress response, anxiety, and alcohol consumption in healthy adults. Psychoneuroendocrinology, 2011, 36(10), 1562-1569.
[http://dx.doi.org/10.1016/j.psyneuen.2011.04.010] [PMID: 21596481]
[190]
Yan, Q.S.; Feng, M.J.; Yan, S.E. Different expression of brain-derived neurotrophic factor in the nucleus accumbens of alcohol-preferring (P) and -nonpreferring (NP) rats. Brain Res., 2005, 1035(2), 215-218.
[http://dx.doi.org/10.1016/j.brainres.2004.12.039] [PMID: 15722062]
[191]
Bahi, A.; Dreyer, J.L. Striatal modulation of BDNF expression using microRNA124a-expressing lentiviral vectors impairs ethanol-induced conditioned-place preference and voluntary alcohol consumption. Eur. J. Neurosci., 2013, 38(2), 2328-2337.
[http://dx.doi.org/10.1111/ejn.12228] [PMID: 23601049]
[192]
Jeanblanc, J.; He, D.Y.; Carnicella, S.; Kharazia, V.; Janak, P.H.; Ron, D. Endogenous BDNF in the dorsolateral striatum gates alcohol drinking. J. Neurosci., 2009, 29(43), 13494-13502.
[http://dx.doi.org/10.1523/JNEUROSCI.2243-09.2009] [PMID: 19864562]
[193]
FitzGerald, T.H.; Friston, K.J.; Dolan, R.J. Action-specific value signals in reward-related regions of the human brain. J. Neurosci., 2012, 32(46), 16417-23a.
[http://dx.doi.org/10.1523/JNEUROSCI.3254-12.2012] [PMID: 23152624]
[194]
Redgrave, P.; Vautrelle, N.; Reynolds, J.N. Functional properties of the basal ganglia’s re-entrant loop architecture: selection and rein-forcement. Neuroscience, 2011, 198, 138-151.
[http://dx.doi.org/10.1016/j.neuroscience.2011.07.060] [PMID: 21821101]
[195]
Monchi, O.; Ko, J.H.; Strafella, A.P. Striatal dopamine release during performance of executive functions: A [(11)C] raclopride PET study. Neuroimage, 2006, 33(3), 907-912.
[http://dx.doi.org/10.1016/j.neuroimage.2006.06.058] [PMID: 16982202]
[196]
Wunderlich, K.; Dayan, P.; Dolan, R.J. Mapping value based planning and extensively trained choice in the human brain. Nat. Neurosci., 2012, 15(5), 786-791.
[http://dx.doi.org/10.1038/nn.3068] [PMID: 22406551]
[197]
Heinz, A.; Siessmeier, T.; Wrase, J.; Buchholz, H.G.; Gründer, G.; Kumakura, Y.; Cumming, P.; Schreckenberger, M.; Smolka, M.N.; Rösch, F.; Mann, K.; Bartenstein, P. Correlation of alcohol craving with striatal dopamine synthesis capacity and D2/3 receptor availabil-ity: A combined [18F]DOPA and [18F]DMFP PET study in detoxified alcoholic patients. Am. J. Psychiatry, 2005, 162(8), 1515-1520.
[http://dx.doi.org/10.1176/appi.ajp.162.8.1515] [PMID: 16055774]
[198]
Dhaher, R.; Finn, D.; Snelling, C.; Hitzemann, R. Lesions of the extended amygdala in C57BL/6J mice do not block the intermittent ethanol vapor-induced increase in ethanol consumption. Alcohol. Clin. Exp. Res., 2008, 32(2), 197-208.
[http://dx.doi.org/10.1111/j.1530-0277.2007.00566.x] [PMID: 18162080]
[199]
Stice, E.; Yokum, S. Brain reward region responsivity of adolescents with and without parental substance use disorders. Psychol. Addict. Behav., 2014, 28(3), 805-815.
[http://dx.doi.org/10.1037/a0034460] [PMID: 24128289]
[200]
Heberlein, A.; Büscher, P.; Schuster, R.; Kleimann, A.; Lichtinghagen, R.; Rhein, M.; Kornhuber, J.; Bleich, S.; Frieling, H.; Hillemacher, T. Do changes in the BDNF promoter methylation indicate the risk of alcohol relapse? Eur. Neuropsychopharmacol., 2015, 25(11), 1892-1897.
[http://dx.doi.org/10.1016/j.euroneuro.2015.08.018] [PMID: 26404404]
[201]
Logrip, M.L.; Barak, S.; Warnault, V.; Ron, D. Corticostriatal BDNF and alcohol addiction. Brain Res, 2015, 1628(Pt A), 60-67.
[http://dx.doi.org/10.1016/j.brainres.2015.03.025]
[202]
Jeanblanc, J.; Logrip, M.L.; Janak, P.H.; Ron, D. BDNF-mediated regulation of ethanol consumption requires the activation of the MAP kinase pathway and protein synthesis. Eur. J. Neurosci., 2013, 37(4), 607-612.
[http://dx.doi.org/10.1111/ejn.12067] [PMID: 23189980]
[203]
Silva-Peña, D.; García-Marchena, N.; Alén, F.; Araos, P.; Rivera, P.; Vargas, A.; García-Fernández, M.I.; Martín-Velasco, A.I.; Villanúa, M.A.; Castilla-Ortega, E.; Santín, L.; Pavón, F.J.; Serrano, A.; Rubio, G.; Rodríguez de Fonseca, F.; Suárez, J. Alcohol-induced cognitive deficits are associated with decreased circulating levels of the neurotrophin BDNF in humans and rats. Addict. Biol., 2019, 24(5), 1019-1033.
[http://dx.doi.org/10.1111/adb.12668] [PMID: 30277635]
[204]
Sakharkar, A.J.; Kyzar, E.J.; Gavin, D.P.; Zhang, H.; Chen, Y.; Krishnan, H.R.; Grayson, D.R.; Pandey, S.C. Altered amygdala DNA meth-ylation mechanisms after adolescent alcohol exposure contribute to adult anxiety and alcohol drinking. Neuropharmacology, 2019, 157, 107679.
[http://dx.doi.org/10.1016/j.neuropharm.2019.107679] [PMID: 31229451]
[205]
Kyzar, E.J.; Floreani, C.; Teppen, T.L.; Pandey, S.C. Adolescent alcohol exposure: Burden of epigenetic reprogramming, synaptic remod-eling, and adult psychopathology. Front. Neurosci., 2016, 10, 222.
[http://dx.doi.org/10.3389/fnins.2016.00222] [PMID: 27303256]
[206]
Briones, T.L.; Woods, J. Chronic binge-like alcohol consumption in adolescence causes depression-like symptoms possibly mediated by the effects of BDNF on neurogenesis. Neuroscience, 2013, 254, 324-334.
[http://dx.doi.org/10.1016/j.neuroscience.2013.09.031] [PMID: 24076087]
[207]
McClain, J.A.; Hayes, D.M.; Morris, S.A.; Nixon, K. Adolescent binge alcohol exposure alters hippocampal progenitor cell proliferation in rats: Effects on cell cycle kinetics. J. Comp. Neurol., 2011, 519(13), 2697-2710.
[http://dx.doi.org/10.1002/cne.22647] [PMID: 21484803]
[208]
Stevenson, J.R.; Schroeder, J.P.; Nixon, K.; Besheer, J.; Crews, F.T.; Hodge, C.W. Abstinence following alcohol drinking produces depres-sion-like behavior and reduced hippocampal neurogenesis in mice. Neuropsychopharmacology, 2009, 34(5), 1209-1222.
[http://dx.doi.org/10.1038/npp.2008.90] [PMID: 18563059]
[209]
Morris, S.A.; Eaves, D.W.; Smith, A.R.; Nixon, K. Alcohol inhibition of neurogenesis: A mechanism of hippocampal neurodegeneration in an adolescent alcohol abuse model. Hippocampus, 2010, 20(5), 596-607.
[PMID: 19554644]
[210]
Wooden, J.I.; Thompson, K.R.; Guerin, S.P.; Nawarawong, N.N.; Nixon, K. Consequences of adolescent alcohol use on adult hippocampal neurogenesis and hippocampal integrity. Int. Rev. Neurobiol., 2021, 160, 281-304.
[http://dx.doi.org/10.1016/bs.irn.2021.08.005] [PMID: 34696876]
[211]
Lees, B.; Meredith, L.R.; Kirkland, A.E.; Bryant, B.E.; Squeglia, L.M. Effect of alcohol use on the adolescent brain and behavior. Pharmacol. Biochem. Behav., 2020, 192, 172906.
[http://dx.doi.org/10.1016/j.pbb.2020.172906] [PMID: 32179028]
[212]
Macht, V.; Vetreno, R.; Elchert, N.; Crews, F. Galantamine prevents and reverses neuroimmune induction and loss of adult hippocampal neurogenesis following adolescent alcohol exposure. J. Neuroinflammation, 2021, 18(1), 212.
[http://dx.doi.org/10.1186/s12974-021-02243-7] [PMID: 34530858]
[213]
Behrendt, S.; Wittchen, H.U.; Höfler, M.; Lieb, R.; Beesdo, K. Transitions from first substance use to substance use disorders in adoles-cence: Is early onset associated with a rapid escalation? Drug Alcohol Depend., 2009, 99(1-3), 68-78.
[http://dx.doi.org/10.1016/j.drugalcdep.2008.06.014] [PMID: 18768267]
[214]
Guttmannova, K.; Hill, K.G.; Bailey, J.A.; Lee, J.O.; Hartigan, L.A.; Hawkins, J.D.; Catalano, R.F. Examining explanatory mechanisms of the effects of early alcohol use on young adult alcohol dependence. J. Stud. Alcohol Drugs, 2012, 73(3), 379-390.
[http://dx.doi.org/10.15288/jsad.2012.73.379] [PMID: 22456243]
[215]
Slade, T.; Chapman, C.; Swift, W.; Keyes, K.; Tonks, Z.; Teesson, M. Birth cohort trends in the global epidemiology of alcohol use and alcohol-related harms in men and women: Systematic review and metaregression. BMJ Open, 2016, 6(10), e011827.
[http://dx.doi.org/10.1136/bmjopen-2016-011827] [PMID: 27797998]
[216]
Cornelius, J.R.; Maisto, S.A.; Pollock, N.K.; Martin, C.S.; Salloum, I.M.; Lynch, K.G.; Clark, D.B. Rapid relapse generally follows treat-ment for substance use disorders among adolescents. Addict. Behav., 2003, 28(2), 381-386.
[http://dx.doi.org/10.1016/S0306-4603(01)00247-7] [PMID: 12573689]
[217]
Ramo, D.E.; Brown, S.A. Classes of substance abuse relapse situations: A comparison of adolescents and adults. Psychol. Addict. Behav., 2008, 22(3), 372-379.
[http://dx.doi.org/10.1037/0893-164X.22.3.372] [PMID: 18778130]
[218]
Schuckit, M.A. Alcohol-use disorders. Lancet, 2009, 373(9662), 492-501.
[http://dx.doi.org/10.1016/S0140-6736(09)60009-X] [PMID: 19168210]
[219]
Brewer, C.; Streel, E.; Skinner, M. Supervised disulfiram’s superior effectiveness in alcoholism treatment: Ethical, methodological, and psychological aspects. Alcohol Alcohol., 2017, 52(2), 213-219.
[http://dx.doi.org/10.1093/alcalc/agw093] [PMID: 28064151]
[220]
Macht, V.; Crews, F.T.; Vetreno, R.P. Neuroimmune and epigenetic mechanisms underlying persistent loss of hippocampal neurogenesis following adolescent intermittent ethanol exposure. Curr. Opin. Pharmacol., 2020, 50, 9-16.
[http://dx.doi.org/10.1016/j.coph.2019.10.007] [PMID: 31778865]
[221]
Sampedro-Piquero, P.; Moreno-Fernandez, R.D.; Begega, A.; López, M.; Santín, L.J. Consequences of alcohol use in early adolescence on emotional and cognitive status of mice in the late adolescence and adulthood: focus on neuroadaptations in GR, CRF and BDNF. Addict. Biol., 2022, 27(2), e13158.
[http://dx.doi.org/10.1111/adb.13158]
[222]
Linke, S.E.; Ussher, M. Exercise-based treatments for substance use disorders: Evidence, theory, and practicality. Am. J. Drug Alcohol Abuse, 2015, 41(1), 7-15.
[http://dx.doi.org/10.3109/00952990.2014.976708] [PMID: 25397661]
[223]
Zschucke, E.; Heinz, A.; Ströhle, A. Exercise and physical activity in the therapy of substance use disorders. Sci. World J., 2012, 2012, 901741.
[http://dx.doi.org/10.1100/2012/901741] [PMID: 22629222]
[224]
Giesen, E.S.; Deimel, H.; Bloch, W. Clinical exercise interventions in alcohol use disorders: A systematic review. J. Subst. Abuse Treat., 2015, 52, 1-9.
[http://dx.doi.org/10.1016/j.jsat.2014.12.001] [PMID: 25641736]
[225]
Kokotailo, P.K.; Henry, B.C.; Koscik, R.E.; Fleming, M.F.; Landry, G.L. Substance use and other health risk behaviors in collegiate ath-letes. Clin. J. Sport Med., 1996, 6(3), 183-189.
[http://dx.doi.org/10.1097/00042752-199607000-00008] [PMID: 8792050]
[226]
Zhou, J.; Heim, D.; O’Brien, K. Alcohol consumption, athlete identity, and happiness among student sportspeople as a function of sport-type. Alcohol Alcohol., 2015, 50(5), 617-623.
[http://dx.doi.org/10.1093/alcalc/agv030] [PMID: 25827775]
[227]
Leasure, J.L.; Neighbors, C.; Henderson, C.E.; Young, C.M. Exercise and alcohol consumption: What we know, what we need to know, and why it is important. Front. Psychiatry, 2015, 6, 156.
[http://dx.doi.org/10.3389/fpsyt.2015.00156] [PMID: 26578988]
[228]
Leasure, J.L.; Neighbors, C. Impulsivity moderates the association between physical activity and alcohol consumption. Alcohol, 2014, 48(4), 361-366.
[http://dx.doi.org/10.1016/j.alcohol.2013.12.003] [PMID: 24525252]
[229]
Abrantes, A.M.; Battle, C.L.; Strong, D.R.; Ing, E.; Dubreuil, M.E.; Gordon, A.; Brown, R.A. Exercise preferences of patients in substance abuse treatment. Ment. Health Phys. Act., 2011, 4(2), 79-87.
[http://dx.doi.org/10.1016/j.mhpa.2011.08.002] [PMID: 22125581]
[230]
Cutuli, D.; Ladrón de Guevara-Miranda, D.; Castilla-Ortega, E.; Santín, L.J.; Sampedro-Piquero, P. Highlighting the role of cognitive and brain reserve in the substance use disorder field. Curr. Neuropharmacol., 2019, 17(11), 1056-1070.
[http://dx.doi.org/10.2174/1570159X17666190617100707] [PMID: 31204624]
[231]
Giménez-Meseguer, J.; Tortosa-Martínez, J.; de los Remedios Fernández-Valenciano, M. Benefits of exercise for the quality of life of drug-dependent patients. J. Psychoactive Drugs, 2015, 47(5), 409-416.
[http://dx.doi.org/10.1080/02791072.2015.1102991] [PMID: 26595433]
[232]
Neale, J.; Nettleton, S.; Pickering, L. Heroin users’ views and experiences of physical activity, sport and exercise. Int. J. Drug Policy, 2012, 23(2), 120-127.
[http://dx.doi.org/10.1016/j.drugpo.2011.06.004] [PMID: 21741815]
[233]
Wu, L.T.; Pilowsky, D.J.; Schlenger, W.E.; Hasin, D. Alcohol use disorders and the use of treatment services among college-age young adults. Psychiatr. Serv., 2007, 58(2), 192-200.
[http://dx.doi.org/10.1176/ps.2007.58.2.192] [PMID: 17287375]
[234]
Kwon, S.J.; Park, J.; Park, S.Y.; Song, K.S.; Jung, S.T.; Jung, S.B.; Park, I.R.; Choi, W.S.; Kwon, S.O. Low-intensity treadmill exercise and/or bright light promote neurogenesis in adult rat brain. Neural Regen. Res., 2013, 8(10), 922-929.
[PMID: 25206384]
[235]
E., Dief A.; M Samy, D.; I Dowedar, F. Impact of exercise and vitamin B1 intake on hippocampal brain-derived neurotrophic factor and spatial memory performance in a rat model of stress. J. Nutr. Sci. Vitaminol. (Tokyo), 2015, 61(1), 1-7.
[http://dx.doi.org/10.3177/jnsv.61.1] [PMID: 25994133]
[236]
Kim, D.M.; Leem, Y.H. Chronic stress-induced memory deficits are reversed by regular exercise via AMPK-mediated BDNF induction. Neuroscience, 2016, 324, 271-285.
[http://dx.doi.org/10.1016/j.neuroscience.2016.03.019] [PMID: 26975895]
[237]
Shafia, S.; Vafaei, A.A.; Samaei, S.A.; Bandegi, A.R.; Rafiei, A.; Valadan, R.; Hosseini-Khah, Z.; Mohammadkhani, R.; Rashidy-Pour, A. Effects of moderate treadmill exercise and fluoxetine on behavioural and cognitive deficits, hypothalamic-pituitary-adrenal axis dysfunc-tion and alternations in hippocampal BDNF and mRNA expression of apoptosis - related proteins in a rat model of post-traumatic stress disorder. Neurobiol. Learn. Mem., 2017, 139, 165-178.
[http://dx.doi.org/10.1016/j.nlm.2017.01.009] [PMID: 28137660]
[238]
Babaei, A.; Nourshahi, M.; Fani, M.; Entezari, Z.; Jameie, S.B.; Haghparast, A. The effectiveness of continuous and interval exercise pre-conditioning against chronic unpredictable stress: Involvement of hippocampal PGC-1α/FNDC5/BDNF pathway. J. Psychiatr. Res., 2021, 136, 173-183.
[http://dx.doi.org/10.1016/j.jpsychires.2021.02.006] [PMID: 33607579]
[239]
Volkow, N.D.; Chang, L.; Wang, G.J.; Fowler, J.S.; Leonido-Yee, M.; Franceschi, D.; Sedler, M.J.; Gatley, S.J.; Hitzemann, R.; Ding, Y.S.; Logan, J.; Wong, C.; Miller, E.N. Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am. J. Psychiatry, 2001, 158(3), 377-382.
[http://dx.doi.org/10.1176/appi.ajp.158.3.377] [PMID: 11229977]
[240]
Volkow, N.D.; Tomasi, D.; Wang, G.J.; Telang, F.; Fowler, J.S.; Logan, J.; Maynard, L.J.; Wong, C.T. Predominance of D2 receptors in mediating dopamine’s effects in brain metabolism: Effects of alcoholism. J. Neurosci., 2013, 33(10), 4527-4535.
[http://dx.doi.org/10.1523/JNEUROSCI.5261-12.2013] [PMID: 23467368]
[241]
Volkow, N.D.; Baler, R.D. Addiction science: Uncovering neurobiological complexity. Neuropharmacology, 2014, 76(Pt B), 235-249.
[242]
Sampedro-Piquero, P.; Millón, C.; Moreno-Fernández, R.D.; García-Fernández, M.; Diaz-Cabiale, Z.; Santín, L.J. Treadmill exercise buff-ers behavioral alterations related to ethanol binge-drinking in adolescent mice. Brain Sci., 2020, 10(9), 576.
[http://dx.doi.org/10.3390/brainsci10090576] [PMID: 32825478]
[243]
Sampedro-Piquero, P.; Moreno-Fernández, R.D. Limitations of voluntary exercise to reduce the motivational value of alcohol study in an adolescent preclinical model of alcohol binge-drinking. In: Research and practice in health: adapting to new realities. Martinez MA Eds, University Association of Education and Psychology (ASUNIVEP). La Roja, 2021, pp. 499-506.
[244]
Shilpa, B.M.; Bhagya, V.; Harish, G.; Srinivas, B.M.M.; Shankaranarayana, R.B.S. Environmental enrichment ameliorates chronic immobi-lisation stress-induced spatial learning deficits and restores the expression of BDNF, VEGF, GFAP and glucocorticoid receptors. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, 76, 88-100.
[http://dx.doi.org/10.1016/j.pnpbp.2017.02.025] [PMID: 28288856]
[245]
Seong, H.H.; Park, J.M.; Kim, Y.J. Antidepressive effects of environmental enrichment in chronic stress-induced depression in rats. Biol. Res. Nurs., 2018, 20(1), 40-48.
[http://dx.doi.org/10.1177/1099800417730400] [PMID: 28931312]
[246]
Marianno, P.; Abrahao, K.P.; Camarini, R. Environmental enrichment blunts ethanol consumption after restraint stress in C57BL/6 Mice. PLoS One, 2017, 12(1), e0170317.
[http://dx.doi.org/10.1371/journal.pone.0170317] [PMID: 28107511]
[247]
Rae, M.; Zanos, P.; Georgiou, P.; Chivers, P.; Bailey, A.; Camarini, R. Environmental enrichment enhances conditioned place preference to ethanol via an oxytocinergic-dependent mechanism in male mice. Neuropharmacology, 2018, 138, 267-274.
[http://dx.doi.org/10.1016/j.neuropharm.2018.06.013] [PMID: 29908241]
[248]
Suárez, A.; Fabio, M.C.; Bellia, F.; Fernández, M.S.; Pautassi, R.M. Environmental enrichment during adolescence heightens ethanol intake in female, but not male, adolescent rats that are selectively bred for high and low ethanol intake during adolescence. Am. J. Drug Alcohol Abuse, 2020, 46(5), 553-564.
[http://dx.doi.org/10.1080/00952990.2020.1770778] [PMID: 32811189]
[249]
Pautassi, R.M.; Suárez, A.B.; Hoffmann, L.B.; Rueda, A.V.; Rae, M.; Marianno, P.; Camarini, R. Effects of environmental enrichment upon ethanol-induced conditioned place preference and pre-frontal BDNF levels in adolescent and adult mice. Sci. Rep., 2017, 7(1), 8574.
[http://dx.doi.org/10.1038/s41598-017-08795-0] [PMID: 28819238]
[250]
Deehan, G.A., Jr; Cain, M.E.; Kiefer, S.W. Differential rearing conditions alter operant responding for ethanol in outbred rats. Alcohol. Clin. Exp. Res., 2007, 31(10), 1692-1698.
[http://dx.doi.org/10.1111/j.1530-0277.2007.00466.x] [PMID: 17651466]
[251]
de Carvalho, C.R.; Pandolfo, P.; Pamplona, F.A.; Takahashi, R.N. Environmental enrichment reduces the impact of novelty and motiva-tional properties of ethanol in spontaneously hypertensive rats. Behav. Brain Res., 2010, 208(1), 231-236.
[http://dx.doi.org/10.1016/j.bbr.2009.11.043] [PMID: 19962407]
[252]
Brancato, A.; Castelli, V.; Lavanco, G.; Cannizzaro, C. Environmental enrichment during adolescence mitigates cognitive deficits and alco-hol vulnerability due to continuous and intermittent perinatal alcohol exposure in adult rats. Front. Behav. Neurosci., 2020, 14, 583122.
[http://dx.doi.org/10.3389/fnbeh.2020.583122] [PMID: 33100982]
[253]
Rueda, A.V.; Teixeira, A.M.; Yonamine, M.; Camarini, R. Environmental enrichment blocks ethanol-induced locomotor sensitization and decreases BDNF levels in the prefrontal cortex in mice. Addict. Biol., 2012, 17(4), 736-745.
[http://dx.doi.org/10.1111/j.1369-1600.2011.00408.x] [PMID: 22126132]
[254]
Sampedro-Piquero, P.; Ladrón de Guevara-Miranda, D.; Pavón, F.J.; Serrano, A.; Suárez, J.; Rodríguez de Fonseca, F.; Santín, L.J. Cas-tilla-Ortega, E. Neuroplastic and cognitive impairment in substance use disorders: A therapeutic potential of cognitive stimulation. Neurosci. Biobehav. Rev., 2019, 106, 23-48.
[http://dx.doi.org/10.1016/j.neubiorev.2018.11.015] [PMID: 30481530]
[255]
Gamito, P.; Oliveira, J.; Lopes, P.; Brito, R.; Morais, D.; Silva, D.; Silva, A.; Rebelo, S.; Bastos, M.; Deus, A. Executive functioning in alcoholics following an mHealth cognitive stimulation program: Randomized controlled trial. J. Med. Internet Res., 2014, 16(4), e102.
[http://dx.doi.org/10.2196/jmir.2923] [PMID: 24742381]
[256]
Mulhauser, K.; Weinstock, J.; Ruppert, P.; Benware, J. Changes in neuropsychological status during the initial phase of abstinence in alco-hol use disorder: Neurocognitive impairment and implications for clinical care. Subst. Use Misuse, 2018, 53(6), 881-890.
[http://dx.doi.org/10.1080/10826084.2017.1408328] [PMID: 29293037]
[257]
Czuchry, M.; Dansereau, D.F. Cognitive skills training: Impact on drug abuse counseling and readiness for treatment. Am. J. Drug Alcohol Abuse, 2003, 29(1), 1-18.
[http://dx.doi.org/10.1081/ADA-120018837] [PMID: 12731679]
[258]
Khemiri, L.; Brynte, C.; Stunkel, A.; Klingberg, T.; Jayaram-Lindström, N. Working memory training in alcohol use disorder: A random-ized controlled trial. Alcohol. Clin. Exp. Res., 2019, 43(1), 135-146.
[http://dx.doi.org/10.1111/acer.13910] [PMID: 30462837]
[259]
Bohnsack, J.P.; Teppen, T.; Kyzar, E.J.; Dzitoyeva, S.; Pandey, S.C. The lncRNA BDNF-AS is an epigenetic regulator in the human amyg-dala in early onset alcohol use disorders. Transl. Psychiatry, 2019, 9(1), 34.
[http://dx.doi.org/10.1038/s41398-019-0367-z] [PMID: 30728347]
[260]
Antón, M.; Alén, F.; Gómez de Heras, R.; Serrano, A.; Pavón, F.J.; Leza, J.C.; García-Bueno, B.; Rodríguez de Fonseca, F.; Orio, L. Oleoylethanolamide prevents neuroimmune HMGB1/TLR4/NF-kB danger signaling in rat frontal cortex and depressive-like behavior in-duced by ethanol binge administration. Addict. Biol., 2017, 22(3), 724-741.
[http://dx.doi.org/10.1111/adb.12365] [PMID: 26857094]
[261]
Bilbao, A.; Serrano, A.; Cippitelli, A.; Pavón, F.J.; Giuffrida, A.; Suárez, J.; García-Marchena, N.; Baixeras, E.; Gómez de Heras, R.; Orio, L.; Alén, F.; Ciccocioppo, R.; Cravatt, B.F.; Parsons, L.H.; Piomelli, D.; Rodríguez de Fonseca, F. Role of the satiety factor oleoylethano-lamide in alcoholism. Addict. Biol., 2016, 21(4), 859-872.
[http://dx.doi.org/10.1111/adb.12276] [PMID: 26037332]
[262]
Silva-Peña, D.; Rivera, P.; Alén, F.; Vargas, A.; Rubio, L.; García-Marchena, N.; Pavón, F.J.; Serrano, A.; Rodríguez de Fonseca, F.; Suár-ez, J. Oleoylethanolamide modulates BDNF-ERK signalling and neurogenesis in the hippocampi of rats exposed to Δ9-THC and ethanol binge drinking during adolescence. Front. Mol. Neurosci., 2019, 12, 96.
[http://dx.doi.org/10.3389/fnmol.2019.00096] [PMID: 31068789]
[263]
Akter, S.; Uddin, K.R.; Sasaki, H.; Lyu, Y.; Shibata, S. Gamma oryzanol impairs alcohol-induced anxiety-like behavior in mice via up-regulation of central monoamines associated with Bdnf and Il-1β signaling. Sci. Rep., 2020, 10(1), 10677.
[http://dx.doi.org/10.1038/s41598-020-67689-w] [PMID: 32606350]
[264]
Bellozi, P.M.Q.; Pelição, R.; Santos, M.C.; Lima, I.V.A.; Saliba, S.W.; Vieira, E.L.M.; Campos, A.C.; Teixeira, A.L.; de Oliveira, A.C.P.; Nakamura-Palacios, E.M.; Rodrigues, L.C.M. URB597 ameliorates the deleterious effects induced by binge alcohol consumption in ado-lescent rats. Neurosci. Lett., 2019, 711, 134408.
[http://dx.doi.org/10.1016/j.neulet.2019.134408] [PMID: 31374324]
[265]
Cippitelli, A.; Cannella, N.; Braconi, S.; Duranti, A.; Tontini, A.; Bilbao, A.; Defonseca, F.R.; Piomelli, D.; Ciccocioppo, R. Increase of brain endocannabinoid anandamide levels by FAAH inhibition and alcohol abuse behaviours in the rat. Psychopharmacology (Berl.), 2008, 198(4), 449-460.
[http://dx.doi.org/10.1007/s00213-008-1104-0] [PMID: 18446329]
[266]
Scherma, M.; Panlilio, L.V.; Fadda, P.; Fattore, L.; Gamaleddin, I.; Le Foll, B.; Justinová, Z.; Mikics, E.; Haller, J.; Medalie, J.; Stroik, J.; Barnes, C.; Yasar, S.; Tanda, G.; Piomelli, D.; Fratta, W.; Goldberg, S.R. Inhibition of anandamide hydrolysis by cyclohexyl carbamic acid 3′-carbamoyl-3-yl ester (URB597) reverses abuse-related behavioral and neurochemical effects of nicotine in rats. J. Pharmacol. Exp. Ther., 2008, 327(2), 482-490.
[http://dx.doi.org/10.1124/jpet.108.142224] [PMID: 18725543]
[267]
Pandey, S.C. A critical role of brain-derived neurotrophic factor in alcohol consumption. Biol. Psychiatry, 2016, 79(6), 427-429.
[http://dx.doi.org/10.1016/j.biopsych.2015.12.020] [PMID: 26893193]
[268]
Pandey, S.C.; Sakharkar, A.J.; Tang, L.; Zhang, H. Potential role of adolescent alcohol exposure-induced amygdaloid histone modifica-tions in anxiety and alcohol intake during adulthood. Neurobiol. Dis., 2015, 82, 607-619.
[http://dx.doi.org/10.1016/j.nbd.2015.03.019] [PMID: 25814047]
[269]
Maruf, A.A.; Greenslade, A.; Arnold, P.D.; Bousman, C. Antidepressant pharmacogenetics in children and young adults: A systematic review. J. Affect. Disord., 2019, 254, 98-108.
[http://dx.doi.org/10.1016/j.jad.2019.05.025] [PMID: 31112844]
[270]
Tsankova, N.M.; Berton, O.; Renthal, W.; Kumar, A.; Neve, R.L.; Nestler, E.J. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat. Neurosci., 2006, 9(4), 519-525.
[http://dx.doi.org/10.1038/nn1659] [PMID: 16501568]
[271]
Larsen, M.H.; Mikkelsen, J.D.; Hay-Schmidt, A.; Sandi, C. Regulation of brain-derived neurotrophic factor (BDNF) in the chronic unpre-dictable stress rat model and the effects of chronic antidepressant treatment. J. Psychiatr. Res., 2010, 44(13), 808-816.
[http://dx.doi.org/10.1016/j.jpsychires.2010.01.005] [PMID: 20172535]
[272]
Björkholm, C.; Monteggia, L.M. BDNF - a key transducer of antidepressant effects. Neuropharmacology, 2016, 102, 72-79.
[http://dx.doi.org/10.1016/j.neuropharm.2015.10.034] [PMID: 26519901]
[273]
Dwivedi, Y. Brain-derived neurotrophic factor: Role in depression and suicide. Neuropsychiatr. Dis. Treat., 2009, 5, 433-449.
[http://dx.doi.org/10.2147/NDT.S5700] [PMID: 19721723]
[274]
Mamounas, L.A.; Blue, M.E.; Siuciak, J.A.; Altar, C.A. Brain-derived neurotrophic factor promotes the survival and sprouting of sero-tonergic axons in rat brain. J. Neurosci., 1995, 15(12), 7929-7939.
[http://dx.doi.org/10.1523/JNEUROSCI.15-12-07929.1995] [PMID: 8613731]
[275]
Lyons, W.E.; Mamounas, L.A.; Ricaurte, G.A.; Coppola, V.; Reid, S.W.; Bora, S.H.; Wihler, C.; Koliatsos, V.E.; Tessarollo, L. Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proc. Natl. Acad. Sci. USA, 1999, 96(26), 15239-15244.
[http://dx.doi.org/10.1073/pnas.96.26.15239] [PMID: 10611369]
[276]
Aznar, S.; Klein, A.B.; Santini, M.A.; Knudsen, G.M.; Henn, F.; Gass, P.; Vollmayr, B. Aging and depression vulnerability interaction results in decreased serotonin innervation associated with reduced BDNF levels in hippocampus of rats bred for learned helplessness. Synapse, 2010, 64(7), 561-565.
[http://dx.doi.org/10.1002/syn.20773] [PMID: 20222154]
[277]
de Boer, T. The effects of mirtazapine on central noradrenergic and serotonergic neurotransmission. Int. Clin. Psychopharmacol., 1995, 10(4)(Suppl. 4), 19-23.
[http://dx.doi.org/10.1097/00004850-199512004-00004] [PMID: 8930006]
[278]
Kasper, S. Clinical efficacy of mirtazapine: A review of meta-analyses of pooled data. Int. Clin. Psychopharmacol., 1995, 10(4)(Suppl. 4), 25-35.
[http://dx.doi.org/10.1097/00004850-199512004-00005] [PMID: 8930007]
[279]
Liappas, J.; Paparrigopoulos, T.; Malitas, P.; Tzavellas, E.; Christodoulou, G. Mirtazapine improves alcohol detoxification. J. Psychopharmacol., 2004, 18(1), 88-93.
[http://dx.doi.org/10.1177/0269881104040241] [PMID: 15107190]
[280]
Cooke, J.D.; Grover, L.M.; Spangler, P.R. Venlafaxine treatment stimulates expression of brain-derived neurotrophic factor protein in frontal cortex and inhibits long-term potentiation in hippocampus. Neuroscience, 2009, 162(4), 1411-1419.
[http://dx.doi.org/10.1016/j.neuroscience.2009.05.037] [PMID: 19464349]
[281]
Deuschle, M.; Gilles, M.; Scharnholz, B.; Lederbogen, F.; Lang, U.E.; Hellweg, R. Changes of serum concentrations of brain-derived neu-rotrophic factor (BDNF) during treatment with venlafaxine and mirtazapine: Role of medication and response to treatment. Pharmacopsychiatry, 2013, 46(2), 54-58.
[PMID: 22961097]
[282]
Gupta, R.; Gupta, K.; Tripathi, A.K.; Bhatia, M.S.; Gupta, L.K. Effect of mirtazapine treatment on serum levels of brain-derived neu-rotrophic factor and tumor necrosis factor-α in patients of major depressive disorder with severe depression. Pharmacology, 2016, 97(3-4), 184-188.
[http://dx.doi.org/10.1159/000444220] [PMID: 26854819]
[283]
Rogóz, Z.; Skuza, G.; Legutko, B. Repeated treatment with mirtazepine induces brain-derived neurotrophic factor gene expression in rats. J. Physiol. Pharmacol., 2005, 56(4), 661-671.
[PMID: 16391422]
[284]
Jacobsen, J.P.; Mørk, A. The effect of escitalopram, desipramine, electroconvulsive seizures and lithium on brain-derived neurotrophic factor mRNA and protein expression in the rat brain and the correlation to 5-HT and 5-HIAA levels. Brain Res., 2004, 1024(1-2), 183-192.
[http://dx.doi.org/10.1016/j.brainres.2004.07.065] [PMID: 15451381]
[285]
Bylund, D.B.; Reed, A.L. Childhood and adolescent depression: why do children and adults respond differently to antidepressant drugs? Neurochem. Int., 2007, 51(5), 246-253.
[http://dx.doi.org/10.1016/j.neuint.2007.06.025] [PMID: 17664028]
[286]
Bridge, J.A.; Iyengar, S.; Salary, C.B.; Barbe, R.P.; Birmaher, B.; Pincus, H.A.; Ren, L.; Brent, D.A. Clinical response and risk for reported suicidal ideation and suicide attempts in pediatric antidepressant treatment: A meta-analysis of randomized controlled trials. JAMA, 2007, 297(15), 1683-1696.
[http://dx.doi.org/10.1001/jama.297.15.1683] [PMID: 17440145]
[287]
Kratochvil, C.J.; Vitiello, B.; Walkup, J.; Emslie, G.; Waslick, B.D.; Weller, E.B.; Burke, W.J.; March, J.S. Selective serotonin reuptake inhibitors in pediatric depression: Is the balance between benefits and risks favorable? J. Child Adolesc. Psychopharmacol., 2006, 16(1-2), 11-24.
[http://dx.doi.org/10.1089/cap.2006.16.11] [PMID: 16553525]
[288]
Pezet, S.; Malcangio, M. Brain-derived neurotrophic factor as a drug target for CNS disorders. Expert Opin. Ther. Targets, 2004, 8(5), 391-399.
[http://dx.doi.org/10.1517/14728222.8.5.391] [PMID: 15469390]
[289]
Davis, M.I. Ethanol-BDNF interactions: Still more questions than answers. Pharmacol. Ther., 2008, 118(1), 36-57.
[http://dx.doi.org/10.1016/j.pharmthera.2008.01.003] [PMID: 18394710]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy