Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

CRISPR: A Promising Tool for Cancer Therapy

Author(s): Fatemeh Mohammad-Rafiei, Esmat Safdarian, Bashir Adel, Noushin Rezaei Vandchali, Jamshid Gholizadeh Navashenaq and Seyed Mohammad Gheibihayat*

Volume 23, Issue 8, 2023

Published on: 26 August, 2022

Page: [748 - 761] Pages: 14

DOI: 10.2174/1566524022666220624111311

Price: $65

Abstract

The clustered regularly interspaced short palindromic repeats system, called CRISPR, as one of the major technological advances, allows geneticists and researchers to perform genome editing. This remarkable technology is quickly eclipsing zinc-finger nucleases (ZFNs) and other editing tools, and its ease of use and accuracy have thus far revolutionized genome editing, from fundamental science projects to medical research and treatment options. This system consists of two key components: a CRISPR-associated (Cas) nuclease, which binds and cuts deoxyribonucleic acid (DNA) and a guide ribonucleic acid (gRNA) sequence, directing the Cas nuclease to its target site. In the research arena, CRISPR has been up to now exploited in various ways alongside gene editing, such as epigenome modifications, genome-wide screening, targeted cancer therapies, and so on. This article reviews the current perceptions of the CRISPR/Cas systems with special attention to studies reflecting on the relationship between the CRISPR/Cas systems and their role in cancer therapy.

Keywords: CRISPR, cancer, CAR T-Cell, CRISPR delivery, Cas13, TALENs.

[1]
Boveri T. Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J Cell Sci 2008; 121 (Suppl. 1): 1-84.
[http://dx.doi.org/10.1242/jcs.025742] [PMID: 18089652]
[2]
Stehelin D, Varmus HE, Bishop JM, Vogt PK. DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 1976; 260(5547): 170-3.
[http://dx.doi.org/10.1038/260170a0] [PMID: 176594]
[3]
Garraway LA, Lander ES. Lessons from the cancer genome. Cell 2013; 153(1): 17-37.
[http://dx.doi.org/10.1016/j.cell.2013.03.002] [PMID: 23540688]
[4]
Reis A, Hornblower B, Robb B, Tzertzinis G. CRISPR/Cas9 and targeted genome editing: A new era in molecular biology. NEB Expressions 2014; pp. 3-6.
[5]
Jacinto FV, Link W, Ferreira BI. CRISPR/Cas9-mediated genome editing: From basic research to translational medicine. J Cell Mol Med 2020; 24(7): 3766-78.
[http://dx.doi.org/10.1111/jcmm.14916] [PMID: 32096600]
[6]
Barman A, Deb B, Chakraborty S. A glance at genome editing with CRISPR-Cas9 technology. Curr Genet 2020; 66(3): 447-62.
[http://dx.doi.org/10.1007/s00294-019-01040-3] [PMID: 31691023]
[7]
Wang H, La Russa M, Qi LS. CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem 2016; 85: 227-64.
[http://dx.doi.org/10.1146/annurev-biochem-060815-014607] [PMID: 27145843]
[8]
Jiang F, Doudna JA. CRISPR–Cas9 structures and mechanisms. Annu Rev Biophys 2017; 46: 505-29.
[http://dx.doi.org/10.1146/annurev-biophys-062215-010822] [PMID: 28375731]
[9]
Riordan SM, Heruth DP, Zhang LQ, Ye SQ. Application of CRISPR/Cas9 for biomedical discoveries. Cell Biosci 2015; 5(1): 33.
[http://dx.doi.org/10.1186/s13578-015-0027-9] [PMID: 26137216]
[10]
Go DE, Stottmann RW. The impact of CRISPR/Cas9-based genomic engineering on biomedical research and medicine. Curr Mol Med 2016; 16(4): 343-52.
[http://dx.doi.org/10.2174/1566524016666160316150847] [PMID: 26980700]
[11]
Gupta D, Bhattacharjee O, Mandal D, et al. CRISPR-Cas9 system: A new-fangled dawn in gene editing. Life Sci 2019; 232: 116636.
[http://dx.doi.org/10.1016/j.lfs.2019.116636] [PMID: 31295471]
[12]
Carroll D. Focus: Genome editing: Genome editing: Past, present, and future. Yale J Biol Med 2017; 90(4): 653-9.
[PMID: 29259529]
[13]
Bolukbasi MF, Gupta A, Wolfe SA. Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery. Nat Methods 2016; 13(1): 41-50.
[http://dx.doi.org/10.1038/nmeth.3684] [PMID: 26716561]
[14]
Koonin EV, Makarova KS, Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 2017; 37: 67-78.
[http://dx.doi.org/10.1016/j.mib.2017.05.008] [PMID: 28605718]
[15]
Makarova KS, Wolf YI, Iranzo J, et al. Evolutionary classification of CRISPR-Cas systems: A burst of class 2 and derived variants. Nat Rev Microbiol 2020; 18(2): 67-83.
[http://dx.doi.org/10.1038/s41579-019-0299-x] [PMID: 31857715]
[16]
Shmakov S, Smargon A, Scott D, et al. Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol 2017; 15(3): 169-82.
[http://dx.doi.org/10.1038/nrmicro.2016.184] [PMID: 28111461]
[17]
Fonfara I, Richter H, Bratovič M, Le Rhun A, Charpentier E. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 2016; 532(7600): 517-21.
[http://dx.doi.org/10.1038/nature17945] [PMID: 27096362]
[18]
Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015; 163(3): 759-71.
[http://dx.doi.org/10.1016/j.cell.2015.09.038] [PMID: 26422227]
[19]
O’Connell MR, Oakes BL, Sternberg SH, East-Seletsky A, Kaplan M, Doudna JA. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 2014; 516(7530): 263-6.
[http://dx.doi.org/10.1038/nature13769] [PMID: 25274302]
[20]
Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 2016; 353(6299): aaf5573.
[http://dx.doi.org/10.1126/science.aaf5573] [PMID: 27256883]
[21]
Shmakov S, Abudayyeh OO, Makarova KS, et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell 2015; 60(3): 385-97.
[http://dx.doi.org/10.1016/j.molcel.2015.10.008] [PMID: 26593719]
[22]
Konermann S, Lotfy P, Brideau N J, Oki J, Shokhirev M N, Hsu P D. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors Cell 2018; 173(3): 665-76.
[http://dx.doi.org/10.1016/j.cell.2018.02.033]
[23]
Smargon A A, Cox D B, Pyzocha N K, et al. Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Molecular cell 2017; 65(4): 618-30.
[24]
Ali Z, Mahas A, Mahfouz M. CRISPR/Cas13 as a tool for RNA interference. Trends Plant Sci 2018; 23(5): 374-8.
[http://dx.doi.org/10.1016/j.tplants.2018.03.003] [PMID: 29605099]
[25]
East-Seletsky A, O’Connell MR, Knight SC, et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 2016; 538(7624): 270-3.
[http://dx.doi.org/10.1038/nature19802] [PMID: 27669025]
[26]
Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 2017; 356(6336): 438-42.
[http://dx.doi.org/10.1126/science.aam9321] [PMID: 28408723]
[27]
Xu CF, Chen GJ, Luo YL, et al. Rational designs of in vivo CRISPR-Cas delivery systems. Adv Drug Deliv Rev 2021; 168: 3-29.
[http://dx.doi.org/10.1016/j.addr.2019.11.005] [PMID: 31759123]
[28]
Qin W, Dion SL, Kutny PM, et al. Efficient CRISPR/Cas9-mediated genome editing in mice by zygote electroporation of nuclease. Genetics 2015; 200(2): 423-30.
[http://dx.doi.org/10.1534/genetics.115.176594] [PMID: 25819794]
[29]
Wilbie D, Walther J, Mastrobattista E. Delivery aspects of CRISPR/Cas for in vivo genome editing. Acc Chem Res 2019; 52(6): 1555-64.
[http://dx.doi.org/10.1021/acs.accounts.9b00106] [PMID: 31099553]
[30]
D’Astolfo DS, Pagliero RJ, Pras A, et al. Efficient intracellular delivery of native proteins. Cell 2015; 161(3): 674-90.
[http://dx.doi.org/10.1016/j.cell.2015.03.028] [PMID: 25910214]
[31]
Song M. The CRISPR/Cas9 system: Their delivery, in vivo and ex vivo applications and clinical development by startups. Biotechnol Prog 2017; 33(4): 1035-45.
[http://dx.doi.org/10.1002/btpr.2484] [PMID: 28440027]
[32]
Ramakrishna S, Dad AB, Beloor J, Gopalappa R, Lee SK, Kim H. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res 2014; 24(6): 1020-7.
[http://dx.doi.org/10.1101/gr.171264.113] [PMID: 24696462]
[33]
Lino CA, Harper JC, Carney JP, Timlin JA. Delivering CRISPR: A review of the challenges and approaches. Drug Deliv 2018; 25(1): 1234-57.
[http://dx.doi.org/10.1080/10717544.2018.1474964] [PMID: 29801422]
[34]
Sun W, Jiang T, Lu Y, Reiff M, Mo R, Gu Z. Cocoon-like self-degradable DNA nanoclew for anticancer drug delivery. J Am Chem Soc 2014; 136(42): 14722-5.
[http://dx.doi.org/10.1021/ja5088024] [PMID: 25336272]
[35]
Sun W, Ji W, Hall JM, et al. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew Chem Int Ed Engl 2015; 54(41): 12029-33.
[http://dx.doi.org/10.1002/anie.201506030] [PMID: 26310292]
[36]
Xu CL, Ruan MZC, Mahajan VB, Tsang SH. Viral delivery systems for CRISPR. Viruses 2019; 11(1): 28.
[http://dx.doi.org/10.3390/v11010028] [PMID: 30621179]
[37]
Kabadi AM, Ousterout DG, Hilton IB, Gersbach CA. Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector. Nucleic Acids Res 2014; 42(19): e147-7.
[http://dx.doi.org/10.1093/nar/gku749] [PMID: 25122746]
[38]
Tatsis N, Ertl HC. Adenoviruses as vaccine vectors. Mol Ther 2004; 10(4): 616-29.
[http://dx.doi.org/10.1016/j.ymthe.2004.07.013] [PMID: 15451446]
[39]
Maddalo D, Manchado E, Concepcion CP, et al. in vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 2014; 516(7531): 423-7.
[http://dx.doi.org/10.1038/nature13902] [PMID: 25337876]
[40]
Li C, Guan X, Du T, et al. Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9. J Gen Virol 2015; 96(8): 2381-93.
[http://dx.doi.org/10.1099/vir.0.000139] [PMID: 25854553]
[41]
Song X, Liu C, Wang N, et al. Delivery of CRISPR/Cas systems for cancer gene therapy and immunotherapy. Adv Drug Deliv Rev 2021; 168: 158-80.
[http://dx.doi.org/10.1016/j.addr.2020.04.010] [PMID: 32360576]
[42]
Zhang W, Liu Y, Zhou X, Zhao R, Wang H. Applications of CRISPR-Cas9 in gynecological cancer research. Clin Genet 2020; 97(6): 827-34.
[http://dx.doi.org/10.1111/cge.13717] [PMID: 32040210]
[43]
Chen M, Mao A, Xu M, Weng Q, Mao J, Ji J. CRISPR-Cas9 for cancer therapy: Opportunities and challenges. Cancer Lett 2019; 447: 48-55.
[http://dx.doi.org/10.1016/j.canlet.2019.01.017] [PMID: 30684591]
[44]
Walrath JC, Hawes JJ, Van Dyke T, Reilly KM. Genetically engineered mouse models in cancer research. Adv Cancer Res 2010; 106: 113-64.
[http://dx.doi.org/10.1016/S0065-230X(10)06004-5] [PMID: 20399958]
[45]
Fellmann C, Gowen BG, Lin PC, Doudna JA, Corn JE. Cornerstones of CRISPR-Cas in drug discovery and therapy. Nat Rev Drug Discov 2017; 16(2): 89-100.
[http://dx.doi.org/10.1038/nrd.2016.238] [PMID: 28008168]
[46]
Papagiannakopoulos T, Bauer MR, Davidson SM, et al. Circadian rhythm disruption promotes lung tumorigenesis. Cell Metab 2016; 24(2): 324-31.
[http://dx.doi.org/10.1016/j.cmet.2016.07.001] [PMID: 27476975]
[47]
Donovan KF, Hegde M, Sullender M, et al. Creation of novel protein variants with CRISPR/Cas9-mediated mutagenesis: Turning a screening by-product into a discovery tool. PLoS One 2017; 12(1): e0170445.
[http://dx.doi.org/10.1371/journal.pone.0170445] [PMID: 28118392]
[48]
Mou H, Kennedy Z, Anderson DG, Yin H, Xue W. Precision cancer mouse models through genome editing with CRISPR-Cas9. Genome Med 2015; 7(1): 53.
[http://dx.doi.org/10.1186/s13073-015-0178-7] [PMID: 26060510]
[49]
Winters IP, Murray CW, Winslow MM. Towards quantitative and multiplexed in vivo functional cancer genomics. Nat Rev Genet 2018; 19(12): 741-55.
[http://dx.doi.org/10.1038/s41576-018-0053-7] [PMID: 30267031]
[50]
Yoshino H, Yonemori M, Miyamoto K, et al. microRNA-210-3p depletion by CRISPR/Cas9 promoted tumorigenesis through revival of TWIST1 in renal cell carcinoma. Oncotarget 2017; 8(13): 20881-94.
[http://dx.doi.org/10.18632/oncotarget.14930] [PMID: 28152509]
[51]
Schokrpur S, Hu J, Moughon DL, et al. CRISPR-mediated VHL knockout generates an improved model for metastatic renal cell carcinoma. Sci Rep 2016; 6(1): 29032.
[http://dx.doi.org/10.1038/srep29032] [PMID: 27358011]
[52]
Xue W, Chen S, Yin H, et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 2014; 514(7522): 380-4.
[http://dx.doi.org/10.1038/nature13589] [PMID: 25119044]
[53]
Blasco RB, Karaca E, Ambrogio C, et al. Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology. Cell Rep 2014; 9(4): 1219-27.
[http://dx.doi.org/10.1016/j.celrep.2014.10.051] [PMID: 25456124]
[54]
Yin H, Xue W, Anderson DG. CRISPR-Cas: A tool for cancer research and therapeutics. Nat Rev Clin Oncol 2019; 16(5): 281-95.
[http://dx.doi.org/10.1038/s41571-019-0166-8] [PMID: 30664678]
[55]
Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014; 343(6166): 84-7.
[http://dx.doi.org/10.1126/science.1247005] [PMID: 24336571]
[56]
Wang T, Wei JJ, Sabatini DM, Lander ES. Genetic screens in human cells using the CRISPR-Cas9 system. Science 2014; 343(6166): 80-4.
[http://dx.doi.org/10.1126/science.1246981] [PMID: 24336569]
[57]
Sánchez-Rivera FJ. Jacks T. Applications of the CRISPR-Cas9 system in cancer biology. Nat Rev Cancer 2015; 15(7): 387-95.
[http://dx.doi.org/10.1038/nrc3950] [PMID: 26040603]
[58]
Wang T, Birsoy K, Hughes NW, et al. Identification and characterization of essential genes in the human genome. Science 2015; 350(6264): 1096-101.
[http://dx.doi.org/10.1126/science.aac7041] [PMID: 26472758]
[59]
Wang T, Yu H, Hughes N W, et al. Gene essentiality profiling reveals gene networks and synthetic lethal interactions with oncogenic Ras. Cell 2017; 168(5): 890-903.
[http://dx.doi.org/10.1016/j.cell.2017.01.013]
[60]
Shi J, Wang E, Milazzo JP, Wang Z, Kinney JB, Vakoc CR. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat Biotechnol 2015; 33(6): 661-7.
[http://dx.doi.org/10.1038/nbt.3235] [PMID: 25961408]
[61]
Chen S, Sanjana NE, Zheng K, et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 2015; 160(6): 1246-60.
[http://dx.doi.org/10.1016/j.cell.2015.02.038] [PMID: 25748654]
[62]
Shalem O, Sanjana NE, Zhang F. High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet 2015; 16(5): 299-311.
[http://dx.doi.org/10.1038/nrg3899] [PMID: 25854182]
[63]
Fan P, He ZY, Xu T, Phan K, Chen GG, Wei YQ. Exposing cancer with CRISPR-Cas9: From genetic identification to clinical therapy. Transl Cancer Res 2018; 7(3): 817-27.
[http://dx.doi.org/10.21037/tcr.2018.06.16]
[64]
Matano M, Date S, Shimokawa M, et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med 2015; 21(3): 256-62.
[http://dx.doi.org/10.1038/nm.3802] [PMID: 25706875]
[65]
Seino T, Kawasaki S, Shimokawa M, et al. Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression. Cell stem cell 2018; 22(3): 454-67.
[http://dx.doi.org/10.1016/j.stem.2017.12.009]
[66]
Ramalingam SS, O’Byrne K, Boyer M, et al. Dacomitinib versus erlotinib in patients with EGFR-mutated advanced nonsmall-cell lung cancer (NSCLC): Pooled subset analyses from two randomized trials. Ann Oncol 2016; 27(3): 423-9.
[http://dx.doi.org/10.1093/annonc/mdv593] [PMID: 26768165]
[67]
Sanjana NE, Wright J, Zheng K, et al. High-resolution interrogation of functional elements in the noncoding genome. Science 2016; 353(6307): 1545-9.
[http://dx.doi.org/10.1126/science.aaf7613] [PMID: 27708104]
[68]
Joung J, Engreitz JM, Konermann S, et al. Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood. Nature 2017; 548(7667): 343-6.
[http://dx.doi.org/10.1038/nature23451] [PMID: 28792927]
[69]
Birkeland AC, Ludwig ML, Spector ME, Brenner JC. The potential for tumor suppressor gene therapy in head and neck cancer. Discov Med 2016; 21(113): 41-7.
[PMID: 26896601]
[70]
Huarte M. The emerging role of lncRNAs in cancer. Nat Med 2015; 21(11): 1253-61.
[http://dx.doi.org/10.1038/nm.3981] [PMID: 26540387]
[71]
Esposito R, Bosch N, Lanzós A, Polidori T, Pulido-Quetglas C, Johnson R. Hacking the cancer genome: Profiling therapeutically actionable long non-coding RNAs using CRISPR-Cas9 screening. Cancer Cell 2019; 35(4): 545-57.
[http://dx.doi.org/10.1016/j.ccell.2019.01.019] [PMID: 30827888]
[72]
Vennström B, Bishop JM. Isolation and characterization of chicken DNA homologous to the two putative oncogenes of avian erythroblastosis virus. Cell 1982; 28(1): 135-43.
[http://dx.doi.org/10.1016/0092-8674(82)90383-X] [PMID: 6279309]
[73]
Chang EH, Gonda MA, Ellis RW, Scolnick EM, Lowy DR. Human genome contains four genes homologous to transforming genes of Harvey and Kirsten murine sarcoma viruses. Proc Natl Acad Sci USA 1982; 79(16): 4848-52.
[http://dx.doi.org/10.1073/pnas.79.16.4848] [PMID: 6289320]
[74]
Parker RC, Varmus HE, Bishop JM. Cellular homologue (C-SRC) of the transforming gene of Rous sarcoma virus: Isolation, mapping, and transcriptional analysis of C-SRC and flanking regions. Proc Natl Acad Sci USA 1981; 78(9): 5842-6.
[http://dx.doi.org/10.1073/pnas.78.9.5842] [PMID: 6272320]
[75]
Kozak C, Gunnell MA, Rapp UR. A new oncogene, c-raf, is located on mouse chromosome 6. J Virol 1984; 49(1): 297-9.
[http://dx.doi.org/10.1128/jvi.49.1.297-299.1984] [PMID: 6690719]
[76]
Vennstrom B, Sheiness D, Zabielski J, Bishop JM. Isolation and characterization of c-myc, a cellular homolog of the oncogene (V-MYC) of avian myelocytomatosis virus strain 29. J Virol 1982; 42(3): 773-9.
[http://dx.doi.org/10.1128/jvi.42.3.773-779.1982] [PMID: 6284994]
[77]
White MK, Khalili K. CRISPR/Cas9 and cancer targets: Future possibilities and present challenges. Oncotarget 2016; 7(11): 12305-17.
[http://dx.doi.org/10.18632/oncotarget.7104] [PMID: 26840090]
[78]
Pagano JS. Epstein-Barr virus: The first human tumor virus and its role in cancer. Proc Assoc Am Phys 1999; 111(6): 573-80.
[http://dx.doi.org/10.1046/j.1525-1381.1999.t01-1-99220.x] [PMID: 10591086]
[79]
Wang J, Quake SR. RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection. Proc Natl Acad Sci USA 2014; 111(36): 13157-62.
[http://dx.doi.org/10.1073/pnas.1410785111] [PMID: 25157128]
[80]
Yuen KS, Chan CP, Wong NM, et al. CRISPR/Cas9-mediated genome editing of Epstein-Barr virus in human cells. J Gen Virol 2015; 96(Pt 3): 626-36.
[http://dx.doi.org/10.1099/jgv.0.000012] [PMID: 25502645]
[81]
Koo T, Yoon AR, Cho HY, Bae S, Yun CO, Kim JS. Selective disruption of an oncogenic mutant allele by CRISPR/Cas9 induces efficient tumor regression. Nucleic Acids Res 2017; 45(13): 7897-908.
[http://dx.doi.org/10.1093/nar/gkx490] [PMID: 28575452]
[82]
Harris H, Miller OJ, Klein G, Worst P, Tachibana T. Suppression of malignancy by cell fusion. Nature 1969; 223(5204): 363-8.
[http://dx.doi.org/10.1038/223363a0] [PMID: 5387828]
[83]
Payne SR, Kemp CJ. Tumor suppressor genetics. Carcinogenesis 2005; 26(12): 2031-45.
[http://dx.doi.org/10.1093/carcin/bgi223] [PMID: 16150895]
[84]
Hansen MF, Cavenee WK. Tumor suppressors: Recessive mutations that lead to cancer. Cell 1988; 53(2): 173-4.
[http://dx.doi.org/10.1016/0092-8674(88)90376-5] [PMID: 3282673]
[85]
Friend SH, Bernards R, Rogelj S, et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 1986; 323(6089): 643-6.
[http://dx.doi.org/10.1038/323643a0] [PMID: 2877398]
[86]
Levine AJ. p53, the cellular gatekeeper for growth and division cell 1997; 88(3): 323-31.
[87]
Hall JM, Lee MK, Newman B, et al. Linkage of early-onset familial breast cancer to chromosome 17q21. Science 1990; 250(4988): 1684-9.
[http://dx.doi.org/10.1126/science.2270482] [PMID: 2270482]
[88]
Wooster R, Neuhausen SL, Mangion J, et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science 1994; 265(5181): 2088-90.
[http://dx.doi.org/10.1126/science.8091231] [PMID: 8091231]
[89]
Savitsky K, Bar-Shira A, Gilad S, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 1995; 268(5218): 1749-53.
[http://dx.doi.org/10.1126/science.7792600] [PMID: 7792600]
[90]
Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol 2010; 28(10): 1057-68.
[http://dx.doi.org/10.1038/nbt.1685] [PMID: 20944598]
[91]
Garcia-Bloj B, Moses C, Sgro A, et al. Waking up dormant tumor suppressor genes with zinc fingers, TALEs and the CRISPR/dCas9 system. Oncotarget 2016; 7(37): 60535-54.
[http://dx.doi.org/10.18632/oncotarget.11142] [PMID: 27528034]
[92]
Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013; 152(5): 1173-83.
[http://dx.doi.org/10.1016/j.cell.2013.02.022] [PMID: 23452860]
[93]
Farzadfard F, Perli SD, Lu TK. Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synth Biol 2013; 2(10): 604-13.
[http://dx.doi.org/10.1021/sb400081r] [PMID: 23977949]
[94]
Mirza Z, Karim S. Advancements in CRISPR/Cas9 technology—Focusing on cancer therapeutics and beyond, Seminars in cell & developmental biology. Elsevier 2019; pp. 13-21.
[95]
Moses C, Garcia-Bloj B, Harvey AR, Blancafort P. Hallmarks of cancer: The CRISPR generation. Eur J Cancer 2018; 93: 10-8.
[http://dx.doi.org/10.1016/j.ejca.2018.01.002] [PMID: 29433054]
[96]
Mohammadinejad R, Biagioni A, Arunkumar G, et al. EMT signaling: Potential contribution of CRISPR/Cas gene editing. Cell Mol Life Sci 2020; 77(14): 2701-22.
[http://dx.doi.org/10.1007/s00018-020-03449-3] [PMID: 32008085]
[97]
Xing J. CRISPR techniques can accelerate research on the epithelial-to-mesenchymal transition. Res Insights 2018; pp. 1-6.
[98]
Xiao Y, Freeman GJ. The microsatellite instable subset of colorectal cancer is a particularly good candidate for checkpoint blockade immunotherapy. Cancer Discov 2015; 5(1): 16-8.
[http://dx.doi.org/10.1158/2159-8290.CD-14-1397] [PMID: 25583798]
[99]
Zhang H, Qin C, An C, et al. Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Mol Cancer 2021; 20(1): 126.
[http://dx.doi.org/10.1186/s12943-021-01431-6] [PMID: 34598686]
[100]
Chessum N, Jones K, Pasqua E, Tucker M. Recent advances in cancer therapeutics. Prog Med Chem 2015; 54: 1-63.
[http://dx.doi.org/10.1016/bs.pmch.2014.11.002] [PMID: 25727702]
[101]
Belinsky SA, Klinge DM, Stidley CA, et al. Inhibition of DNA methylation and histone deacetylation prevents murine lung cancer. Cancer Res 2003; 63(21): 7089-93.
[PMID: 14612500]
[102]
Hilton IB, D’Ippolito AM, Vockley CM, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 2015; 33(5): 510-7.
[http://dx.doi.org/10.1038/nbt.3199] [PMID: 25849900]
[103]
Wu D, Wang DC, Cheng Y, et al. In roles of tumor heterogeneity in the development of drug resistance: A call for precision therapy.In: Seminars in cancer biology. Elsevier 2017; pp. 13-9.
[104]
Chen Y, Zhang Y. Application of the CRISPR/Cas9 system to drug resistance in breast cancer. Adv Sci 2018; 5(6): 1700964.
[http://dx.doi.org/10.1002/advs.201700964] [PMID: 29938175]
[105]
Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases nature 2000; 407(6801): 249-57.
[106]
Huang X, Zhou G, Wu W, et al. Genome editing abrogates angiogenesis in vivo. Nat Commun 2017; 8(1): 112.
[http://dx.doi.org/10.1038/s41467-017-00140-3] [PMID: 28740073]
[107]
Mollanoori H, Shahraki H, Rahmati Y, Teimourian S. CRISPR/Cas9 and CAR-T cell, collaboration of two revolutionary technologies in cancer immunotherapy, an instruction for successful cancer treatment. Hum Immunol 2018; 79(12): 876-82.
[http://dx.doi.org/10.1016/j.humimm.2018.09.007] [PMID: 30261221]
[108]
Fry TJ, Shah NN, Orentas RJ, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med 2018; 24(1): 20-8.
[http://dx.doi.org/10.1038/nm.4441] [PMID: 29155426]
[109]
Susanibar Adaniya SP, Cohen AD, Garfall AL. Chimeric antigen receptor T cell immunotherapy for multiple myeloma: A review of current data and potential clinical applications. Am J Hematol 2019; 94(S1): S28-33.
[http://dx.doi.org/10.1002/ajh.25428] [PMID: 30730071]
[110]
Raje N, Berdeja J, Lin Y, et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med 2019; 380(18): 1726-37.
[http://dx.doi.org/10.1056/NEJMoa1817226] [PMID: 31042825]
[111]
Xia AL, He QF, Wang JC, et al. Applications and advances of CRISPR-Cas9 in cancer immunotherapy. J Med Genet 2019; 56(1): 4-9.
[http://dx.doi.org/10.1136/jmedgenet-2018-105422] [PMID: 29970486]
[112]
Wirth T, Parker N, Ylä-Herttuala S. History of gene therapy. Gene 2013; 525(2): 162-9.
[http://dx.doi.org/10.1016/j.gene.2013.03.137] [PMID: 23618815]
[113]
Tebas P, Stein D, Tang WW, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 2014; 370(10): 901-10.
[http://dx.doi.org/10.1056/NEJMoa1300662] [PMID: 24597865]
[114]
Jiang C, Lin X, Zhao Z. Applications of CRISPR/Cas9 technology in the treatment of lung cancer. Trends Mol Med 2019; 25(11): 1039-49.
[http://dx.doi.org/10.1016/j.molmed.2019.07.007] [PMID: 31422862]
[115]
Cyranoski D. Chinese scientists to pioneer first human CRISPR trial. Nature 2016; 535(7613): 476-7.
[http://dx.doi.org/10.1038/nature.2016.20302] [PMID: 27466105]
[116]
Normile D. China sprints ahead in CRISPR therapy race. American Association for the Advancement of Science 2017.
[http://dx.doi.org/10.1126/science.358.6359.20]
[117]
Baylis F, McLeod M. First-in-human phase 1 CRISPR gene editing cancer trials: Are we ready? Curr Gene Ther 2017; 17(4): 309-19.
[PMID: 29173170]
[118]
Canver MC, Smith EC, Sher F, et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 2015; 527(7577): 192-7.
[http://dx.doi.org/10.1038/nature15521] [PMID: 26375006]
[119]
Zhang XH, Tee LY, Wang XG, Huang QS, Yang SH. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids 2015; 4: e264.
[http://dx.doi.org/10.1038/mtna.2015.37] [PMID: 26575098]
[120]
Charlesworth CT, Deshpande PS, Dever DP, et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med 2019; 25(2): 249-54.
[http://dx.doi.org/10.1038/s41591-018-0326-x] [PMID: 30692695]
[121]
Ferdosi SR, Ewaisha R, Moghadam F, et al. Multifunctional CRISPR-Cas9 with engineered immunosilenced human T cell epitopes. Nat Commun 2019; 10(1): 1842.
[http://dx.doi.org/10.1038/s41467-019-09693-x] [PMID: 31015529]
[122]
Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 2014; 32(4): 347-55.
[http://dx.doi.org/10.1038/nbt.2842] [PMID: 24584096]
[123]
Yi L, Li J. CRISPR-Cas9 therapeutics in cancer: Promising strategies and present challenges. Biochim Biophys Acta 2016; 1866(2): 197-207.
[PMID: 27641687]
[124]
Ihry RJ, Worringer KA, Salick MR, et al. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med 2018; 24(7): 939-46.
[http://dx.doi.org/10.1038/s41591-018-0050-6] [PMID: 29892062]
[125]
Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med 2018; 24(7): 927-30.
[http://dx.doi.org/10.1038/s41591-018-0049-z] [PMID: 29892067]
[126]
Caplan AL, Parent B, Shen M, Plunkett C. No time to waste--the ethical challenges created by CRISPR: CRISPR/Cas, being an efficient, simple, and cheap technology to edit the genome of any organism, raises many ethical and regulatory issues beyond the use to manipulate human germ line cells. EMBO Rep 2015; 16(11): 1421-6.
[http://dx.doi.org/10.15252/embr.201541337] [PMID: 26450575]
[127]
Committee on Science, Technology, and Law; Policy andGlobal Affairs; National Academies of Sciences, Engineering, and Medicine; Olson S, editor. International Summit on Human Gene Editing: A Global Discussion. Washington (DC): National Academies Press (US); 2016 Jan 1. InternationalSummit on Human Gene Editing: A Global Discussion: MEETING IN BRIEF. Available from: https://www.ncbi.nlm.nih.gov/books/NBK343651/.
[128]
Ventura A, Dow LE. Modeling cancer in the CRISPR era. Annu Rev Cancer Biol 2018; 2: 111-31.
[http://dx.doi.org/10.1146/annurev-cancerbio-030617-050455]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy