Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Effect of C. cyminum and L. sativum on Pharmacokinetics and Pharmacodynamics of Antidiabetic Drug Gliclazide

Author(s): Abdulelah I. Al-Suwaydani, Mohd A. Alam*, Mohammed Raish, Yousef A. Bin Jardan, Abdul Ahad and Fahad I. Al-Jenoobi

Volume 23, Issue 10, 2022

Published on: 23 June, 2022

Page: [842 - 849] Pages: 8

DOI: 10.2174/1389200223666220623155939

Price: $65

Abstract

Background: Numerous herbs are reported to have anti-hyperglycemic activity and are frequently used in combination with prescription drugs to lower the blood glucose levels in diabetic patients, without proper knowledge about the possibility of herb-drug interaction.

Objectives: To investigate the effect of cumin and garden cress on pharmacokinetics (PK) and pharmacodynamics (PD) of gliclazide (GLZ) in nicotinamide-streptozotocin diabetic model.

Methods: Diabetic animals of groups II-IV were treated with GLZ, cumin, ‘cumin + GLZ’, garden cress and ‘garden cress + GLZ’. Herb’s treatments were given for two weeks, and GLZ was administered in a single dose. Blood glucose levels (BGLs) were measured at pre-determined time points. Plasma samples of pharmacokinetic study were analyzed using UPLC-MS/MS. GLZ fragment at m/z 324.1>127 was monitored.

Results: Cumin and garden cress have shown 15.3% and 15.9% reduction in mean BGL (1-24h) (p-value < 0.001), respectively. GLZ reduced mean BGL by 30.0%, which was significantly better than cumin and garden cress (pvalue <0.05). Concurrently administered “garden cress + GLZ” demonstrated the highest reduction in mean BGL (by 40.46%) and showed a prolonged effect. There was no significant advantage of simultaneously administered ‘cumin + GLZ’. Cumin did not affect PK of GLZ. Garden cress has significantly enhanced AUC0-t (by 69.8%, pvalue 0.0013), but other PK parameters Cmax, Tmax, and Kel were close to the control group.

Conclusion: PK/PD-based herb-drug interaction was observed. Concurrently administered garden cress + GLZ showed improved antidiabetic effect and has enhanced GLZ bioavailability.

Keywords: Lepidium sativum, Cuminum cyminum, Gliclazide, Diabetes, Garden-cress, Cumin.

[1]
Gökalp, O.; Gunes, A.; Çam, H.; Cure, E.; Aydın, O.; Tamer, M.N.; Scordo, M.G.; Dahl, M.L. Mild hypoglycaemic attacks induced by sul-phonylureas related to CYP2C9, CYP2C19 and CYP2C8 polymorphisms in routine clinical setting. Eur. J. Clin. Pharmacol., 2011, 67(12), 1223-1229.
[http://dx.doi.org/10.1007/s00228-011-1078-4] [PMID: 21691805]
[2]
Elliot, D.J.; Lewis, B.C.; Gillam, E.M.J.; Birkett, D.J.; Gross, A.S.; Miners, J.O.; Miners, J.O. Identification of the human cytochromes P450 catalysing the rate-limiting pathways of gliclazide elimination. Br. J. Clin. Pharmacol., 2007, 64(4), 450-457.
[http://dx.doi.org/10.1111/j.1365-2125.2007.02943.x] [PMID: 17517049]
[3]
Sultanpur, C.M.; Reddy, N.S.; Kumar, S.; Satyanarayana, S.; Kumar, K.E. Drug-drug interaction between pravastatin and gemfibrozil (Anti-hyperlipidemic) with gliclazide (antidiabetic) in Rats. J. Young Pharm., 2010, 2(2), 152-155.
[http://dx.doi.org/10.4103/0975-1483.63157] [PMID: 21264118]
[4]
Rehman, S.U.; Choi, M.S.; Choe, K.; Yoo, H.H. Interactions between herbs and antidiabetics: An overview of the mechanisms, evidence, importance, and management. Arch. Pharm. Res., 2015, 38(7), 1281-1298.
[http://dx.doi.org/10.1007/s12272-014-0517-z] [PMID: 25475096]
[5]
Jung, M.; Park, M.; Lee, H.; Kang, Y.H.; Kang, E.; Kim, S. Antidiabetic agents from medicinal plants. Curr. Med. Chem., 2006, 13(10), 1203-1218.
[http://dx.doi.org/10.2174/092986706776360860] [PMID: 16719780]
[6]
Xu, H.; Williams, K.M.; Liauw, W.S.; Murray, M.; Day, R.O.; McLachlan, A.J. Effects of St John’s wort and CYP2C9 genotype on the phar-macokinetics and pharmacodynamics of gliclazide. Br. J. Pharmacol., 2008, 153(7), 1579-1586.
[http://dx.doi.org/10.1038/sj.bjp.0707685] [PMID: 18204476]
[7]
Bower, A.; Marquez, S.; de Mejia, E.G. The health benefits of selected culinary herbs and spices found in the traditional Mediterranean diet. Crit. Rev. Food Sci. Nutr., 2016, 56(16), 2728-2746.
[http://dx.doi.org/10.1080/10408398.2013.805713] [PMID: 25749238]
[8]
Srinivasan, K. Cumin (Cuminum cyminum) and black cumin (Nigella sativa) seeds: Traditional uses, chemical constituents, and nutraceutical effects. Food Qual. Saf., 2018, 2(1), 1-16.
[http://dx.doi.org/10.1093/fqsafe/fyx031]
[9]
Kori, M.L.; Sahoo, H.; Sahoo, S.K.; Sarangi, S.P.; Sagar, R. Anti-diarrhoeal investigation from aqueous extract of Cuminum cyminum Linn. Seed in Albino rats. Pharmacognosy Res., 2014, 6(3), 204-209.
[http://dx.doi.org/10.4103/0974-8490.132596] [PMID: 25002800]
[10]
Kalaivani, P.; Saranya, R.B.; Ramakrishnan, G.; Ranju, V.; Sathiya, S.; Gayathri, V.; Thiyagarajan, L.K.; Venkhatesh, J.R.; Babu, C.S.; Thani-kachalam, S. Cuminum cyminum, a dietary spice, attenuates hypertension via endothelial nitric oxide synthase and NO pathway in renovascu-lar hypertensive rats. Clin. Exp. Hypertens., 2013, 35(7), 534-542.
[http://dx.doi.org/10.3109/10641963.2013.764887] [PMID: 23402543]
[11]
Wei, J.; Zhang, X.; Bi, Y.; Miao, R.; Zhang, Z.; Su, H. Anti-Inflammatory effects of cumin essential oil by blocking JNK, ERK, and NF-κB signaling pathways in LPS-stimulated RAW 264.7 Cells. Evid. Based Complement. Alternat. Med., 2015, 2015, 474509.
[12]
Kaur, G.; Upadhyay, N.; Tharappel, L.J.P.; Invally, M. Pharmacodynamic interaction of cumin seeds (Cuminum cyminum L.) with glyburide in diabetes. J. Complement. Integr. Med., 2019, 16, 4.
[http://dx.doi.org/10.1515/jcim-2018-0080]
[13]
Mirlohi, M.; Babashahi, M.; Ghiasvand, R.; Azadbakht, L.; Mosharaf, L.; Torki-Baghbadorani, S. Effects of probiotic soy milk fermented by Lactobacillus plantarum A7 (KC 355240) added with Cuminum Cyminum essential oil on fasting blood glucose levels, serum lipid profile and body weight in diabetic Wistar rats. Int. J. Prev. Med., 2020, 11(1), 8.
[http://dx.doi.org/10.4103/ijpvm.IJPVM_541_17] [PMID: 32089808]
[14]
Moubarz, G.; Embaby, M.A.; Doleib, N.M.; Taha, M.M. Effect of dietary antioxidant supplementation (Cuminum cyminum) on bacterial susceptibility of diabetes-induced rats. Cent. Eur. J. Immunol., 2016, 2(2), 123-137.
[http://dx.doi.org/10.5114/ceji.2016.60985] [PMID: 27536197]
[15]
Jagtap, A.G.; Patil, P.B. Antihyperglycemic activity and inhibition of advanced glycation end product formation by Cuminum cyminum in streptozotocin induced diabetic rats. Food Chem. Toxicol., 2010, 48(8-9), 2030-2036.
[http://dx.doi.org/10.1016/j.fct.2010.04.048] [PMID: 20451573]
[16]
Samani Keihan, G.; Gharib, M.H.; Momeni, A.; Hemati, Z.; Sedighin, R. A comparison between the effect of Cuminum cyminum and vitamin E on the level of leptin, paraoxonase 1, HbA1c and oxidized LDL in diabetic patients. Int. J. Mol. Cell. Med., 2016, 5(4), 229-235.
[PMID: 28357199]
[17]
Jafari, S.; Sattari, R.; Ghavamzadeh, S. Evaluation the effect of 50 and 100 mg doses of Cuminum cyminum essential oil on glycemic indices, insulin resistance and serum inflammatory factors on patients with diabetes type II: A double-blind randomized placebo-controlled clinical trial. J. Tradit. Complement. Med., 2017, 7(3), 332-338.
[http://dx.doi.org/10.1016/j.jtcme.2016.08.004] [PMID: 28725629]
[18]
Taghizadeh, M.; Memarzadeh, M.R.; Asemi, Z.; Esmaillzadeh, A. Effect of the cumin cyminum L. intake on weight loss, metabolic profiles and biomarkers of oxidative stress in overweight subjects: A randomized double-blind placebo-controlled clinical trial. Ann. Nutr. Metab., 2015, 66(2-3), 117-124.
[http://dx.doi.org/10.1159/000373896] [PMID: 25766448]
[19]
Patil, S.B.; Takalikar, S.S.; Joglekar, M.M.; Haldavnekar, V.S.; Arvindekar, A.U. Insulinotropic and β-cell protective action of cuminalde-hyde, cuminol and an inhibitor isolated from Cuminum cyminum in streptozotocin-induced diabetic rats. Br. J. Nutr., 2013, 110(8), 1434-1443.
[http://dx.doi.org/10.1017/S0007114513000627] [PMID: 23507295]
[20]
Ghante, M.H.; Badole, S.L.; Bodhankar, S.L. Chapter 62 - Health benefits of garden cress (Lepidium sativum Linn.) seed extracts. In: Preedy, V.R.; Watson, R.R.; Patel, V.B.; Eds. Nuts and Seeds in Health and Disease Prevention; Academic Press: Cambridge, Massachusetts, 2011, pp. 521-525.
[http://dx.doi.org/10.1016/B978-0-12-375688-6.10062-3]
[21]
Abdulmalek, S.A.; Fessal, M.; El-Sayed, M. Effective amelioration of hepatic inflammation and insulin response in high fat diet-fed rats via regulating AKT/mTOR signaling: Role of Lepidium sativum seed extracts. J. Ethnopharmacol., 2021, 266, 113439.
[http://dx.doi.org/10.1016/j.jep.2020.113439] [PMID: 33017634]
[22]
Rehman, N-U.; Khan, A-U.; Alkharfy, K.M.; Gilani, A.H. Pharmacological basis for the medicinal use of Lepidium sativum in airways disor-ders. Evid. Based Complement. Alternat. Med., 2012, 2012, 8.
[http://dx.doi.org/10.1155/2012/596524]
[23]
Selek, S.; Koyuncu, I.; Caglar, H.G.; Bektas, I.; Yilmaz, M.A.; Gonel, A.; Akyuz, E. The evaluation of antioxidant and anticancer effects of Lepidium sativum Subsp Spinescens L. methanol extract on cancer cells. Cell. Mol. Biol., 2018, 64(3), 72-80.
[http://dx.doi.org/10.14715/cmb/2018.64.3.12] [PMID: 29506633]
[24]
L’hadj, I.; Azzi, R.; Lahfa, F.; Koceir, E.A.; Omari, N. The nutraceutical potential of Lepidium sativum L. seed flavonoid-rich extract in man-aging metabolic syndrome components. J. Food Biochem., 2019, 43(3), e12725.
[http://dx.doi.org/10.1111/jfbc.12725] [PMID: 31353542]
[25]
Doghmane, A.; Aouacheri, O.; Laouaichia, R.; Saka, S. The investigation of the efficacy ratio of cress seeds supplementation to moderate hyperglycemia and hepatotoxicity in streptozotocin‐induced diabetic rats. J. Diabetes Metab. Disord., 2021, 20(1), 447-459.
[http://dx.doi.org/10.1007/s40200-021-00764-9] [PMID: 34178850]
[26]
Attia, E.S.; Amer, A.H.; Hasanein, M.A. The hypoglycemic and antioxidant activities of garden cress (Lepidium sativum L.) seed on alloxan-induced diabetic male rats. Nat. Prod. Res., 2019, 33(6), 901-905.
[http://dx.doi.org/10.1080/14786419.2017.1413564] [PMID: 29237302]
[27]
Chen, X.; Yuan, H.; Shi, F.; Zhu, Y. Effect of garden cress in reducing blood glucose, improving blood lipids, and reducing oxidative stress in a mouse model of diabetes induced by a high‐fat diet and streptozotocin. J. Sci. Food Agric., 2020, 100(5), 2074-2081.
[http://dx.doi.org/10.1002/jsfa.10230] [PMID: 31875960]
[28]
Eddouks, M.; Maghrani, M.; Zeggwagh, N.A.; Michel, J.B. Study of the hypoglycaemic activity of Lepidium sativum L. aqueous extract in normal and diabetic rats. J. Ethnopharmacol., 2005, 97(2), 391-395.
[http://dx.doi.org/10.1016/j.jep.2004.11.030] [PMID: 15707780]
[29]
Eddouks, M.; Maghrani, M. Effect of Lepidium sativum L. on renal glucose reabsorption and urinary TGF-β1 levels in diabetic rats. Phytother. Res., 2008, 22(1), 1-5.
[http://dx.doi.org/10.1002/ptr.2101] [PMID: 18064603]
[30]
Alsanad, S.; Aboushanab, T.; Khalil, M.; Alkhamees, O.A. A descriptive review of the prevalence and usage of traditional and complemen-tary medicine among Saudi diabetic patients. Scientifica (Cairo), 2018, 2018, 1-10.
[http://dx.doi.org/10.1155/2018/6303190] [PMID: 30228928]
[31]
Onyeji, C.O.; Igbinoba, S.I.; Olayiwola, G. Therapeutic potentials and cytochrome P450-mediated interactions involving herbal products indicated for diabetes mellitus. Drug Metab. Lett., 2018, 11(2), 74-85.
[http://dx.doi.org/10.2174/1872312811666171121104431] [PMID: 29165101]
[32]
Bhuyan, B.; Chetia, D. In-vivo validation of folkloric use of Costus pictus D. Don as antidiabetic plant in Assam, using streptozotocin induced Wister rat model. Indian J. Clin. Biochem., 2020, 35(2), 225-231.
[http://dx.doi.org/10.1007/s12291-019-00819-y] [PMID: 32226255]
[33]
Qusti, S.; El Rabey, H.A.; Balashram, S.A. The hypoglycemic and antioxidant activity of cress seed and cinnamon on streptozotocin induced diabetes in male rats. Evid. Based Complement. Alternat. Med., 2016, 2016, 1-15.
[http://dx.doi.org/10.1155/2016/5614564] [PMID: 27525022]
[34]
Vatsavai, L.K.; Kilari, E.K. Influence of curcumin on the pharmacodynamics and pharmacokinetics of gliclazide in animal models. J. Exp. Pharmacol., 2016, 8, 69-76.
[http://dx.doi.org/10.2147/JEP.S117042] [PMID: 27895517]
[35]
Satyanarayana, S.; Kilari, E.K. Influence of nicorandil on the pharmacodynamics and pharmacokinetics of gliclazide in rats and rabbits. Mol. Cell. Biochem., 2006, 291(1-2), 101-105.
[http://dx.doi.org/10.1007/s11010-006-9202-y] [PMID: 16715184]
[36]
Bigoniya, P.; Shukla, A.; Srivastava, B. Hypoglycemic activity of Lepidium sativum Linn seed total alkaloid on alloxan induced diabetic rats. Res. J. Med. Plant, 2012, 6(8), 587-596.
[http://dx.doi.org/10.3923/rjmp.2012.587.596]
[37]
Gaikwad, S.B.; Mohan, G.K.; Rani, M.S. Phytochemicals for diabetes management. Pharmaceut. Crop., 2014, 5(5(Suppl. 1: M2), 11-28.
[http://dx.doi.org/10.2174/2210290601405010011]
[38]
Ajebli, M.; Khan, H.; Eddouks, M. Natural alkaloids and diabetes mellitus: A review. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(1), 111-130.
[http://dx.doi.org/10.2174/1871530320666200821124817] [PMID: 32955004]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy