Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Research Article

Development and Validation of a Hypoxia-related Prognostic Model for Ovarian Cancer

Author(s): Linling Xie, Meijun Pan, Zhaoping Zhang, Xiaotao Jiang, Yi Chen, Guantong Liu, Yanfen Chen, Yuhua Zeng, Jieshan Guan*, Ruling Lu* and Lei Zeng*

Volume 18, Issue 2, 2023

Published on: 09 September, 2022

Page: [161 - 173] Pages: 13

DOI: 10.2174/1574892817666220623154831

Price: $65

conference banner
Abstract

Background: The high heterogeneity of ovarian cancer (OC) brings great difficulties to its early diagnosis and prognostic forecast. There is an urgent need to establish a prognostic model of OC based on clinicopathological features and genomics.

Methods: We identified hypoxia-related differentially expressed genes (DEGs) between OC tissues from The Cancer Genome Atlas (TCGA) and normal tissues from the Genotype-Tissue Expression (GTEx). LASSO Cox regression analysis was applied for building a prognostic model in the TCGA-GTEx cohorts, and its predictive value was validated in the GEO-OC cohort. Functional enrichment analysis was performed to investigate the underlying mechanisms. By constructing a hypoxia model of the SKOV3 cell line and applying qRT-PCR, we investigated the relationship between hypoxia with two novel genes in the prognostic model (ISG20 and ANGPTL4).

Results: Twelve prognostic hypoxia-related DEGs were identified, and nine of them were selected to establish a prognostic model. OC patients were stratified into two risk groups, and the high-risk group showed reduced survival time compared to the low-risk group upon survival analysis. Univariate and multivariate Cox regression analysis demonstrated that the risk score was an independent risk factor for overall survival. The biological function of the identified prognostic hypoxia-related gene signature was involved in immune cell infiltration. Low expression of ISG20 was observed in the CoCl2-mimicked hypoxic SKOV3 cell line and negatively correlated with HIF-1α.

Conclusion: Our findings showed that this hypoxia-related gene signature could serve as a satisfactory prognostic classifier for OC and will be beneficial to the research and development of targeted therapeutic strategies.

Keywords: hypoxia, ovarian cancer, prognostic model, immune cells infiltration, differentially expressed genes (DEGs), LASSO Cox regression analysis

[1]
Khazaei Z, Jarrahi AM, Momenabadi V, Ghorat F, Goodarzi E. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide stomach cancers and their relationship with the human development index (HDI). Advances in Human Biology 2019.
[2]
Luo H, Li S, Zhao M, Sheng B, Zhu H, Zhu X. Prognostic value of progesterone receptor expression in ovarian cancer: A meta-analysis. Oncotarget 2017; 8(22): 36845-56.
[http://dx.doi.org/10.18632/oncotarget.15982] [PMID: 28415663]
[3]
Gordon C. Jayson ECK, Henry C Kitchener, Jonathan A Ledermann. Ovarian cancer. Lancet 2014; 384(9951): 1376-88.
[http://dx.doi.org/10.1016/S0140-6736(13)62146-7]
[4]
Lihong M, Vendula P, Zhiqing H, Susan K. Ascites increases expression/function of multidrug resistance proteins in ovarian cancer cells. PLoS One 2015.
[5]
Hill RP, Bristow RG, Fyles A, Koritzinsky M, Milosevic M, Wouters BG. Hypoxia and Predicting Radiation Response. Semin Radiat Oncol 2015; 25(4): 260-72.
[http://dx.doi.org/10.1016/j.semradonc.2015.05.004] [PMID: 26384274]
[6]
M GD, L SG, Denis W. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer 2014; 14(10): 430-9.
[7]
Li F, Mei H, Gao Y, et al. Co-delivery of oxygen and erlotinib by aptamer-modified liposomal complexes to reverse hypoxia-induced drug resistance in lung cancer. Biomaterials 2017; 145: 56-71.
[http://dx.doi.org/10.1016/j.biomaterials.2017.08.030] [PMID: 28843733]
[8]
Madsen K, Aten E, Marciano L, Kolb H. The clinical importance of assessing tumor hypoxia: Relationship of tumor hypoxia to prognosis and therapeutic opportunities. Antioxid Redox Signal 2014; 21(10): 1516-54.
[9]
Vaupel P. Hypoxia and aggressive tumor phenotype: Implications for therapy and prognosis. Oncologist 2008; 13(S3) (Suppl. 3): 21-6.
[http://dx.doi.org/10.1634/theoncologist.13-S3-21] [PMID: 18458121]
[10]
Mcevoy LM, O’Toole SA, Spillane CD, et al. Identifying novel hypoxia-associated markers of chemoresistance in ovarian cancer 2015.
[http://dx.doi.org/10.1186/s12885-015-1539-8]
[11]
Kim K-S, Sengupta S, Berk M, et al. Hypoxia enhances lysophosphatidic acid responsiveness in ovarian cancer cells and lysophosphatidic acid induces ovarian tumor metastasis in vivo. Cancer Res 2006; 66(16): 7983-90.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4381] [PMID: 16912173]
[12]
Zhang K, Kong X, Feng G, et al. Investigation of hypoxia networks in ovarian cancer via bioinformatics analysis. J Ovarian Res 2018; 11(1): 16.
[http://dx.doi.org/10.1186/s13048-018-0388-x] [PMID: 29482638]
[13]
Zhang B, Tang B, Gao J, Li J, Kong L, Qin L. A hypoxia-related signature for clinically predicting diagnosis, prognosis and immune microenvironment of hepatocellular carcinoma patients. J Transl Med 2020; 18(1): 342.
[http://dx.doi.org/10.1186/s12967-020-02492-9] [PMID: 32887635]
[14]
Zou YF, Rong YM, Tan YX, et al. A signature of hypoxia-related factors reveals functional dysregulation and robustly predicts clinical outcomes in stage I/II colorectal cancer patients. Cancer Cell Int 2019; 19(1): 243.
[http://dx.doi.org/10.1186/s12935-019-0964-1] [PMID: 31572060]
[15]
Sun J, Zhao T, Zhao D, et al. Development and validation of a hypoxia-related gene signature to predict overall survival in early-stage lung adenocarcinoma patients. Ther Adv Med Oncol 2020; 12: 1758835920937904.
[http://dx.doi.org/10.1177/1758835920937904] [PMID: 32655701]
[16]
Goeman JJ. L1 penalized estimation in the Cox proportional hazards model. Biom J 2010; 52(1): 70-84.
[PMID: 19937997]
[17]
Jassal B, Matthews L, Viteri G, et al. The reactome pathway knowledgebase. Nucleic Acids Res 2020; 48(D1): D498-503.
[PMID: 31691815]
[18]
Barbie DA, Tamayo P, Boehm JS, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 2009; 462(7269): 108-12.
[http://dx.doi.org/10.1038/nature08460] [PMID: 19847166]
[19]
Irodi A, Rye T, Herbert K, et al. Patterns of clinicopathological features and outcome in epithelial ovarian cancer patients: 35 years of prospectively collected data. BJOG 2020; 127(11): 1409-20.
[http://dx.doi.org/10.1111/1471-0528.16264] [PMID: 32285600]
[20]
Kobayashi Y, Banno K, Aoki D. Current status and future directions of ovarian cancer prognostic models. J Gynecol Oncol 2021; 32(2): e34.
[http://dx.doi.org/10.3802/jgo.2021.32.e34] [PMID: 33559415]
[21]
Finger EC, Castellini L, Rankin EB, et al. Hypoxic induction of AKAP12 variant 2 shifts PKA-mediated protein phosphorylation to enhance migration and metastasis of melanoma cells. Proc Natl Acad Sci USA 2015; 112(14): 4441-6.
[http://dx.doi.org/10.1073/pnas.1418164112] [PMID: 25792458]
[22]
Riester M, Wei W, Waldron L, et al. Risk prediction for late-stage ovarian cancer by meta-analysis of 1525 patient samples. J Natl Cancer Inst 2014; 106(5): 106.
[http://dx.doi.org/10.1093/jnci/dju048] [PMID: 24700803]
[23]
Verhaak RGW, Tamayo P, Yang JY, Hubbard D, Meyerson M. Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. J Clin Invest 2012; 123(1)
[http://dx.doi.org/10.1172/JCI65833] [PMID: 23257362]
[24]
Jarrar Y, Zihlif M, Albawab AQF, Sharab A. Effects of intermittent hypoxia on expression of glucose metabolism genes in MCF7 breast cancer cell line. Curr Cancer Drug Targets 2019; 20(3): 216-22.
[PMID: 31738135]
[25]
Hata K, Udagawa J, Fujiwaki R, Nakayama K, Otani H, Miyazaki K. Expression of angiopoietin-1, angiopoietin-2, and Tie2 genes in normal ovary with corpus luteum and in ovarian cancer. Oncology 2002; 62(4): 340-8.
[http://dx.doi.org/10.1159/000065066] [PMID: 12138242]
[26]
Zhu P, Tan MJ, Huang RL, et al. Angiopoietin-like 4 protein elevates the prosurvival intracellular O2(-):H2O2 ratio and confers anoikis resistance to tumors. Cancer Cell 2011; 19(3): 401-15.
[http://dx.doi.org/10.1016/j.ccr.2011.01.018] [PMID: 21397862]
[27]
Schumann T, Adhikary T, Wortmann A, et al. Deregulation of PPARβ/δ target genes in tumor-associated macrophages by fatty acid ligands in the ovarian cancer microenvironment. Oncotarget 2015; 6(15): 13416-33.
[http://dx.doi.org/10.18632/oncotarget.3826] [PMID: 25968567]
[28]
Zhou S, Wang R, Xiao H. Adipocytes induce the resistance of ovarian cancer to carboplatin through ANGPTL4. Oncol Rep 2020; 44(3): 927-38.
[http://dx.doi.org/10.3892/or.2020.7647] [PMID: 32705217]
[29]
Yu J, Liu TT, Liang LL, et al. Identification and validation of a novel glycolysis-related gene signature for predicting the prognosis in ovarian cancer. Cancer Cell Int 2021; 21(1): 353.
[http://dx.doi.org/10.1186/s12935-021-02045-0] [PMID: 34229669]
[30]
Ryan HE, Poloni M, McNulty W, et al. Hypoxia-inducible factor-1α is a positive factor in solid tumor growth. Cancer Res 2000; 60(15): 4010-5.
[PMID: 10945599]
[31]
Du J, Chen Y, Li Q, et al. HIF-1α deletion partially rescues defects of hematopoietic stem cell quiescence caused by Cited2 deficiency. Blood 2012; 119(12): 2789-98.
[http://dx.doi.org/10.1182/blood-2011-10-387902] [PMID: 22308296]
[32]
Gil M, Komorowski M, Seshadri M, et al. CXCL12/CXCR4 blockade by oncolytic virotherapy inhibits ovarian cancer growth by decreasing immunosuppression and targeting cancer-initiating cells. J Immunol 2014; 193: 5327-37.
[33]
Schioppa T, Uranchimeg B, Saccani A, et al. Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med 2003; 198(9): 1391-402.
[http://dx.doi.org/10.1084/jem.20030267] [PMID: 14597738]
[34]
Mahner S, Baasch C, Schwarz J, et al. C-Fos expression is a molecular predictor of progression and survival in epithelial ovarian carcinoma. Br J Cancer 2008; 99(8): 1269-75.
[http://dx.doi.org/10.1038/sj.bjc.6604650] [PMID: 18854825]
[35]
Oliveira-Ferrer L, Rößler K, Haustein V, et al. c-FOS suppresses ovarian cancer progression by changing adhesion. Br J Cancer 2014; 110(3): 753-63.
[http://dx.doi.org/10.1038/bjc.2013.774] [PMID: 24322891]
[36]
Laderoute KR, Mendonca HL, Calaoagan JM, Knapp AM, Giaccia AJ, Stork PJS. Mitogen-activated protein kinase phosphatase-1 (MKP-1) expression is induced by low oxygen conditions found in solid tumor microenvironments. A candidate MKP for the inactivation of hypoxia-inducible stress-activated protein kinase/c-Jun N-terminal protein kinase activity. J Biol Chem 1999; 274(18): 12890-7.
[http://dx.doi.org/10.1074/jbc.274.18.12890] [PMID: 10212278]
[37]
Wang J, Kho DH, Zhou JY, Davis RJ, Wu GS. MKP-1 suppresses PARP-1 degradation to mediate cisplatin resistance. Oncogene 2017; 36(43): 5939-47.
[http://dx.doi.org/10.1038/onc.2017.197] [PMID: 28650468]
[38]
Wang J, Zhou JY, Zhang L, Wu GS. Involvement of MKP-1 and Bcl-2 in acquired cisplatin resistance in ovarian cancer cells. Cell Cycle 2009; 8(19): 3191-8.
[http://dx.doi.org/10.4161/cc.8.19.9751] [PMID: 19755862]
[39]
Matsuzaki S, Serada S, Hiramatsu K, et al. Anti-glypican-1 antibody-drug conjugate exhibits potent preclinical antitumor activity against glypican-1 positive uterine cervical cancer. Int J Cancer 2017.
[PMID: 29055044]
[40]
Tanaka M, Ishikawa S, Ushiku T, et al. EVI1 modulates oncogenic role of GPC1 in pancreatic carcinogenesis. Oncotarget 2017; 8(59): 99552-66.
[http://dx.doi.org/10.18632/oncotarget.20601] [PMID: 29245923]
[41]
Welford SM, Giaccia AJ. Hypoxia and senescence: The impact of oxygenation on tumor suppression. MCR 2011; 9(5): 538-44.
[http://dx.doi.org/10.1158/1541-7786.MCR-11-0065] [PMID: 21385881]
[42]
Qiu Y, Li P, Ji C. Cell death conversion under hypoxic condition in tumor development and therapy. Int J Mol Sci 2015; 16(10): 25536-51.
[http://dx.doi.org/10.3390/ijms161025536] [PMID: 26512660]
[43]
Iommarini L, Porcelli AM, Gasparre G, Kurelac I. Non-canonical mechanisms regulating hypoxia-inducible factor 1 alpha in cancer. Front Oncol 2017; 7: 286.
[http://dx.doi.org/10.3389/fonc.2017.00286] [PMID: 29230384]
[44]
Singh D, Arora R, Kaur P, Singh B, Mannan R, Arora S. Overexpression of hypoxia-inducible factor and metabolic pathways: Possible targets of cancer. Cell Biosci 2017; 7(1): 62.
[http://dx.doi.org/10.1186/s13578-017-0190-2] [PMID: 29158891]
[45]
Kim S, Han Y, Kim SI, Kim HS, Kim SJ, Song YS. Tumor evolution and chemoresistance in ovarian cancer. NPJ Precis Oncol 2018; 2(1): 20.
[http://dx.doi.org/10.1038/s41698-018-0063-0] [PMID: 30246154]
[46]
Krasner CN, Campos SM, Young CL, et al. Sequential phase II clinical trials evaluating CRLX101 as monotherapy and in combination with bevacizumab in recurrent ovarian cancer. Gynecol Oncol 2021; 162(3): 661-6.
[http://dx.doi.org/10.1016/j.ygyno.2021.07.002] [PMID: 34243976]
[47]
Cheng HS, Yip YS, Lim EKY, Wahli W, Tan NS. PPARs and tumor microenvironment: The emerging roles of the metabolic master regulators in tumor stromal-epithelial crosstalk and carcinogenesis. Cancers (Basel) 2021; 13(9): 13.
[http://dx.doi.org/10.3390/cancers13092153] [PMID: 33946986]
[48]
Wu Y, Gao J, Liu X. Deregulation of angiopoietin-like 4 slows ovarian cancer progression through vascular endothelial growth factor receptor 2 phosphorylation. Cancer Cell Int 2021; 21(1): 171.
[http://dx.doi.org/10.1186/s12935-021-01865-4] [PMID: 33726754]
[49]
Gao M, Lin Y, Liu X, et al. ISG20 promotes local tumor immunity and contributes to poor survival in human glioma. OncoImmunology 2018; 8(2): e1534038.
[http://dx.doi.org/10.1080/2162402X.2018.1534038] [PMID: 30713788]
[50]
He C, Huang F, Zhang K, Wei J, Hu K, Liang M. Establishment and validation of an RNA binding protein-associated prognostic model for ovarian cancer. J Ovarian Res 2021; 14(1): 27.
[http://dx.doi.org/10.1186/s13048-021-00777-1] [PMID: 33550985]
[51]
Goode EL, Block MS, Kalli KR, et al. Dose-response association of CD8+ tumor-infiltrating lymphocytes and survival time in high-grade serous ovarian cancer. JAMA Oncol 2017; 3(12): e173290.
[http://dx.doi.org/10.1001/jamaoncol.2017.3290] [PMID: 29049607]
[52]
Pinto MP, Balmaceda C, Bravo ML, et al. Patient inflammatory status and CD4+/CD8+ intraepithelial tumor lymphocyte infiltration are predictors of outcomes in high-grade serous ovarian cancer. Gynecol Oncol 2018; 151(1): 10-7.
[http://dx.doi.org/10.1016/j.ygyno.2018.07.025] [PMID: 30078505]
[53]
Wang J, Wang P, Liu X, Wang H, Wu X. Correlations between postoperative recurrence of ovarian cancer and immune function, inflammatory factors and glucose metabolism. Minerva Endocrinol 2020; 45(3): 275-6.
[http://dx.doi.org/10.23736/S0391-1977.19.03089-X] [PMID: 31797654]
[54]
Buck MD, Sowell RT, Kaech SM, Pearce EL. Metabolic instruction of immunity. Cell 2017; 169(4): 570-86.
[http://dx.doi.org/10.1016/j.cell.2017.04.004] [PMID: 28475890]
[55]
Liu YN, Yang JF, Huang DJ, et al. Hypoxia induces mitochondrial defect that promotes T cell exhaustion in tumor microenvironment through MYC-regulated pathways. Front Immunol 2020; 11: 1906.
[http://dx.doi.org/10.3389/fimmu.2020.01906] [PMID: 32973789]
[56]
Scharping NE, Rivadeneira DB, Menk AV, et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat Immunol 2021; 22(2): 205-15.
[http://dx.doi.org/10.1038/s41590-020-00834-9] [PMID: 33398183]
[57]
Marth C, Wieser V, Tsibulak I, Zeimet AG. Immunotherapy in ovarian cancer: Fake news or the real deal? Int J Gynecol Cancer 2019; 29(1): 201-11.
[http://dx.doi.org/10.1136/ijgc-2018-000011] [PMID: 30640705]
[58]
Gaillard SL, Secord AA, Monk B. The role of immune checkpoint inhibition in the treatment of ovarian cancer. Gynecol Oncol Res Pract 2016; 3(1): 11.
[http://dx.doi.org/10.1186/s40661-016-0033-6] [PMID: 27904752]
[59]
Maiorano BA, Maiorano MFP, Lorusso D, Maiello E. Ovarian cancer in the era of immune checkpoint inhibitors: State of the art and future perspectives. Cancers (Basel) 2021; 13(17): 13.
[http://dx.doi.org/10.3390/cancers13174438] [PMID: 34503248]
[60]
Scharping NE, Menk AV, Whetstone RD, Zeng X, Delgoffe GM. Efficacy of PD-1 blockade is potentiated by metformin-induced reduction of tumor hypoxia. Cancer Immunol Res 2017; 5(1): 9-16.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0103] [PMID: 27941003]
[61]
Nishida M, Yamashita N, Ogawa T, et al. Mitochondrial reactive oxygen species trigger metformin-dependent antitumor immunity via activation of Nrf2/mTORC1/p62 axis in tumor-infiltrating CD8T lymphocytes. J Immunother Cancer 2021; 9(9): 9.
[http://dx.doi.org/10.1136/jitc-2021-002954] [PMID: 34531248]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy