Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Cucurbitacin D Inhibits the Proliferation of HepG2 Cells and Induces Apoptosis by Modulating JAK/STAT3, PI3K/Akt/mTOR and MAPK Signaling Pathways

Author(s): Muhammed Mehdi Üremiş, Nuray Üremiş, Emir Tosun, Merve Durhan, Yılmaz Çiğremiş, Ahmet Baysar and Yusuf Türköz*

Volume 22, Issue 11, 2022

Published on: 29 August, 2022

Page: [931 - 944] Pages: 14

DOI: 10.2174/1568009622666220623141158

Price: $65

Abstract

Background: Cucurbitacin D (CuD) is a natural compound that can be isolated in various plant families, mainly from Ecballium elaterium (L.) A. Rich. (E. elaterium). It is a triterpenoid with a broad spectrum of biological activity, including anti-cancer properties. Hepatocellular carcinoma, the aggressive type of liver cancer, is an important public health problem worldwide.

Objective: In the present study, we investigated the anticancer effect of CuD treated at different doses on the HepG2 cell line and the underlying mechanism in vitro.

Methods: CuD was isolated from the fruit juice of E. elaterium plant, and quantitative analysis was performed using high-performance liquid chromatography. The cell viability effect of purified CuD was determined by the MTT test, and also cell apoptosis and cell cycle arrest effects were determined by flow cytometry. DNA damage was evaluated with the comet test. Proteins and genes involved in PI3K/AKT/mTOR, MAPK, and JAK2/STAT3 signaling pathways were evaluated by western blot and qRT-PCR.

Results: CuD showed both antiproliferative and cytotoxic effects against the HepG2 cell line in a dose and time-dependent manner. It was observed that CuD induced apoptosis and blocked the cell cycle in HepG2 cells. It was observed that the expressions of genes and some proteins that play a key role in PI3K/AKT/mTOR, MAPK, and JAK2/STAT3 cascades were dose-dependently downregulated and led to activatation of the apoptotic pathway.

Conclusion: All these results show promise that CuD may have a therapeutic effect in hepatocellular carcinoma.

Keywords: Cucurbitacin, HepG2, hepatocellular carcinoma, apoptosis, PI3K/AKT/mTOR, MAPK, JAK2/STAT3.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Llovet, J.M.; Zucman-Rossi, J.; Pikarsky, E.; Sangro, B.; Schwartz, M.; Sherman, M.; Gores, G. Hepatocellular carcinoma. Nat. Rev. Dis. Primers, 2016, 2(1), 16018.
[http://dx.doi.org/10.1038/nrdp.2016.18] [PMID: 27158749]
[3]
Jiang, Y.; Han, Q.J.; Zhang, J. Hepatocellular carcinoma: Mechanisms of progression and immunotherapy. World J. Gastroenterol., 2019, 25(25), 3151-3167.
[http://dx.doi.org/10.3748/wjg.v25.i25.3151] [PMID: 31333308]
[4]
Galuppo, R.; Ramaiah, D.; Ponte, O.M.; Gedaly, R. Molecular therapies in hepatocellular carcinoma: What can we target? Dig. Dis. Sci., 2014, 59(8), 1688-1697.
[http://dx.doi.org/10.1007/s10620-014-3058-x] [PMID: 24573715]
[5]
Aravalli, R.N.; Cressman, E.N.; Steer, C.J. Cellular and molecular mechanisms of hepatocellular carcinoma: An update. Arch. Toxicol., 2013, 87(2), 227-247.
[http://dx.doi.org/10.1007/s00204-012-0931-2] [PMID: 23007558]
[6]
Ogunwobi, O.O.; Harricharran, T.; Huaman, J.; Galuza, A.; Odumuwagun, O.; Tan, Y.; Ma, G.X.; Nguyen, M.T. Mechanisms of hepatocellular carcinoma progression. World J. Gastroenterol., 2019, 25(19), 2279-2293.
[http://dx.doi.org/10.3748/wjg.v25.i19.2279] [PMID: 31148900]
[7]
Yu, H.; Lee, H.; Herrmann, A.; Buettner, R.; Jove, R. Revisiting STAT3 signalling in cancer: New and unexpected biological functions. Nat. Rev. Cancer, 2014, 14(11), 736-746.
[http://dx.doi.org/10.1038/nrc3818] [PMID: 25342631]
[8]
Jones, L.M.; Broz, M.L.; Ranger, J.J.; Ozcelik, J.; Ahn, R.; Zuo, D.; Ursini-Siegel, J.; Hallett, M.T.; Krummel, M.; Muller, W.J. STAT3 establishes an immunosuppressive microenvironment during the early stages of breast carcinogenesis to promote tumor growth and metastasis. Cancer Res., 2016, 76(6), 1416-1428.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2770] [PMID: 26719528]
[9]
Wörmann, S.M.; Song, L.; Ai, J.; Diakopoulos, K.N.; Kurkowski, M.U.; Görgülü, K.; Ruess, D.; Campbell, A.; Doglioni, C.; Jodrell, D.; Neesse, A.; Demir, I.E.; Karpathaki, A.P.; Barenboim, M.; Hagemann, T.; Rose-John, S.; Sansom, O.; Schmid, R.M.; Protti, M.P.; Lesina, M.; Algül, H. Loss of P53 function activates JAK2-STAT3 signaling to promote pancreatic tumor growth, stroma modification, and gemcitabine resistance in mice and is associated with patient survival. Gastroenterol., 2016, 151(1), 180-193.e12.
[http://dx.doi.org/10.1053/j.gastro.2016.03.010] [PMID: 27003603]
[10]
Sun, X.; Sui, Q.; Zhang, C.; Tian, Z.; Zhang, J. Targeting blockage of STAT3 in hepatocellular carcinoma cells augments NK cell functions via reverse hepatocellular carcinoma-induced immune suppression. Mol. Cancer Ther., 2013, 12(12), 2885-2896.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-1087] [PMID: 24107450]
[11]
Akula, S.M.; Abrams, S.L.; Steelman, L.S.; Emma, M.R.; Augello, G.; Cusimano, A.; Azzolina, A.; Montalto, G.; Cervello, M.; McCubrey, J.A. RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC1 and TP53 pathways and regulatory miRs as therapeutic targets in hepatocellular carcinoma. Expert Opin. Ther. Targets, 2019, 23(11), 915-929.
[http://dx.doi.org/10.1080/14728222.2019.1685501] [PMID: 31657972]
[12]
Ye, L.; Mayerle, J.; Ziesch, A.; Reiter, F.P.; Gerbes, A.L.; De Toni, E.N. The PI3K inhibitor copanlisib synergizes with sorafenib to induce cell death in hepatocellular carcinoma. Cell Death Discov., 2019, 5(1), 86.
[http://dx.doi.org/10.1038/s41420-019-0165-7] [PMID: 30962952]
[13]
Mallon, R.; Feldberg, L.R.; Lucas, J.; Chaudhary, I.; Dehnhardt, C.; Santos, E.D.; Chen, Z.; dos Santos, O.; Ayral-Kaloustian, S.; Venkatesan, A.; Hollander, I. Antitumor efficacy of PKI-587, a highly potent dual PI3K/mTOR kinase inhibitor. Clin. Cancer Res., 2011, 17(10), 3193-3203.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1694] [PMID: 21325073]
[14]
Dimri, M.; Satyanarayana, A. Molecular signaling pathways and therapeutic targets in hepatocellular carcinoma. Cancers (Basel), 2020, 12(2), E491.
[http://dx.doi.org/10.3390/cancers12020491] [PMID: 32093152]
[15]
Huether, A.; Hopfner, M.; Sutter, A.P.; Baradari, V.; Schuppan, D.; Scherubl, H. Signaling pathways involved in the inhibition of epidermal growth factor receptor by erlotinib in hepatocellular cancer. World J. Gastroenterol., 2006, 12(32), 5160-5167.
[PMID: 16937526]
[16]
Chen, X.; Bao, J.; Guo, J.; Ding, Q.; Lu, J.; Huang, M.; Wang, Y. Biological activities and potential molecular targets of cucurbitacins: A focus on cancer. Anticancer Drugs, 2012, 23(8), 777-787.
[http://dx.doi.org/10.1097/CAD.0b013e3283541384] [PMID: 22561419]
[17]
Lee, D.H.; Iwanski, G.B.; Thoennissen, N.H. Cucurbitacin: Ancient compound shedding new light on cancer treatment. Scientific-WorldJournal, 2010, 10, 413-418.
[http://dx.doi.org/10.1100/tsw.2010.44] [PMID: 20209387]
[18]
Marostica, L.L.; Silva, I.T.; Kratz, J.M.; Persich, L.; Geller, F.C.; Lang, K.L.; Caro, M.S.; Durán, F.J.; Schenkel, E.P.; Simões, C.M. Synergistic antiproliferative effects of a new cucurbitacin B derivative and chemotherapy drugs on lung cancer cell line A549. Chem. Res. Toxicol., 2015, 28(10), 1949-1960.
[http://dx.doi.org/10.1021/acs.chemrestox.5b00153] [PMID: 26372186]
[19]
Lin, X.; Farooqi, A.A. Cucurbitacin mediated regulation of deregulated oncogenic signaling cascades and non-coding RNAs in different cancers: Spotlight on JAK/STAT, Wnt/beta-catenin, mTOR, TRAIL-mediated pathways. Semin. Cancer Biol., 2021, 73, 302-9.
[PMID: 33152487]
[20]
Hussein, M.A.; El-Gizawy, H.A.; Gobba, N.A.E.K.; Mosaad, Y.O. Synthesis of cinnamyl and caffeoyl derivatives of cucurbitacineglycoside isolated from citrullus colocynthis fruits and their structures antioxidant and anti-inflammatory activities relationship. Curr. Pharm. Biotechnol., 2017, 18(8), 677-693.
[http://dx.doi.org/10.2174/1389201018666171004144615] [PMID: 28982326]
[21]
Oridupa, O.A.; Saba, A.B.; Adesanwo, J.K.; Oyebanji, B.O. Anti-inflammatory and analgesic activity of a cucurbitacin isolated from Lagenaria breviflora roberty fruit. Afr. J. Med. Med. Sci., 2013, 42(3), 223-230.
[PMID: 24579383]
[22]
Kim, K.H.; Lee, I.S.; Park, J.Y.; Kim, Y.; An, E.J.; Jang, H.J.; Cucurbitacin, B. Cucurbitacin B induces hypoglycemic effect in diabetic mice by regulation of amp-activated protein kinase alpha and glucagon-like peptide-1 via bitter taste receptor signaling. Front. Pharmacol., 2018, 9, 1071.
[http://dx.doi.org/10.3389/fphar.2018.01071] [PMID: 30298009]
[23]
Tannin-Spitz, T.; Bergman, M.; Grossman, S. Cucurbitacin glucosides: Antioxidant and free-radical scavenging activities. Biochem. Biophys. Res. Commun., 2007, 364(1), 181-186.
[http://dx.doi.org/10.1016/j.bbrc.2007.09.075] [PMID: 17942079]
[24]
Wang, D.; Shen, M.; Kitamura, N.; Sennari, Y.; Morita, K.; Tsukada, J.; Kanazawa, T.; Yoshida, Y. Mitogen-activated protein kinases are involved in cucurbitacin D-induced antitumor effects on adult T-cell leukemia cells. Invest. New Drugs, 2021, 39(1), 122-130.
[http://dx.doi.org/10.1007/s10637-020-00997-0] [PMID: 32914311]
[25]
Silva, I.T.; Carvalho, A.; Lang, K.L.; Dudek, S.E.; Masemann, D.; Durán, F.J.; Caro, M.S.; Rapp, U.R.; Wixler, V.; Schenkel, E.P.; Simões, C.M.; Ludwig, S. In vitro and in vivo antitumor activity of a novel semisynthetic derivative of cucurbitacin B. PLoS One, 2015, 10(2), e0117794.
[http://dx.doi.org/10.1371/journal.pone.0117794] [PMID: 25674792]
[26]
Marostica, L.L.; de Barros, A.L.B.; Oliveira, J.; Salgado, B.S.; Cassali, G.D.; Leite, E.A.; Cardoso, V.N.; Lang, K.L.; Caro, M.S.B.; Durán, F.J.; Schenkel, E.P.; de Oliveira, M.C.; Simões, C.M.O. Antitumor effectiveness of a combined therapy with a new cucurbitacin B derivative and paclitaxel on a human lung cancer xenograft model. Toxicol. Appl. Pharmacol., 2017, 329, 272-281.
[http://dx.doi.org/10.1016/j.taap.2017.06.007] [PMID: 28610991]
[27]
Hong, S.H.; Ku, J.M.; Lim, Y.S.; Lee, S.Y.; Kim, J.H.; Cheon, C.; Ko, S.G. Cucurbitacin D overcomes gefitinib resistance by blocking EGF binding to EGFR and inducing cell death in NSCLCs. Front. Oncol., 2020, 10, 62.
[http://dx.doi.org/10.3389/fonc.2020.00062] [PMID: 32133284]
[28]
Zhang, Y.Z.; Wang, C.F.; Zhang, L.F. Cucurbitacin D impedes gastric cancer cell survival via activation of the iNOS/NO and inhibition of the Akt signalling pathway. Oncol. Rep., 2018, 39(6), 2595-2603.
[http://dx.doi.org/10.3892/or.2018.6361] [PMID: 29658590]
[29]
Sikander, M.; Hafeez, B.B.; Malik, S.; Alsayari, A.; Halaweish, F.T.; Yallapu, M.M.; Chauhan, S.C.; Jaggi, M. Cucurbitacin D exhibits potent anti-cancer activity in cervical cancer. Sci. Rep., 2016, 6(1), 36594.
[http://dx.doi.org/10.1038/srep36594] [PMID: 27824155]
[30]
Kim, M.S.; Lee, K.; Ku, J.M.; Choi, Y.J.; Mok, K.; Kim, D.; Cheon, C.; Ko, S.G. Cucurbitacin D induces G2/M phase arrest and apoptosis via the ROS/p38 pathway in capan-1 pancreatic cancer cell line. Evid. Based Complement. Alternat. Med., 2020, 2020, 6571674.
[http://dx.doi.org/10.1155/2020/6571674] [PMID: 33029168]
[31]
Ku, J.M.; Kim, S.R.; Hong, S.H.; Choi, H.S.; Seo, H.S.; Shin, Y.C.; Ko, S.G. Cucurbitacin D induces cell cycle arrest and apoptosis by inhibiting STAT3 and NF-κB signaling in doxorubicin-resistant human breast carcinoma (MCF7/ADR) cells. Mol. Cell. Biochem., 2015, 409(1-2), 33-43.
[http://dx.doi.org/10.1007/s11010-015-2509-9] [PMID: 26169986]
[32]
Tosun, E.; Baysar, A. Isolation and purification of cucurbitacin D and I from Ecballium elaterium (L.) A. rich fruit juice. Maced. J. Chem. Chem. Eng., 2019, 38(2), 171-182.
[http://dx.doi.org/10.20450/mjcce.2019.1648]
[33]
Hu, S.; Wang, Y.H.; Avula, B.; Wang, M.; Khan, I.A. Separation of cucurbitane triterpenoids from bitter melon drinks and determination of partition coefficients using vortex-assisted dispersive liquid-phase microextraction followed by UHPLC analysis. J. Sep. Sci., 2017, 40(10), 2238-2245.
[http://dx.doi.org/10.1002/jssc.201700023] [PMID: 28371276]
[34]
Rahman, M.A.; Rahman, M.D.H.; Hossain, M.S.; Biswas, P.; Islam, R.; Uddin, M.J.; Rahman, M.H.; Rhim, H. Molecular insights into the multifunctional role of natural compounds: Autophagy modulation and cancer prevention. Biomedicines, 2020, 8(11), E517.
[http://dx.doi.org/10.3390/biomedicines8110517] [PMID: 33228222]
[35]
Eti, C.M.; Vayısoğlu, Y.; Kardaş, B.; Arpacı, R.B.; Horasan, E.S.; Kanık, A.; Eti, N.; Yalın, S.; Talas, D.Ü. Histopathologic evaluation of Ecballium elaterium applied to nasal mucosa in a rat rhinosinusitis model. Ear Nose Throat J., 2018, 97(6), E14-E17.
[http://dx.doi.org/10.1177/014556131809700616] [PMID: 30036418]
[36]
Greige-Gerges, H.; Khalil, R.A.; Mansour, E.A.; Magdalou, J.; Chahine, R.; Ouaini, N. Cucurbitacins from Ecballium elaterium juice increase the binding of bilirubin and ibuprofen to albumin in human plasma. Chem. Biol. Interact., 2007, 169(1), 53-62.
[http://dx.doi.org/10.1016/j.cbi.2007.05.003] [PMID: 17601519]
[37]
Jafargholizadeh, N.; Zargar, S.J.; Aftabi, Y. The cucurbitacins D, E, and I from Ecballium elaterium (L.) upregulate the LC3 gene and induce cell-cycle arrest in human gastric cancer cell line AGS. Iran. J. Basic Med. Sci., 2018, 21(3), 253-259.
[PMID: 29511491]
[38]
Arslan, M.S.; Basuguy, E.; Ibiloglu, I.; Bozdemir, E.; Zeytun, H.; Sahin, A.; Kaplan, I.; Aydogdu, B.; Otcu, S. Effects of Ecballium elaterium on proinflammatory cytokines in a rat model of sepsis. J. Invest. Surg., 2016, 29(6), 399-404.
[http://dx.doi.org/10.1080/08941939.2016.1181230] [PMID: 27191817]
[39]
El Naggar, M.B.; Chalupová, M.; Pražanová, G.; Parák, T.; Švajdlenka, E.; Žemlička, M.; Suchý, P. Hepatoprotective and proapoptotic effect of Ecballium elaterium on CCl4-induced hepatotoxicity in rats. Asian Pac. J. Trop. Med., 2015, 8(7), 526-531.
[http://dx.doi.org/10.1016/j.apjtm.2015.06.012] [PMID: 26276282]
[40]
Harinantenaina, L.; Tanaka, M.; Takaoka, S.; Oda, M.; Mogami, O.; Uchida, M.; Asakawa, Y. Momordica charantia constituents and anti-diabetic screening of the isolated major compounds. Chem. Pharm. Bull. (Tokyo), 2006, 54(7), 1017-1021.
[http://dx.doi.org/10.1248/cpb.54.1017] [PMID: 16819222]
[41]
Kaushik, U.; Aeri, V.; Mir, S.R. Cucurbitacins - An insight into medicinal leads from nature. Pharmacogn. Rev., 2015, 9(17), 12-18.
[http://dx.doi.org/10.4103/0973-7847.156314] [PMID: 26009687]
[42]
Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[43]
Fulda, S. Modulation of apoptosis by natural products for cancer therapy. Planta Med., 2010, 76(11), 1075-1079.
[http://dx.doi.org/10.1055/s-0030-1249961] [PMID: 20486070]
[44]
Ishii, T.; Kira, N.; Yoshida, T.; Narahara, H. Cucurbitacin D induces growth inhibition, cell cycle arrest, and apoptosis in human endometrial and ovarian cancer cells. Tumour Biol., 2013, 34(1), 285-291.
[http://dx.doi.org/10.1007/s13277-012-0549-2] [PMID: 23150173]
[45]
Park, J.H.; Pyun, W.Y.; Park, H.W. Cancer metabolism: Phenotype, signaling and therapeutic targets. Cells, 2020, 9(10), E2308.
[http://dx.doi.org/10.3390/cells9102308] [PMID: 33081387]
[46]
Brouwer, I.J.; Out-Luiting, J.J.; Vermeer, M.H.; Tensen, C.P. Cucurbitacin E and I target the JAK/STAT pathway and induce apoptosis in Sézary cells. Biochem. Biophys. Rep., 2020, 24, 100832.
[http://dx.doi.org/10.1016/j.bbrep.2020.100832] [PMID: 33102814]
[47]
Yar Saglam, A.S.; Alp, E.; Elmazoglu, Z.; Menevse, S. Treatment with cucurbitacin B alone and in combination with gefitinib induces cell cycle inhibition and apoptosis via EGFR and JAK/STAT pathway in human colorectal cancer cell lines. Hum. Exp. Toxicol., 2016, 35(5), 526-543.
[http://dx.doi.org/10.1177/0960327115595686] [PMID: 26183715]
[48]
Abou-Salim, M.A.; Shaaban, M.A.; Abd El Hameid, M.K.; Elshaier, Y.A.M.M.; Halaweish, F. Design, synthesis and biological study of hybrid drug candidates of nitric oxide releasing cucurbitacin-inspired estrone analogs for treatment of hepatocellular carcinoma. Bioorg. Chem., 2019, 85, 515-533.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.068] [PMID: 30807895]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy