Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Structural and Colloid Effects of Interaction between Shungite Carbon Nanoparticles and Linoleic Fatty Acid

Author(s): А. S. Goryunov*, А. G. Borisova, S. S. Rozhkov and N. N. Rozhkova

Volume 19, Issue 1, 2023

Published on: 29 August, 2022

Page: [68 - 75] Pages: 8

DOI: 10.2174/1573413718666220622160135

Price: $65

Abstract

Background: The effect of bionanointeractions on graphene-biomolecule nanohybrids is of great interest, since external influences on their structural and surface properties can significantly affect their biological activity.

Introduction: The effects of the fatty acid binding with shungite carbon (ShC) nanoparticles on the stability of aqueous dispersions of ShC and the oxidation state of ShC (oxygen-containing groups) were studied using linoleic acid (LA) as an example.

Methods: The size and surface charge (ζ -potential) of the ShC-LA associates formed at various LA concentrations in the dispersion were estimated using the dynamic light scattering method and the ultraviolet (UV) absorption spectra of dispersions were taken.

Results: The negative ShC charge becomes less negative upon LA binding, depending on LA concentration. The size of ShC upon functionalization by LA molecules does not depend on LA concentration, suggesting the predominance of surface rearrangement of NPs, rather than a change in their global structure. ShC - LA interaction is accompanied by an increase in absorption in the UV spectrum region of conjugated С=С bonds, the reduction of С=О groups, sp2 hybridization and bonds in the plane of graphene fragments, the basic structural units of ShC.

Conclusion: The results are interpreted in terms of the surface structural effects of LA on ShC that affect variations of the colloid and redox characteristics of ShC in aqueous dispersion.

Keywords: Shungite carbon nanoparticles, linoleic acid, colloid and redox properties

Graphical Abstract

[1]
Ansari, M.O.; Gauthaman, K.; Essa, A.; Bencherif, S.A.; Memic, A. Graphene and graphene-based materials in biomedical applications. Curr. Med. Chem., 2019, 26(38), 6834-6850.
[http://dx.doi.org/10.2174/0929867326666190705155854] [PMID: 31284851]
[2]
Joshi, S.; Sharma, P.; Siddiqui, R.; Kaushal, K.; Sharma, S.; Verma, G.; Saini, A. A review on peptide functionalized graphene derivatives as nanotools for biosensing. Mikrochim. Acta, 2019, 187(1), 27.
[http://dx.doi.org/10.1007/s00604-019-3989-1] [PMID: 31811393]
[3]
Palmieri, V.; Perini, G.; De Spirito, M.; Papi, M. Graphene oxide touches blood: in vivo interactions of bio-coronated 2D materials. Nanoscale Horiz., 2019, 4(2), 273-290.
[http://dx.doi.org/10.1039/C8NH00318A] [PMID: 32254085]
[4]
Guo, Z.; Zhang, P.; Chetwynd, A.J.; Xie, H.Q.; Valsami-Jones, E.; Zhao, B.; Lynch, I. Elucidating the mechanism of the surface functionalization dependent neurotoxicity of graphene family nanomaterials. Nanoscale, 2020, 12(36), 18600-18605.
[http://dx.doi.org/10.1039/D0NR04179C] [PMID: 32914812]
[5]
Borandeh, S.; Alimardani, V.; Abolmaali, S.S.; Seppälä, J. Graphene family nanomaterials in ocular applications: physicochemical properties and toxicity. Chem. Res. Toxicol., 2021, 34(6), 1386-1402.
[http://dx.doi.org/10.1021/acs.chemrestox.0c00340] [PMID: 34041903]
[6]
Jiang, C.; Zhao, H.; Xiao, H.; Wang, Y.; Liu, L.; Chen, H.; Shen, C.; Zhu, H.; Liu, Q. Recent advances in graphene-family nanomaterials for effective drug delivery and phototherapy. Expert Opin. Drug Deliv., 2021, 18(1), 119-138.
[http://dx.doi.org/10.1080/17425247.2020.1798400] [PMID: 32729733]
[7]
Li, J.; Zeng, H.; Zeng, Z.; Zeng, Y.; Xie, T. Promising graphene-based nanomaterials and their biomedical applications and potential risks: a comprehensive review. ACS Biomater. Sci. Eng., 2021, 7(12), 5363-5396.
[http://dx.doi.org/10.1021/acsbiomaterials.1c00875] [PMID: 34747591]
[8]
Jeong, W.Y.; Choi, H.E.; Kim, K.S. Graphene-based nanomaterials as drug delivery carriers. Adv. Exp. Med. Biol., 2022, 1351, 109-124.
[http://dx.doi.org/10.1007/978-981-16-4923-3_6] [PMID: 35175614]
[9]
Omran, B.; Baek, K.H. Graphene-derived antibacterial nanocomposites for water disinfection: current and future perspectives. Environ. Pollut., 2022, 298, 118836.
[http://dx.doi.org/10.1016/j.envpol.2022.118836] [PMID: 35032599]
[10]
Yakovenko, O.S.; Matzui, L.Yu.; Vovchenko, L.L.; Oliynyk, V.V.; Trukhanov, A.V.; Trukhanov, S.V.; Borovoy, M.O.; Tesel’ko, P.O.; Launets, V.L.; Syvolozhskyi, O.A.; Astapovich, K.A. Effect of magnetic fillers and their orientation on the electrodynamic properties of BaFe12 xGaxO19 (x = 0.1–1.2)-epoxy composites with carbon nanotubes within GHz range. Appl. Nanosci., 2020, 10, 474-4752.
[http://dx.doi.org/10.1007/s13204-020-01477-w]
[11]
Yakovenko, O.S.; Matzui, L.Yu.; Vovchenko, L.L.; Oliynyk, V.V.; Zagorodnii, V.V.; Trukhanov, S.V.; Trukhanov, A.V. Electromagnetic properties of carbon nanotubes / BaFe12-xGaxO19 / epoxy composites with random and oriented filler distribution. Nanomater., (Basel), 2021, 11(11), 2873-12.
[http://dx.doi.org/10.3390/nano11112873] [PMID: 34835638]
[12]
Ferrari, A.C.; Bonaccorso, F.; Fal’ko, V.; Novoselov, K.S.; Roche, S.; Bøggild, P.; Borini, S.; Koppens, F.H.L.; Palermo, V.; Pugno, N.; Garrido, J.A.; Sordan, R.; Bianco, A.; Ballerini, L.; Prato, M.; Lidorikis, E.; Kivioja, J.; Marinelli, C.; Ryhänen, T.; Morpurgo, A.; Coleman, J.N.; Nicolosi, V.; Colombo, L.; Fert, A.; Garcia-Hernandez, M.; Bachtold, A.; Schneider, G.F.; Guinea, F.; Dekker, C.; Barbone, M.; Sun, Z.; Galiotis, C.; Grigorenko, A.N.; Konstantatos, G.; Kis, A.; Katsnelson, M.; Vandersypen, L.; Loiseau, A.; Morandi, V.; Neumaier, D.; Treossi, E.; Pellegrini, V.; Polini, M.; Tredicucci, A.; Williams, G.M.; Hong, B.H.; Ahn, J-H.; Kim, J.M.; Zirath, H.; van Wees, B.J.; van der Zant, H.; Occhipinti, L.; Di Matteo, A.; Kinloch, I.A.; Seyller, T.; Quesnel, E.; Feng, X.; Teo, K.; Rupesinghe, N.; Hakonen, P.; Neil, S.R.T.; Tannock, Q.; Löfwander, T.; Kinaret, J. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7(11), 4598-4810.
[http://dx.doi.org/10.1039/C4NR01600A] [PMID: 25707682]
[13]
Wang, H.; Ma, R.; Nienhaus, K.; Nienhaus, G.U. Formation of a monolayer protein corona around polystyrene nanoparticles and implications for nanoparticle agglomeration. Small, 2019, 15(22), e1900974-, 22, 1900974.
[http://dx.doi.org/10.1002/smll.201900974] [PMID: 31021510]
[14]
Liu, N.; Tang, M.; Ding, J. The interaction between nanoparticles-protein corona complex and cells and its toxic effect on cells. Chemosphere, 2020, 245, 125624.
[http://dx.doi.org/10.1016/j.chemosphere.2019.125624] [PMID: 31864050]
[15]
Rampado, R.; Crotti, S.; Caliceti, P.; Pucciarelli, S.; Agostini, M. Recent advances in understanding the protein corona of nanoparticles and in the formulation of “stealthy” nanomaterials. Front. Bioeng. Biotechnol., 2020, 8, 166.
[http://dx.doi.org/10.3389/fbioe.2020.00166] [PMID: 32309278]
[16]
Yang, F.; Liu, Y.; Gao, L.; Sun, J. pH-Sensitive highly dispersed reduced graphene oxide solution using lysozyme via an in situ reduction method. J. Phys. Chem. C, 2010, 114, 22085-22091.
[http://dx.doi.org/10.1021/jp1079636]
[17]
Sun, B.; Zhang, Y.; Chen, W.; Wang, K.; Zhu, L. Concentration dependent effects of bovine serum albumin on graphene oxide colloidal stability in aquatic environment. Environ. Sci. Technol., 2018, 52(13), 7212-7219.
[http://dx.doi.org/10.1021/acs.est.7b06218] [PMID: 29894635]
[18]
Gurunathan, S.; Han, J.W.; Dayem, A.A.; Eppakayala, V.; Kim, J.H. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int. J. Nanomedicine, 2012, 7, 5901-5914.
[http://dx.doi.org/10.2147/IJN.S37397] [PMID: 23226696]
[19]
Li, F.; Bao, Y.; Chai, J.; Zhang, Q.; Han, D.; Niu, L. Synthesis and application of widely soluble graphene sheets. Langmuir, 2010, 26(14), 12314-12320.
[http://dx.doi.org/10.1021/la101534n] [PMID: 20536161]
[20]
Kashyap, S.; Mishra, S.; Behera, S.K. Aqueous colloidal stability of graphene oxide and chemically converted graphene. J. Nanopart, 2014, 2014, 640281.
[http://dx.doi.org/10.1155/2014/640281]
[21]
Ni, Y.; Zhang, F.; Kokot, S. Graphene oxide as a nanocarrier for loading and delivery of medicinal drugs and as a biosensor for detection of serum albumin. Anal. Chim. Acta, 2013, 769, 40-48.
[http://dx.doi.org/10.1016/j.aca.2013.01.038] [PMID: 23498119]
[22]
Zhao, J.; Wang, Z.; White, J.C.; Xing, B. Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation. Environ. Sci. Technol., 2014, 48(17), 9995-10009.
[http://dx.doi.org/10.1021/es5022679] [PMID: 25122195]
[23]
Sun, H.; Zhao, A.; Gao, N.; Li, K.; Ren, J.; Qu, X. Deciphering a nanocarbon-based artificial peroxidase: chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angew. Chem. Int. Ed. Engl., 2015, 54(24), 7176-7180.
[http://dx.doi.org/10.1002/anie.201500626] [PMID: 25940927]
[24]
Sajo, M.E.J.; Kim, C.S.; Kim, S.K.; Shim, K.Y.; Kang, T.Y.; Lee, K.J. Antioxidant and anti-inflammatory effects of shungite against ultraviolet B irradiation-induced skin damage in hairless mice. Oxid. Med. Cell. Longev., 2017, 2017, 7340143.
[http://dx.doi.org/10.1155/2017/7340143] [PMID: 28894510]
[25]
Chou, N.H.; Pierce, N.; Lei, Y.; Perea-Lypez, N.; Fujisawa, R.; Subramanian, S.; Robinson, J.A.; Chen, G.; Omichi, K.; Rozhkov, S.S.; Rozhkova, N.N.; Terrones, M.; Harutyunyan, A.R. Carbon-rich shungite as a natural resource for efficient Li-ion battery electrodes. Carbon, 2018, 130, 105-111.
[http://dx.doi.org/10.1016/j.carbon.2017.12.109]
[26]
Tamburri, E.; Carcione, R.; Politi, S.; Angjellari, M.; Lazzarini, L.; Vanzetti, L.E.; Macis, S.; Pepponi, G.; Terranova, M.L. Shungite carbon as unexpected natural source of few-layer graphene platelets in a low oxidation state. Inorg. Chem., 2018, 57(14), 8487-8498.
[http://dx.doi.org/10.1021/acs.inorgchem.8b01164] [PMID: 29969022]
[27]
Di Santo, R.; Digiacomo, L.; Palchetti, S.; Palmieri, V.; Perini, G.; Pozzi, D.; Papi, M.; Caracciolo, G. Microfluidic manufacturing of surface-functionalized graphene oxide nanoflakes for gene delivery. Nanoscale, 2019, 11(6), 2733-2741.
[http://dx.doi.org/10.1039/C8NR09245A] [PMID: 30672541]
[28]
Rozhkova, N.N.; Rozhkov, S.P.; Goryunov, A.S. Natural graphene based shungitenanocarbon. In: Carbon nanomaterials sourcebook. Graphene, fullerenes, nanotubes, and nanodiamonds; Sattler, K.D., Ed.; CRC Press: Boca Raton, 2016; Vol. 1, pp. 153-176.
[29]
Sheka, E.F. Hołderna-Natkaniec, K.; Natkaniec, I.; Krawczyk, J.X.; Golubev, Y.A.; Rozhkova, N.N.; Kim, V.V.; Popova, N.A.; Popova, V.A. Computationally supported neutron scattering study of natural and synthetic amorphous carbons. J. Phys. Chem. C, 2019, 123, 15841-15850.
[http://dx.doi.org/10.1021/acs.jpcc.9b03675]
[30]
Sheka, E.F.; Rozhkova, N.N. Shungite as the natural pantry of nanoscale reduced graphene oxide. Int. J. Smart Nano Mater., 2014, 5, 1-16.
[http://dx.doi.org/10.1080/19475411.2014.885913]
[31]
Razbirin, B.S.; Rozhkova, N.N.; Sheka, E.F.; Nelson, D.K.; Starukhin, A.N. Fractals of graphene quantum dots in photoluminescence of shungite. J. Exp. Theor. Phys., 2014, 5, 838-850.
[32]
Sheka, E.F. Reduced graphene oxide and its natural counterpart shungite carbon. Int. J. Nanomat. Nanotechn. Nanomed, 2017, 3, 7-14.
[http://dx.doi.org/10.17352/2455-3492.000014]
[33]
Golubev, Ye.A.; Rozhkova, N.N.; Kabachkov, E.N.; Shul’ga, Y.M.; Natkaniec-Hołderna, K.; Natkaniec, I.; Antonets, I.V.; Makeev, B.A.; Popova, N.A.; Popova, V.A.; Sheka, E.F. sp2 Amorphous carbons in view of multianalytical consideration: normal, expected and new. J. Non-Cryst. Solids, 2019, 524, 119608.
[http://dx.doi.org/10.1016/j.jnoncrysol.2019.119608]
[34]
Sheka, E.F. Graphene oxyhydride catalysts in view of spin radical chemistry. Mater., (Basel), 2020, 13(3), 565.
[http://dx.doi.org/10.3390/ma13030565] [PMID: 31991653]
[35]
Trukhanov, A.V.; Astapovich, K.A.; Turchenko, V.A.; Almessiere, M.A.; Slimani, Y.; Baykal, A.; Sombra, A.S.B.; Zhou, D.; Jotania, R.B.; Singh, C.; Zubar, T.I.; Tishkevich, D.I.; Trukhanov, S.V. Influence of the dysprosium ions on structure, magnetic characteristics and origin of the reflection losses in the Ni-Co spinels. J. Alloys Compd., 2020, 841, 155667.
[http://dx.doi.org/10.1016/j.jallcom.2020.155667]
[36]
Kozlovskiy, A.; Egizbek, K.; Zdorovets, M.V.; Ibragimova, M.; Shumskaya, A.; Rogachev, A.A.; Ignatovich, Z.V.; Kadyrzhanov, K. Evaluation of the efficiency of detection and capture of manganese in aqueous solutions of FeCeOx nanocomposites doped with Nb2O5. Sens., (Basel), 2020, 20(17), 4851.
[http://dx.doi.org/10.3390/s20174851] [PMID: 32867214]
[37]
Rozhkov, S.P.; Goryunov, A.S.; Rozhkov, S.S. Water dispersions of natural graphene based carbon nanoparticles: ESR spin probe study. Colloids Surf. A Physicochem. Eng. Asp., 2018, 537, 549-556.
[http://dx.doi.org/10.1016/j.colsurfa.2017.10.062]
[38]
Goryunov, A.S.; Rozhkov, S.P.; Sukhanova, G.A.; Borisova, A.G. Thermodynamic effects of serum albumin interaction with shungitenanocarbon. Trans. Karelian Res. Centre Russ. Acad. Sci. Exp. Biol., 2016, 11, 33-38.
[39]
Rozhkov, S.P.; Goryunov, A.S. Structural dynamic effects of protein and other biologically significant molecules’ interaction with shungite nanocarbon. Trans. Karelian Res. Centre Russ. Acad. of Sci. Exp. Biol., 2017, 5, 33-44.
[40]
Goryunov, A.; Rozhkov, S.; Rozhkova, N. Fatty acid transfer between serum albumins and shungite carbon nanoparticles and its effect on protein aggregation and association. Eur. J. Biophys., 2020, 49(1), 85-94.
[http://dx.doi.org/10.1007/s00249-019-01414-y] [PMID: 31865396]
[41]
Trukhanov, A.V.; Algarou, N.A.; Slimani, Y.; Almessiere, M.A.; Baykal, A.; Tishkevich, D.I.; Vinnik, D.A.; Vakhitov, M.G.; Klygach, D.S.; Silibin, M.V.; Zubar, T.I.; Trukhanov, S.V. Peculiarities of the microwave properties of hard-soft functional composites SrTb0.01Tm0.01Fe11.98O19-AFe2O4 (A = Co, Ni, Zn, Cu, or Mn). RSC Advances, 2020, 10(54), 32638-32651.
[http://dx.doi.org/10.1039/D0RA05087C] [PMID: 35516497]
[42]
Kozlovskiy, A.L.; Zdorovets, M.V. Effect of doping of Ce4+/3+ on optical, strength and shielding properties of (0.5-x)TeO2-0.25MoO-0.25Bi2O3-xCeO2 glasses. Mater. Chem. Phys., 2021, 263, 124444.
[http://dx.doi.org/10.1016/j.matchemphys.2021.124444]
[43]
Rozhkova, N.N. Aggregation and stabilization of shungite carbon nanoparticles. Russ. J. Gen. Chem., 2013, 83, 2676-2685.
[http://dx.doi.org/10.1134/S1070363213130136]
[44]
Rozhkova, N.N.; Rozhkov, S.S.; Loschilov, A.S. A method of producing an aqueous dispersion of carbon nanoparticles from shungite. R.F. Patent 2642632, 2018.
[45]
Thakur, A.; Sharma, N.; Bhatti, M.; Sharma, M.; Trukhanov, A.V.; Trukhanov, S.V.; Panina, L.V.; Astapovich, K.A.; Thakur, P. Synthesis of barium ferrite nanoparticles using rhizome extract of Acorus Calamus: characterization and its efficacy against different plant phytopathogenic fungi. Nano-Struct. Nano-Objects, 2020, 24, 100599.
[http://dx.doi.org/10.1016/j.nanoso.2020.100599]
[46]
Zdorovets, M.V.; Kozlovskiy, A.L.; Shlimas, D.I.; Borgekov, D.B. Phase transformations in FeCo -Fe2CoO4/Co3O4-spinel nanostructures as a result of thermal annealing and their practical application. J. Mater. Sci. Mater. Electron., 2021, 32, 16694-16705.
[http://dx.doi.org/10.1007/s10854-021-06226-5]
[47]
Hunter, R.J. Foundations of Colloid Science, 2nd ed; Oxford University Press: New York, 2001.
[48]
Trukhanov, S.V.; Lobanovski, L.S.; Bushinsky, M.V.; Fedotova, V.V.; Troyanchuk, I.O.; Trukhanov, A.V.; Ryzhov, V.A.; Szymczak, H.; Szymczak, R.; Baran, M. Study of A-site ordered PrBaMn2O6-δ manganite properties depending on the treatment conditions. J. Phys. Condens. Matter, 2005, 17, 6495-6506.
[http://dx.doi.org/10.1088/0953-8984/17/41/019]
[49]
Tuleushev, A.Z.; Harrison, F.E.; Kozlovskiy, A.L.; Zdorovets, M.V. Evolution of the absorption edge of PET films irradiated with Kr ions after thermal annealing and ageing. Opt. Mater., 2021, 119, 111348.
[http://dx.doi.org/10.1016/j.optmat.2021.111348]
[50]
Kim, J.; Kim, F.; Huang, J. Seeing graphene-based sheets. Mater. Today, 2010, 13, 28-38.
[http://dx.doi.org/10.1016/S1369-7021(10)70031-6]
[51]
Lai, Q.; Zhu, S.; Luo, X.; Zou, M.; Huang, S. Ultraviolet-visible spectroscopy of graphene oxides. AIP Adv., 2012, 2, 032146.
[http://dx.doi.org/10.1063/1.4747817]
[52]
Mak, K.F.; Ju, L.; Wang, F.; Heinz, T.F. Optical spectroscopy of graphene: From the far infrared to the ultraviolet. Solid State Commun., 2012, 152, 1341-1349.
[http://dx.doi.org/10.1016/j.ssc.2012.04.064]
[53]
Zheng, L.; Ye, D.; Xiong, L.; Xu, J.; Tao, K.; Zou, Z.; Huang, D.; Kang, X.; Yang, S.; Xia, J. Preparation of cobalt-tetraphenylporphyrin/reduced graphene oxide nanocomposite and its application on hydrogen peroxide biosensor. Anal. Chim. Acta, 2013, 768, 69-75.
[http://dx.doi.org/10.1016/j.aca.2013.01.019] [PMID: 23473251]
[54]
Ryaguzov, A.P.; Nemkayeva, R.R.; Yukhnovets, O.I.; Guseinov, N.R.; Mikhailova, S.L.; Bekmurat, F.; Assembayeva, A.R. The effect of nonequilibrium synthesis conditions on the structure and optical properties of amorphous carbon films. Opt. Spectrosc., 2019, 127, 251-259.
[http://dx.doi.org/10.1134/S0030400X19080228]
[55]
Wang, J.; Shan, Z.; Tan, X.; Li, X.; Jiang, Z.; Qin, J. Preparation of graphene oxide (GO)/lanthanum coordination polymers for enhancement of bactericidal activity. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(2), 366-372.
[http://dx.doi.org/10.1039/D0TB02266G] [PMID: 33283813]
[56]
Rozhkov, S.P.; Goryunov, A.S. Conformational effects of interaction of serum albumine with nanoparticles of carbon shungyte: EPR spin-probe study. Trans. Karelian Res. Centre Russ. Acad. Sci. Exp. Biol., 2018, 12, 38-50.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy